Answer:
The other angle is 75⁰
Explanation:
Given;
velocity of the projectile, v = 10 m/s
range of the projectile, R = 5.1 m
angle of projection, 15⁰
The range of a projectile is given as;
[tex]R = \frac{u^2sin(2\theta)}{g}[/tex]
To find another angle of projection to give the same range;
[tex]5.1 = \frac{10^2 sin(2\theta)}{9.81} \\\\100sin(2\theta) = 50\\\\sin(2\theta) = 0.5\\\\2\theta = sin^{-1}(0.5)\\\\2\theta = 30^0\\\\\theta = 15^0\\\\since \ the \ angle \ occurs \ in \ \ the \ first \ quadrant,\ the \ equivalent \ angle \\ is \ calculated \ as;\\\\90- \theta = 15^0\\\\\theta = 90 - 15^0\\\\\theta = 75^0[/tex]
Check:
sin(2θ) = sin(2 x 75) = sin(150) = 0.5
sin(2θ) = sin(2 x 15) = sin(30) = 0.5
12) If, after viewing a specimen at low power, you switch to high-dry power and, after using fine focus, cannot find the specimen, what things could you do to help yourself (before calling me over to assist you?)
Answer:
See the answer below
Explanation:
After seeing an object on a slide at the low-power objective of the microscope and it disappears on changing to high power, the following can be done to resolve the problem
1. Drop a few drops of immersion oil on the slide and view again under high the power objective.
2. If the object is still not visible after the action above, return the microscope to the low-power objective and make sure the object is refocused and centered. Then carefully change back to the high power objective and use the fine adjustment to bring it into focus.
(c) The ball leaves the tennis player's racket at a speed of 50 m/s and travels a
distance of 20 m before bouncing.
(i) Calculate how long it takes the ball to travel this distance.
(1 mark)
Answer:
t=0.417s
Explanation:
After the ball hits the racket it is in freefall(assume air resistance as negligible)
so a=-g
use
x-x0=v0t+1/2at^2
Plug in givens
20=50t-4.9t^2
Solve quadratic equation using quadratic formula
t= 0.417 seconds, (the other answer is extraneous because it is too big because in 1 second, the ball travels 50 meters)
Which of the following represents the velocity time relationship for a falling apple?
Answer "a" would be correct.
Answer:
d
Explanation:
There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D
Brainliest please~
1. A 20.0 N force directed 20.0° above the horizontal is applied to a 6.00 kg crate that is traveling on a horizontal
surface. What is the magnitude of the normal force exerted by the surface on the crate?
N = 52.0 N
Explanation:
Given: [tex]F_a= 20.0\:\text{N}=\:\text{applied\:force}[/tex]
[tex]m=6.00\:\text{kg}[/tex]
[tex]N = \text{normal force}[/tex]
The net force [tex]F_{net}[/tex] is given by
[tex]F_{net} = N + F_a\sin 20 - mg=0[/tex]
Solving for N, we get
[tex]N = mg - F_a\sin 20[/tex]
[tex]\:\:\:\:\:\:= (6.00\:\text{kg})(9.8\:\text{m/s}^2) - (20.0\:\text{N}\sin 20)[/tex]
[tex]\:\:\:\:\:\:= 52.0\:\text{N}[/tex]
An electron moving in the y direction, at right angles to a magnetic field, experiences a magnetic force in the -x direction. The direction of the magnetic field is in the
Answer:
The direction of magnetic field is along + Z axis.
Explanation:
The direction of motion of electron is along y axis.
The magnetic force is along - X axis.
The force on the charged particle moving in the magnetic field is
[tex]\overrightarrow{F} = q (\overrightarrow{v}\times \overrightarrow{B})\\\\- F \widehat{i} = - q (v \widehat{j}\times \overrightarrow{B})\\[/tex]
So, the direction of the magnetic field is along + Z axis.
A block of mass M is connected by a string and pulley to a hanging mass m.The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. Find the acceleration of the system and tensions on the string.
The free body diagram for the block of mass M consists of four forces:
• the block's weight, Mg, pointing downward
• the normal force of the table pushing upward on the block, also with magnitude Mg
• kinetic friction with magnitude µMg = 0.2 Mg, pointing to the left
• tension of magnitude T pulling the block to the right
For the block of mass m, there are only two forces:
• its weight, mg, pulling downward
• tension T pulling upward
The m-block will pull the M-block toward the edge of the table, so we take the right direction to be positive for the M-block, and downward to be positive for the m-block.
Newton's second law gives us
T - 0.2Mg = Ma
mg - T = ma
where a is the acceleration of either block/the system. Adding these equations together eliminates T and we can solve for a :
mg - 0.2 Mg = (m + M) a
a = (m - 0.2M) / (m + M) g
a = 1.96 m/s²
Then the tension in the string is
T = m (g - a)
T = 78.4 N
The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.
Answer:
[tex]\frac{r_1}{r_2}=6.9[/tex]
Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:
[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]
where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]
A solid piece of clear transparent material has an index of refraction of 1.61. If you place it into a clear transparent solution and it seems to disappear, approximately what is the index of refraction of the solution
Answer:
1.61
Explanation:
According to Oxford dictionary, refractive index is, ''the ratio of the velocity of light in a vacuum to its velocity in a specified medium.''
If the clear transparent solid disappears when dipped into the liquid, it means that the index of refraction of the solid and liquid are equal.
Hence, when a transparent solid is immersed in a liquid having the same refractive index, there is no refraction at the boundary between the two media. As long as there is no refraction between the two media, the solid can not be seen because the solid and liquid will appear to the eye as one material.
A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?
Answer:
Power = Energy/time
Energy = Power xtime.
Time= 20hrs
Power = 100Watt =0.1Kw
Energy = 0.1 x 20 = 2Kwhr.
This Answer is in Kilowatt-hour ...
If the one given to you is in Joules
You'd have to Change your time to seconds
Then Multiply it by the power of 100Watts.
a student weighs 1200N they are standing in an elevator that is moving downwards at a constant speed of
Answer:
Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?
This problem has been solved!
This problem has been solved!See the answer
This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of 4.9 m/s. What is the magnitude of the net force acing on the student?
Explanation:
use this R= m(g-a), where R = reaction = weight, m= mass, a= acceleration and g= acceleration due to gravity
~~~NEED HELP ASAP~~~
Please solve each section and show all work for each section.
Explanation:
Forces on Block A:
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass [tex]m_A[/tex] as
[tex]x:\:\:(F_{net})_x = f_N - T = -m_Aa\:\:\:\:\:\:\:(1)[/tex]
[tex]y:\:\:(F_{net})_y = N - m_Ag = 0 \:\:\:\:\:\:\:\:\:(2)[/tex]
Substituting (2) into (1), we get
[tex]\mu_km_Ag - T = -m_Aa \:\:\:\:\:\:\:\:\:(3)[/tex]
where [tex]f_N= \mu_kN[/tex], the frictional force on [tex]m_A.[/tex] Set this aside for now and let's look at the forces on [tex]m_B[/tex]
Forces on Block B:
Let the x-axis be (+) up along the inclined plane. We can write the forces on [tex]m_B[/tex] as
[tex]x:\:\:(F_{net})_x = T - m_B\sin30= -m_Ba\:\:\:\:\:\:\:(4)[/tex]
[tex]y:\:\:(F_{net})_y = N - m_Bg\cos30 = 0 \:\:\:\:\:\:\:\:\:(5)[/tex]
From (5), we can solve for N as
[tex]N = m_B\cos30 \:\:\:\:\:\:\:\:\:(6)[/tex]
Set (6) aside for now. We will use this expression later. From (3), we can see that the tension T is given by
[tex]T = m_A( \mu_kg + a)\:\:\:\:\:\:\:\:\:(7)[/tex]
Substituting (7) into (4) we get
[tex]m_A(\mu_kg + a) - m_Bg\sin 30 = -m_Ba[/tex]
Collecting similar terms together, we get
[tex](m_A + m_B)a = m_Bg\sin30 - \mu_km_Ag[/tex]
or
[tex]a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)[/tex]
Putting in the numbers, we find that [tex]a = 1.4\:\text{m/s}[/tex]. To find the tension T, put the value for the acceleration into (7) and we'll get [tex]T = 21.3\:\text{N}[/tex]. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get [tex]N = 50.9\:\text{N}[/tex]
A simple pendulum takes 2.00 s to make one compete swing. If we now triple the length, how long will it take for one complete swing
Answer:
3.464 seconds.
Explanation:
We know that we can write the period (the time for a complete swing) of a pendulum as:
[tex]T = 2*\pi*\sqrt{\frac{L}{g} }[/tex]
Where:
[tex]\pi = 3.14[/tex]
L is the length of the pendulum
g is the gravitational acceleration:
g = 9.8m/s^2
We know that the original period is of 2.00 s, then:
T = 2.00s
We can solve that for L, the original length:
[tex]2.00s = 2*3.14*\sqrt{\frac{L}{9.8m/s^2} }\\\\\frac{2s}{2*3.14} = \sqrt{\frac{L}{9.8m/s^2}}\\\\(\frac{2s}{2*3.14})^2*9.8m/s^2 = L = 0.994m[/tex]
So if we triple the length of the pendulum, we will have:
L' = 3*0.994m = 2.982m
The new period will be:
[tex]T = 2*3.14*\sqrt{\frac{2.982m}{9.8 m/s^2} } = 3.464s[/tex]
The new period will be 3.464 seconds.
An elevator with its occupants weighs 2400 N and is supported by a vertical cable. What is the tension in the cable if the elevator is moving up with its speed decreasing at a rate of 1.7
Answer:
Hope you find it useful. please correct me if I am wrong
The tension in the cable if the elevator is moving upward with its speed decreasing at a rate of 1.7 m/s² is equal to 1983.67 N.
What is tension?Tension can be described as a force acting along the length of a medium such as a rope, mainly a force carried by a flexible medium.
Tension can be defined as an action-reaction pair of forces acting at each end of the elements. The tension force is in every section of the rope in both directions, apart from the endpoints. Each endpoint of the rope experience tension and force from the weight attached.
Given the force due to the weight of the elevator = mg = 2400N
m = 2400/9.8 Kg
The elevator deaccelerating while moving upward, a = -1.7 m/s²
According to Newton's 3rd law: T - mg = ma
T - 2400 = (2400/9.8) × (-1.7)
T = 2400 - 416.32
T = 1983.67 N
Learn more about tension, here:
brainly.com/question/28965515
#SPJ5
Your dog is running around the grass in your back yard. He undergoes successive displacements 3.20 m south, 8.16 m northeast, and 15.6 m west. What is the resultant displacement
Answer:
D1 = 3.50 m, south; D2 = 8.20 m, northeast; D3 = 15.0 m, west. Converting all these displacements from east where zero degrees is at east or + x-axis, the converted displacements are: D1 = 3.50 m 270°; D2 = 8.20 m 45° and D3 = 15.0 m 180°. We then tabulate these vectors including there x and y components. The x-components are solved by magnitudes * cos of direction angle while the y-components of the three vectors are solved by magnitudes * sin of direction angle.
The resultant is computed by summing the components algebraically. The direction in degrees is the arc tangent of the sum of all y divided by the sum of all x.
Explanation:
Would this pressure difference be greater or smaller if the scuba diver were in seawater (density 1050 kg/m3 ) and went to the same depth you calculated in question D1, took and held his breath, and then returned to the surface
Answer:
Greater.
Explanation:
This pressure difference will be greater if the scuba diver were in seawater and went to the same depth because the seawater have salts which increases the density of water as compared to freshwater. Salt in water increases the density which automatically increases the pressure on the diver so that's why we can say that the pressure will be increases for the scuba diver in seawater as compared to freshwater.
A
Fluids in which the shear stress must reach
certain minimum value(yield stress)
before flow commences are called
Answer:
Plastic
Explanation:
Shear Modulus can be defined as the ratio of shear stress to shear strain with respect to a physical object.
This ultimately implies that, Shear Modulus arises as a result of the application of a shear force on an object or body which eventually leads to its deformation. Thus, this phenomenon is simply used by scientists to measure or determine the rigidity of an object or body.
Fluids in which the shear stress must reach certain minimum value (yield stress) before flow commences are called plastic. Thus, a plastic would only begin to flow when its shear stress attain a certain minimum value (yield stress). The unit of measurement of yield stress is usually mega pascal (MPa).
65. The weight of a body when totally immersed in a liquid is 4.2N if he weight of the liquid displaced is 2.5N. Find the weight of the body in air.
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
What is true when an object floats in water? A. When an object floats, it exceeds the volume of water available. B. When an object floats, it displaces a volume of water equal to its own volume. C. When an object floats, it does not displace its entire volume.
Answer:
C. When an object floats, it does not displace its entire volume.
Explanation:
Buoyancy can be defined as an upward force which is created by the water displaced by an object.
According to Archimede's principle, it is directly proportional to the amount (weight) of water that is being displaced by an object.
Basically, the greater the amount of water an object displaces; the greater is the force of buoyancy pushing the object up. The buoyancy of an object is given by the formula;
[tex] Fb = pgV [/tex]
[tex] But, \; V = Ah [/tex]
[tex] Hence, \; Fb = pgAh [/tex]
Where;
Fb = buoyant force of a liquid acting on an object.
g = acceleration due to gravity.
p = density of the liquid.
v = volume of the liquid displaced.
h = height of liquid (water) displaced by an object.
A = surface area of the floating object.
The unit of measurement for buoyancy is Newton (N).
Additionally, the density of a fluid is directly proportional to the buoyant force acting on it i.e as the density of a liquid decreases, buoyancy decreases and vice-versa.
Furthermore, an object such as a boat, ship, ferry, canoe, etc, are able to float because the volume of water they displace weigh more than their own weight. Thus, if a boat or any physical object weighs more than the volume of water it displaces, it would sink; otherwise, it floats.
In conclusion, the true statement is that when an object floats, it does not displace its entire volume.
You need to calculate the volume of berm that has a starting cross-sectional area of 118 SF, and an ending cross-sectional area of 245 SF. The berm is 300 ft long and is assumed to taper evenly between the two cross-sectional areas, what is the calculated volume of the berm in cubic feet
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me
A Catapult throws a payload in a circle with an arm that is 65.0 cm long. At a certain instant, the arm is rotating at 8.0 rad/s and the angular speed is increasing at 40.0 rad/s2. For this instant, find the magnitude of the acceleration of the payload.
Answer:
The acceleration of the payload is 26 m/s2.
Explanation:
length, L = 65 cm = 0.65 m
angular acceleration = 40 rad/s^2
The acceleration is given by
a = angular acceleration x length
a = 40 x 0.65
a = 26 m/s^2
why do you like the full moon ?
Answer:
The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.Answer:
because it look more impressive than empty dark sky .
What is life like in a cave camp? Do you think you would like to experience this? Why or why not?
Answer:
There's no risk of animals or bad weather interfering with your campsite, either. You don't even really need a tent. A sleeping pad, sleeping bag and a mindful eye to pick up everything you brought in is all you really need to enjoy overnight caving. Do your research
Explanation:
The north pole of magnet A will __?____ the south pole of magnet B
Answer:
A will attract
B will repare
Two plastic bowling balls, 1 and 2, are rubbed with cloth until they each carry a uniformly distributed charge of magnitude 0.50 nC . Ball 1 is negatively charged, and ball 2 is positively charged. The balls are held apart by a 900-mm stick stuck through the holes so that it runs from the center of one ball to the center of the other.
Required:
What is the magnitude of the dipole moment of the arrangement?
Answer:
The right solution is "[tex]4.5\times 10^{-10} \ Cm[/tex]".
Explanation:
Given that,
q = 0.50 nC
d = 900 mm
As we know,
⇒ [tex]P=qd[/tex]
By putting the values, we get
⇒ [tex]=0.50\times 900[/tex]
⇒ [tex]=(0.50\times 10^{-9})\times 0.9[/tex]
⇒ [tex]=4.5\times 10^{-10} \ Cm[/tex]
Answer:
The dipole moment is 4.5 x 10^-10 Cm.
Explanation:
Charge on each ball, q = 0.5 nC
Length, L = 900 mm = 0.9 m
The dipole moment is defined as the product of either charge and the distance between them.
It is a vector quantity and the direction is from negative charge to the positive charge.
The dipole moment is
[tex]p = q L\\\\p = 0.5 \times 10^{-9}\times 0.9\\\\p = 4.5\times 10^{-10} Cm[/tex]
The velocity of an object increases at a constant rate from 20 m/s to 50 m/s in 10 s.Find the acceleation
Answer:
[tex]{ \bf{v = u + at}} \\ 50 = 20 + (a \times 10) \\ 30 = 10a \\ { \tt{acceleration = 3 \: {ms}^{ - 2} }}[/tex]
if one branch of a 120-v power lines is protected by a 20-A fuse, will the fuse carry an 8-Ώ load
Answer:
No I won't.
It will carry 6ohm load.
Explanation:
It obeys ohms law therefore V=IR
120=20R
R=120/20
R= 6 ohms
If an electrical component with a resistance of 53 Q is connected to a 128-V source, how much current flows through the component?
Answer:
the current that flows through the component is 2.42 A
Explanation:
Given;
resistance of the electrical component, r = 53 Ω
the voltage of the source, V = 128 V
The current that flows through the component is calculated using Ohm's Law as demonstrated below;
[tex]V = IR\\\\I = \frac{V}{R} = \frac{128 \ V}{53 \ ohms} = 2.42 \ A[/tex]
Therefore, the current that flows through the component is 2.42 A
If you buy an amateur-sized reflecting telescope, say around 10 inches (25cm) aperture, it'll have something in it that sends the gathered starlight out the side of the telescope tube. What do we call this thing
Answer: objective lens
Explanation:
Light enters a refra
Light enters a telescope through a lens at the upper end, which focuses the light near the bottom of the telescope. An eyepiece then magnifies the image so that it can be viewed by the eye, or a detector like a photographic plate can be placed at the focus. The upper end of a reflecting telescope is open, and the light passes through to the mirror located at the bottom of the telescope. The mirror then focuses the light at the top end, where it can be detected. Alternatively, a second mirror may reflect the light to a position outside the telescope structure, where an observer can have easier access to it.