Answer:
In parts 1 and 3 the energy
In part 2 moment. inelastic
conserved
Explanation:
In this exercise, we are asked to describe the conservation processes for each part of the exercise.
In parts 1 and 3 the energy is conserved since the bodies do not change
In part 2 the bodies change since they are united therefore the moment is conserved and part of the kinetic energy is converted into potential energy.
Energy
moment .inelastic
conserved
The two balls swing up together just after the collision to their highest point. energy is conserved.
What is the law of conservation of momentum?According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
When the first ball is released and just before it hits the stationary ball, The two balls collide, The two balls swing up together just after the collision to their highest point. energy is conserved.
The balls swing like pendulums. During the collision in part (2) energy is conserved as the collision is inelastic.
We are requested to describe the conservation methods for each element of the activity in this exercise.
Because the bodies do not change in sections 1 and 3, energy is conserved.
Because the bodies change in part 2 is joined, the moment is conserved and some of the kinetic energy is transformed into potential energy.
Hence the two balls swing up together just after the collision to their highest point. energy is conserved.
To learn more about the law of conservation of momentum refer to;
https://brainly.com/question/1113396
Based on the information in the table, what
is the acceleration of this object?
t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2
Answer:
Option A. –5 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (v₁) = 9 m/s
Initial time (t₁) = 0 s
Final velocity (v₂) = –6 m/s
Final time (t₂) = 3 s
Acceleration (a) =?
Next, we shall determine the change in the velocity and time. This can be obtained as follow:
For velocity:
Initial velocity (v₁) = 9 m/s
Final velocity (v₂) = –6 m/s
Change in velocity (Δv) =?
ΔV = v₂ – v₁
ΔV = –6 – 9
ΔV = –15 m/s
For time:
Initial time (t₁) = 0 s
Final time (t₂) = 3 s
Change in time (Δt) =?
Δt = t₂ – t₁
Δt = 3 – 0
Δt = 3 s
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Change in velocity (Δv) = –15 m/s
Change in time (Δt) = 3 s
Acceleration (a) =?
a = Δv / Δt
a = –15 / 3
a = –5 m/s²
Thus, the acceleration of the object is
–5 m/s².
Which phase of matter makes up stars?
O liquid
O gas
O plasma
Answer:
The answer to this question is plasma
Answer:
Plasma
Explanation:
A ball drops from a height, bounces three times, and then rolls to a stop when it reaches the ground the fourth time.
At what point is its potential energy greatest?
At what points does it have zero kinetic energy?
At what point did it have maximum kinetic energy?
Answer:
Greatest potential: moment before being dropped
Zero Kinetic: when it comes to rest
Greatest Kinetic: moment before first bounce
Explanation:
A small ball of uniform density equal to 1/2 the density of water is dropped into a pool from a height of 5m above the surface. Calculate the maximum depth the ball reaches before it is returned due to its bouyancy. (Omit the air and water drag forces).
Answer:
1.67 m
Explanation:
The potential energy change of the small ball ΔU equals the work done by the buoyant force, W
ΔU = -W
Now ΔU = mgΔh where m = mass of small ball = ρV where ρ = density of small ball and V = volume of small ball. Δh = h - h' where h = final depth of small ball and h' = initial height of small ball = 5 m. Δh = h - 5
ΔU = mgΔh
ΔU = ρVgΔh
Now, W = ρ'VgΔh' where ρ = density of water and V = volume of water displaced = volume of small ball. Δh' = h - h' where h = final depth of small ball and h' = initial depth of small ball at water surface = 0 m. Δh' = h - h' = h - 0 = h
So, ΔU = -W
ρVgΔh = -ρ'VgΔh'
ρVg(h - 5) = -ρ'Vgh
ρ(h - 5) = -ρ'h
Since the density of the small ball equals 1/2 the density of water,
ρ = ρ'/2
ρ(h - 5) = -ρ'h
(ρ'/2)(h - 5) = -ρ'h
ρ'(h - 5)/2 = -ρ'h
(h - 5)/2 = -h
h - 5 = -2h
h + 2h = 5
3h = 5
h = 5/3
h = 1.67 m
So, the maximum depth the ball reaches is 1.67 m.
PLEASE HELP ME WITH THIS ONE QUESTION
What is the rest energy of a proton? (c = 2.9979 x 10^9 m/s, mp = 1.6726 x 10^-27)
Answer:
multiply mp and c^2
Explanation:
e=mc^2
Gsjskebjwkksmndkkwksjdkdkskkskskkehdhjdj
Answer:
I DON'T UNDERSTAND
Explanation:
GUESS A MISUNDERSTANDING PLZ PUT A UNDERSTANDABLE QUESTION.
A uniform metre rule of mass 10g is balanced on a knife edge placed at 45cm mark. Calculate the distance of a mass 25g from the pivot
Answer:
The distance of a mass 25g from the pivot is 18cm
Explanation:
Given
[tex]m_1 = 10g[/tex]
[tex]d_1 = 45cm[/tex]
[tex]m_2 = 25g[/tex]
Required
Distance of m2 from the pivot
To do this, we make use of:
[tex]m_1 * d_1 = m_2 * d_2[/tex] --- moments of the masses
So, we have:
[tex]10 * 45= 25* d_2[/tex]
[tex]450= 25* d_2[/tex]
Divide both sides by 25
[tex]18= d_2[/tex]
Hence:
[tex]d_2 = 18[/tex]
A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. How far will block m drop in the first seconds after the system is released?
How long will block M move during above time?
At the time, calculate the velocity of block M
Find out the deceleration of the block M, if the connected string is
removal by cutting after the first second. Then, calculate the time
taken to contact block M and pulley.
Answer:
a) y = 0.98 t², t=1s y= 0.98 m,
b) he two blocks must move the same distance
c) v = 1.96 m / s, d) a = -1.96 m / s², e) x = 0.98 m
Explanation:
For this exercise we can use Newton's second law
Big Block
Y axis
N-W = 0
N = M g
X axis
T- fr = Ma
the friction force has the expression
fr = μ N
fr = μ Mg
small block
w- T = m a
we write the system of equations
T - fr = M a
mg - T = m a
we add and resolved
mg- μ Mg = (M + m) a
a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]
a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]
a = 9.8 (6/30)
a = 1.96 m / s²
a) now we can use the kinematic relations
y = v₀ t + ½ a t²
the blocks come out of rest so their initial velocity is zero
y = ½ a t²
y = ½ 1.96 t²
y = 0.98 t²
for t = 1s y = 0.98 m
t = 2s y = 1.96 m
b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.
As the curda is in tension the two blocks must move the same distance
c) the velocity of the block M
v = vo + a t
v = 0 + 1.96 t
for t = 1 s v = 1.96 m / s
t = 2 s v = 3.92 m / s
d) the deceleration if the chain is cut
when removing the chain the tension becomes zero
-fr = M a
- μ M g = M a
a = - μ g
a = - 0.2 9.8
a = -1.96 m / s²
e) the distance to stop the block is
v² = vo² - 2 a x
0 = vo² - 2a x
x = vo² / 2a
x = 1.96² / 2 1.96
x = 0.98 m
the time to travel this distance is
v = vo - a t
t = vo / a
t = 1.96 /1.96
t = 1 s
A cannon and a supply of cannonballs are inside a sealed railroad car of length L, as in Fig. 7-33. The cannon fires to the right; the car recoils to the left. The cannonballs remain in the car after hitting the far wall. (a) After all the cannonballs have been fired, what is the greatest distance the car can have moved from its original position
Answer:
Initially let n cannonballs with a total mass of m be to the left of the center of mass at L /2 and the mass of the car at L/2
x1 = [-m / (m + M)] * L / 2 is the original position of the CM
x2 = (m (x + L/2) + M x) / (m + M) * L/2 final position of CM with all cannon balls to the right
[-m x - m L / 2 + m x - M x] / (M + m) * L/2
= - ( m L / 2 + M x) / (m + M) * L/2 = Xcm
Check the math, but maximum distance occurs when the cannonballs of mass m move from -L/2 to L/2 and the car of mass M moves from zero to -x
A mass-spring system oscillates with an amplitude of 4.20 cm. If the spring constant is 262 N/m and the mass is 560 g, determine the mechanical energy of the system.
Answer:
[tex]M.E=41J[/tex]
Explanation:
From the question we are told that:
Amplitude [tex]a=4.20cm[/tex]
Spring Constant [tex]K=262N/m[/tex]
Mass [tex]m=560g[/tex]
Generally the equation for mechanical energy is mathematically given by
[tex]M.E=\frac{1}{2}km^2[/tex]
[tex]M.E=0.5*262*0.56^2[/tex]
[tex]M.E=41J[/tex]
Al and Ben are on roller skates and Al rolls into Ben. Al exerts a force of 30 N on Ben when they
collide. Explain what force Ben exerts on AI.
Answer:
Reaction force
Explanation:
Newton´s 3rd law says that every force exerted in nature has an equal and opposite force.
For example here, when Al exerts force on Ben, Ben exerts the same amount of force (30N) on Al.
Al exerts the action force and Ben exerts the reaction force.
vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?
Answer:
45 × 8 units = A + B as formular
In the early 1900's ____
began leading the automobile exploration in the US automotive industry.
-Karl Benz
-Henry Ford
-Gottlieb Daimler
-None of the above
Answer:
Henry Ford
Explanation:
he built the first ford
An AC power source has an rms voltage of 120 V and operates at a frequency of 60.0 Hz. If a purely inductive circuit is made from the power source and a 47.2 H inductor, determine the inductive reactance and the rms current through the inductor.
Answer:
The inductance is 17784.96 ohm and rms current is 4.77 mA.
Explanation:
Voltage, V = 120 V
frequency, f = 60 Hz
Inductance, L = 47.2 H
The rms voltage is
[tex]V_{rms}=\frac{V_o}{\sqrt 2}\\\\V_{rms}=\frac{120}{\sqrt 2}\\\\V_{rms} = 84.87 V[/tex]
The reactance is given by
[tex]X_L = 2\pi f L\\\\X_L = 2\times 3.14\times 60\times 47.2 \\\\X_L = 17784.96 ohm[/tex]
The rms current is
[tex]I_{rms} =\frac{V_{rms}}{X_L}\\\\I_{rms}=\frac{84.87}{17784.96}\\\\I_{rms} = 4.77\times 10^{-3} A = 4.77 mA[/tex]
A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval
Answer:
The number of revolutions is 44.6.
Explanation:
We can find the revolutions of the wheel with the following equation:
[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]
Where:
[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s
t: is the time = 8 s
α: is the angular acceleration
We can find the angular acceleration with the initial and final angular velocities:
[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]
Where:
[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s
[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]
Hence, the number of revolutions is:
[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]
Therefore, the number of revolutions is 44.6.
I hope it helps you!
Two charged particles exert an electric force of 27 N on each other. What will the magnitude of the force be if the distance between the particles is reduced to one-third of the original separation
Answer:
243 N
Explanation:
The formula for electromagnetic force is F= Kq1q2/r^2
where r is the distance between the charges, if the distance between the charges is reduced by 1/3 then F will increase by 9 [(1/3r)^2 becomes 1/9r which is 9F] so 27*9 is 243N
A car hurtles off a cliff and crashes on the canyon floor below. Identify the system in which the net momentum is zero during the crash.
Solution :
It is given that a car ran off from a cliff and it crashes on canyon floor. Now the system of a car as well as the earth together have a [tex]\text{ net momentum of zero}[/tex] when the car crashes on the canyon floor, thus reducing the momentum of the car to zero. The earth also stops its upward motion and it also reduces the momentum to zero.
If the potential (relative to infinity) due to a point charge is V at a distance R from this charge, the distance at which the potential (relative to infinity) is 2V is
A. 4R
B. 2R
C. R/2.
D. R/4
Answer:
R/2
Explanation:
The potential at a distance r is given by :
[tex]V=\dfrac{kq}{r}[/tex]
Where
k is electrostatic constant
q is the charge
The potential (relative to infinity) due to a point charge is V at a distance R from this charge. So,
[tex]\dfrac{V_1}{V_2}=\dfrac{r_2}{r_1}[/tex]
Put all the values,
[tex]\dfrac{V}{2V}=\dfrac{r_2}{R}\\\\\dfrac{1}{2}=\dfrac{r_2}{R}\\\\r_2=\dfrac{R}{2}[/tex]
So, the distance at which the potential (relative to infinity) is 2V is R/2.2.
Select the correct answer.
Erica is working in the lab. She wants to remove the fine dust particles suspended in a sample of oil. Which method is she most likely to use?
Answer:
Reverse Osmosis
Explanation:
Reverse osmosis is a type of filtration that involves passing a solvent through a semipermeable membrane in the opposite direction that natural osmosis does. Separation is always enforced through the use of pressure in this process. Ions, fine dust particles, molecules, and larger particles are typically removed from solvents using this method. The technique is particularly popular in the treatment and purification of water.
Answer:
filtration is used to separate
What would the separation between two identical objects, one carrying 4 C of positive charge and the other 4 C of negative charge, have to be if the electrical force on each was precisely 8 N
Answer:
7.46×10⁻⁶ m
Explanation:
Applying,
F = kqq'/r²............ Equation 1
make r the subject of the equation
r = √(F/kqq').......... Equation 2
From the question,
Given: F = 8 N, q' = q= 4 C
Constant: k = 8.98×10⁹ Nm²/C²
Substitute these values into equation 2
r = √[8/(4×4×8.98×10⁹)]
r = √(55.7×10⁻¹²)
r = 7.46×10⁻⁶ m
Astronauts in space move a toolbox from its initial position ????????→=<15,14,−8>m to its final position ????????→=<17,14,−1>m. The two astronauts each push on the box with a constant force. Astronaut 1 exerts a force ????1→=<18,7,−12>???? and astronaut 2 exerts a force ????2→=<16,−10,16>????.
Required:
What is the total work performed on the toolbox?
If both forces are measured in Newtons, then the net force is
F = (18, 7, -12) N + (16, -10, 16) N = (34, -3, 4) N
The toolbox undergoes a displacement (i.e. change in position) in the direction of the vector
d = (17, 14, -1) m - (15, 14, -8) m = (2, 0, -9) m
The total work done by the astronauts on the toolbox is then
F • d = (34, -3, 4) N • (2, 0, -9) m = (68 + 0 - 36) N•m = 32 J
The work done by the two astronauts is equal to 96 J.
What is work done?work done?Work done is defined as the product of force applied and the distance moved by the force.
Work done = Force × DistanceThe forces applied = 18+16 N, 7+ -10 N, and -12 + 16N
Forces = 34 N, -3 N, and 4N
Distances = (17 - 15, 14 - 14, -1 - - 8) m
Distances = 2, 0, 7
Work done = 34 × 2 + -3 × 0 + 4 × 7
Work done = 96 J
Therefore, the work done by the two astronauts is equal to 96 J.
Learn more about work done at: https://brainly.com/question/25573309
#SPJ6
what is Friction
short note on friction
Answer:
Explanation:
Friction can be defined as a force that resists the relative motion of two objects when there surface comes in contact. Thus, it prevents two surface from easily sliding over or slipping across one another. Also, friction usually reduces the efficiency and mechanical advantage of machines but can be reduced through lubrication.
Generally, there are four (4) main types of friction and these includes;
I. Static friction.
II. Rolling friction.
III. Sliding friction.
IV. Fluid friction.
Calculate the change in length of a 90.5 mm aluminum bar that has increased in temperature by from -14.4 oC to 154.6 oC
Take the coefficient of expansion to be 25 x 10-6 (oC)-1 . Write the answer in meters with three significant figures
Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
two point charges two point charges are separated by 25 cm in the figure find The Net electric field these charges produced at point a and point b
The image is missing and so i have attached it.
Answer:
A) E = 8740 N/C
B) E = -6536 N/C
Explanation:
The formula for electric field is;
E = kq/r²
Where;
q is charge
k is a constant with value 8.99 x 10^(9) N•m²/C²
A) Now, to find the net electric field at point A, the formula would now be;
E = (kq1/(r1)²) - (kq2/(r2)²)
Where;
r1 is distance from charge q1 to point A
r2 is distance from charge q2 to point A.
q1 = -6.25 nC = -6.25 × 10^(-9) C
q2 = -12.5 nC = -12 5 × 10^(-9) C
From the attached image, r1 = 25 cm - 10 cm = 15 cm = 0.15 m
r2 = 10 cm = 0.1 m
Thus;
E = (8.99 x 10^(9)) × ((-6.25 × 10^(-9))/0.15^(2)) - ((-12.5 × 10^(-9))/0.1^(2))
E = 8740 N/C
B) similarly, electric field at point B;
E = (kq1/(r1)²) + (kq2/(r2)²)
Where;
r1 is distance from charge q1 to point B
r2 is distance from charge q2 to point B.
q1 = -6.25 nC = -6.25 × 10^(-9) C
q2 = -12.5 nC = -12 5 × 10^(-9) C
From the attached image, r1 = 10 cm = 0.1 m
r2 = 25cm + 10 cm = 35 cm = 0.35 m
Thus;
E = (8.99 x 10^(9)) × ((-6.25 × 10^(-9))/0.1^(2)) + ((-12.5 × 10^(-9))/0.35^(2))
E = -6536 N/C
1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)
Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).
At point A, the block has total energy
E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²
E (A) = 686 J + 1/2 (10.0 kg) v₀²
At point B, the block's potential energy is converted into kinetic energy, so that its total energy is
E (B) = 1/2 (10.0 kg) v₁²
The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,
E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J
Throughout this whole process, energy is conserved, so
E (A) = E (B) = E (C) = E (D)
(a) Solve for v₀ :
686 J + 1/2 (10.0 kg) v₀² = 2548 J
==> v₀ ≈ 19.3 m/s
(b) Solve for v₁ :
1/2 (10.0 kg) v₁² = 2548 J
==> v₁ ≈ 22.6 m/s
Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:
• net horizontal force:
∑ F = -f = ma
• net vertical force:
∑ F = n - mg = 0
where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :
n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N
f = µn = 0.500 (98.0 N) = 49.0 N
==> - (49.0 N) = (10.0 kg) a
==> a = - 4.90 m/s²
The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that
v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)
==> v₂² = 490 m²/s²
and thus the block has total/kinetic energy
E (C) = 1/2 (10.0 kg) v₂² = 2450 J
(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so
2450 J = (10.0 kg) (9.80 m/s²) h
==> h = 25.0 m
(d) At half the maximum height, the block has speed v₃ such that
2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²
==> v₃ ≈ 15.7 m/s
The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by
v = v₁ + at = 22.6 m/s - (4.90 m/s²) t
The block comes to a rest when v = 0 :
0 = 22.6 m/s - (4.90 m/s²) t
==> t ≈ 4.61 s
It covers a distance x after time t of
x = v₁t + 1/2 at ²
so when it comes to a complete stop, it will have moved a distance of
x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m
(e) The block crosses the rough region
(52.0 m) / (2.00 m) = 26 times
A car is moving at a speed of 60 mi/hr (88 ft/sec) on a straight road when the driver steps on the brake pedal and begins decelerating at a constant rate of 10ft/s2 for 3 seconds. How far did the car go during this 3 second interval?
Answer:
219 ft
Explanation:
Here we can define the value t = 0s as the moment when the car starts decelerating.
At this point, the acceleration of the car is given by the equation:
A(t) = -10 ft/s^2
Where the negative sign is because the car is decelerating.
To get the velocity equation of the car, we integrate over time, to get:
V(t) = (-10 ft/s^2)*t + V0
Where V0 is the initial velocity of the car, we know that this is 88 ft/s
Then the velocity equation is:
V(t) = (-10 ft/s^2)*t + 88ft/s
To get the position equation we need to integrate again, this time we get:
P(t) = (1/2)*(-10 ft/s^2)*t^2 + (88ft/s)*t + P0
Where P0 is the initial position of the car, we do not know this, but it does not matter for now.
We want to find the total distance that the car traveled in a 3 seconds interval.
This will be equal to the difference in the position at t = 3s and the position at t = 0s
distance = P(3s) - P(0s)
= ( (1/2)*(-10 ft/s^2)*(3s)^2+ (88ft/s)*3s + P0) - ( (1/2)*(-10 ft/s^2)*(0s)^2 + (88ft/s)*0s + P0)
= ( (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s + P0) - ( P0)
= (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s = 219ft
The car advanced a distance of 219 ft in the 3 seconds interval.
The AM radio station WDRJ broadcasts news and sports at a frequency of 704 kHz (kilohertz). What is the wavelength of the radio waves this station broadcasts? _____ meters
Give your answer to the nearest hundredth of a meter (two places after the decimal). Just enter the number; do NOT use scientific notation.
Answer:
AM broadcasts occur on North American airwaves in the medium wave frequency range of 525 to 1705 kHz (known as the “standard broadcast band”). The band was expanded in the 1990s by adding nine channels from 1605 to 1705 kHz.
A popular car stereo has four speakers, each rated at 60 W. In answering the following questions, assume that the speakers produce sound at their maximum power.
A) Find the intensity I of the sound waves produced by one 60-Wspeaker at a distance of 1.0 m.
B) Find the intensity I of the sound waves produced by one 60-Wspeaker at a distance of 1.5 m.
C) Find the intensity I of the sound waves produced by four 60-Wspeakers as heard by the driver. Assume that the driver is located 1.0 m from each of the two front speakers and 1.5 m from each of the two rear speakers.
D)The threshold of hearing is defined as the minimum discernible intensity of the sound. It is approximately 10^(-12) W/m2. Find the distance dfrom the car at which the sound from the stereo can still be discerned. Assume that the windows are rolled down and that each speaker actually produces 0.06 W of sound, as suggested in the last follow-up comment.
Answer:
Explanation:
Intensity of sound = sound energy emitted by source / 4 π d² , where d is distance of the source .
A )
Intensity of sound at 1 m distance = 60 /4 π d²
d = 1 m
Intensity of sound at 1 m distance = 60 /(4 π 1²)
= 4.78 W m⁻² s⁻¹
B )
Intensity of sound at 1.5 m distance = 60 /4 π d²
d = 1.5 m
Intensity of sound at 1 m distance = 60 /(4 π 1.5²)
= 2.12 W m⁻² s⁻¹
C )
Intensity of sound due to 4 speakers at 1.5 m distance = 4 x 60 /4 π d²
d = 1.5 m
= 4 x 60 /(4 π 1.5²)
= 8.48 W m⁻² s⁻¹
D )
Intensity of sound due to .06 W speaker must be 10⁻¹² W s ⁻² . Let the distance be d .
.06 /4 π d² = 10⁻¹²
d² = .06 /4 π 10⁻¹²
d = 6.9 x 10⁴ m .
If the moon started it's orbit around the Earth from a spot in line with a certain star, it will return to that same spot in about _______.
Answer:
1 month
Explanation:
A 100-m long transmission cable is suspended between two towers. If the mass density is 18.2 g/cm and the tension in the cable is 6543 N, what is the speed (m/s2) of transverse waves on the cable