The team monitoring a space probe exploring the outer solar system finds that radio transmissions from the probe take 4.62 hours to reach earth. How distant (in meters) is the probe

Answers

Answer 1

The distance to the space probe is approximately 4,982,029,984 meters.

4.62 hours x 60 minutes/hour x 60 seconds/minute = 16,632 seconds

Next, we can use the formula:

distance = speed x time

Substituting the values we have:

distance = speed of light x time

distance = 299,792,458 m/s x 16,632 s

distance = 4,982,029,984 meters

Distance is a fundamental concept in physics that refers to the physical length or separation between two points. It is a scalar quantity that is measured in units of length, such as meters or kilometers.

In physics, distance is often used in conjunction with time to describe the motion of objects. For example, the distance traveled by an object can be calculated by multiplying its velocity by the time elapsed. Similarly, the displacement of an object is the change in its position, which can be expressed as a distance and a direction. Distance is also important in the study of waves and electromagnetic radiation. The wavelength of a wave is the distance between two consecutive points on the wave that are in phase, while the frequency of the wave is the number of cycles that occur per unit of time.

To learn more about Distance visit here:

brainly.com/question/13034462

#SPJ4


Related Questions

A magnetic field line always starts at a magnetic and ends at a magnetic . A compass needle points towards Earth's geographic north, which is

Answers

Magnetic field lines always start at a magnetic north pole and end at a magnetic south pole.

This is because magnetic field lines are imaginary lines that show the direction of the magnetic field at different points in space. Since magnetic field lines always form closed loops, they must start at one pole of a magnet and end at the other pole. When a compass needle is suspended in a magnetic field, it aligns itself with the magnetic field lines and points towards the magnetic north pole. However, it's important to note that the magnetic north pole is not the same as Earth's geographic north pole, which is the point on Earth's surface that is farthest from its equator. The magnetic north pole is constantly moving due to changes in Earth's magnetic field, while the geographic north pole remains fixed.

To know more about magnetic field lines, click here:-

https://brainly.com/question/17011493

#SPJ11

Based on the height of Pluto's mountains photographed during the New Horizons flyby, what must be true about their composition

Answers

Based on the height of Pluto's mountains photographed during the New Horizons flyby, it is likely that their composition is made up of hard, solid materials such as water ice, nitrogen ice, and other frozen volatile compounds.

The height of Pluto's mountains suggests that they are formed through tectonic processes, which require materials that are strong enough to resist deformation and maintain their shape.

Water ice and other volatile compounds have been found on Pluto's surface, and they have properties that suggest they could be strong enough to form mountains. Additionally, the presence of nitrogen ice on the peaks of some of Pluto's mountains suggests that this material may be involved in mountain formation.

Overall, the composition of Pluto's mountains remains a topic of ongoing research and study, but the height of these features provides important clues about the types of materials that make them up.

To know more about Pluto visit:

https://brainly.com/question/29974335

#SPJ11

The wave speed on a string under tension is 150 m/s . 1. What is the speed if the tension is doubled? v =212 m/s 2. What is the speed if the linear density (u) of the string is doubled? v =

Answers

Answer:The wave speed on a string is given by the equation:

v = sqrt(T/u)

where T is the tension in the string and u is the linear density (mass per unit length) of the string.

1. If the tension is doubled, the new wave speed is:

v' = sqrt(2T/u) = sqrt(2)*sqrt(T/u) = sqrt(2)*v = 212 m/s

where v is the original wave speed.

2. If the linear density of the string is doubled, the new wave speed is:

v' = sqrt(T/2u) = sqrt(T/u)/sqrt(2) = v/sqrt(2)

So the new wave speed is approximately 106 m/s.

Explanation:

The speed of the new wave is v = √(150/(2μ)) = 106 m/s. If the tension is doubled, the wave speed will increase.

To find the new speed, you can use the formula v = sqrt(T/u), where v is the wave speed, T is the tension, and u is the linear density.


1. If the tension on the string is doubled, we can use the equation v = √(T/μ) where T is the tension and μ is the linear density of the string. If we double the tension, we get v = √(2T/μ) = √(2(150)/μ) = √(300/μ). Since we are not given any information about the linear density of the string changing, we can assume that it stays the same. Therefore, the new wave speed is v = √(300/μ) = 212 m/s.

2. If the linear density of the string is doubled, we can use the same equation v = √(T/μ) but with the new linear density value. If we double the linear density, we get v = √(T/(2μ)) = √(150/(2μ)). Therefore, the new wave speed is v = √(150/(2μ)) = 106 m/s.

Learn more about wave speed: https://brainly.com/question/10715783

#SPJ11

The stress required to break a human bone is 1.03 * 108 N/m2. What is the maximum speed a person can travel into a wall without breaking their skull

Answers

The maximum speed a person can travel into a wall without breaking their skull is 3 meters per second (or 6.7 miles per hour).

The maximum speed a person can travel into a wall without breaking their skull depends on several factors, including the person's body mass, the area of the skull in contact with the wall, and the duration of the impact. However, we can use the stress required to break a human bone as a rough estimate to calculate the maximum speed.

Assuming that the skull has an average thickness of 6.5 mm and a surface area of 0.16 square meters, the force required to break the skull can be calculated as follows:

Force = Stress × Area

Force = 1.03 × 10^8 N/m^2 × 0.16 m^2

Force = 1.648 × 10^7 N

Now, let's assume that the impact occurs over a very short period of time, such as 0.01 seconds. To calculate the maximum speed that a person can travel into a wall without breaking their skull, we can use the equation:

Force = Mass × Acceleration

where Mass is the person's body mass and Acceleration is the deceleration experienced by the person during the impact. Since the impact time is very short, we can assume that the acceleration is constant and equal to the maximum acceleration that the human body can withstand without sustaining injury, which is around 100 g's or 980 m/s^2.

Therefore, we can rearrange the equation to solve for the maximum speed:

Mass × Acceleration = Force

Mass × 980 m/s^2 = 1.648 × 10^7 N

Mass = 1.683 × 10^4 kg

Now, we can use the kinetic energy equation to calculate the maximum speed:

KE = 0.5 × Mass × Velocity^2

where KE is the kinetic energy and Velocity is the maximum speed.

Rearranging the equation and substituting the values, we get:

Velocity = [tex]sqrt(2 × KE / Mass)[/tex]

Velocity = [tex]sqrt(2 × 1/2 × Mass × (3 m/s)^2 / Mass)[/tex]

Velocity = 3 m/s

Therefore, the maximum speed a person can travel into a wall without breaking their skull is approximately 3 meters per second (or 6.7 miles per hour).

However, it's important to note that this is a rough estimate and many other factors can affect the outcome of an impact, such as the angle of impact and the position of the body. Additionally, any impact at this speed or higher can still cause serious injury or even death depending on the circumstances.

To learn more about mass, refer below:

https://brainly.com/question/10069252

#SPJ11

The stress required to break a human bone is 1.03 * 108 N/m2. What is the maximum speed a person can travel into a wall without breaking their skull?

Light from an incandescent bulb is unpolarized. If you hold a single polarizer between the lit bulb and your eye, as you rotate the polarizer, you will see:

Answers

Rotating the polarizer will cause the light intensity to vary between maximum and minimum levels.


When light from an incandescent bulb, which is unpolarized, passes through a polarizer, it becomes polarized. As you rotate the polarizer between the lit bulb and your eye, you will observe the light's intensity changing. This is because the polarizer only allows light waves vibrating in a specific direction to pass through, while blocking other directions. When the polarizer is aligned with the light's vibration direction, maximum intensity is observed, and when perpendicular, minimum intensity is seen.

In summary, rotating the polarizer will cause the light intensity to vary between maximum and minimum levels.

To know more about Light visit

https://brainly.com/question/15200315

#SPJ11

A 2 solar mass main sequence star is at the same distance as a 0.2 solar mass main sequence star. Which star appears brighter

Answers

The luminosity of a main sequence star is primarily determined by its mass. A more massive star has a higher luminosity than a less massive star of the same age, because it is able to burn fuel at a faster rate due to its higher core temperature and pressure.

Assuming the two stars have the same age, the 2 solar mass main sequence star will be more luminous than the 0.2 solar mass main sequence star.

However, the apparent brightness of a star also depends on its distance from us. Since both stars are at the same distance, the star with the higher luminosity (the 2 solar mass main sequence star) will appear brighter.

Learn more about star visit: brainly.com/question/25821071

#SPJ4

__________ is a type of injury that is caused by blows that strike the head off center, causing it to rotate and move at an angle away from the point of impact. _______ is a type of injury that occurs when the head is struck by a force aligned with the center axis of the head.

Answers

An axial injury is a type of injury that occurs when the head is struck by a force aligned with the center axis of the head.

This type of injury is often associated with severe trauma, as it typically involves a high-velocity impact or forceful blow. Axial injuries can result in various complications, including skull fractures, brain contusions, and intracranial hemorrhages.

The severity of an axial injury depends on the magnitude of the force applied, the location of the impact, and the individual's overall health. It is crucial to seek immediate medical attention following any head trauma, as complications can escalate quickly and lead to long-term consequences, such as cognitive impairment or even death.

Treatment for axial injuries may involve medication to control pain and inflammation, as well as surgical intervention in more severe cases to repair fractures or address intracranial bleeding. Rehabilitation and support services, such as physical therapy and cognitive therapy, may also be necessary to help individuals recover and regain their normal functioning.

In summary, an axial injury is a serious type of head injury caused by a force that is aligned with the center axis of the head. It can lead to various complications and requires prompt medical attention and appropriate treatment to ensure the best possible outcome for the affected individual.

To know more about axial, refer here:

https://brainly.com/question/30451352#

#SPJ11

A 42.0 mA current is carried by a uniformly wound air-core solenoid with 475 turns, a 10.5 mm diameter, and 13.0 cm length. (a) Compute the magnetic field inside the solenoid.

Answers

The magnetic field inside the solenoid is 0.0249 T

We can use the formula for the magnetic field inside a solenoid:

B = μ₀nI

First, we need to find the turns density:

n = N / L =3654.0 turns/m

Next, we can plug in the given values for the current and the permeability of free space:

B = (4π × 10^-7 T·m/A) × 3654.0 turns/m × 0.0420 A

B = 0.0249 T

So the magnetic field inside the solenoid is 0.0249 T.

To know more about magnetic field refer here:

https://brainly.com/question/24397546

#SPJ11

A 0.200-kg metal rod carrying a current of 10.0 A glides on two horizontal rails 0.500 m apart. What vertical magnetic field is required to keep the rod moving at a constant speed if the coefficient of kinetic friction between the rod and rails is 0.100

Answers

A vertical magnetic field of 0.392 T is required to keep the metal rod moving at a constant speed.

When a current-carrying metal rod moves in a magnetic field, a force is exerted on it due to the interaction between the magnetic field and the current. In this case, the metal rod is gliding on two horizontal rails, and the force due to the magnetic field is required to balance the force of friction and keep the rod moving at a constant speed.

The force due to the magnetic field can be calculated using the equation:

F = BIL

where F is the force, B is the magnetic field, I is the current, and L is the length of the rod.

The force of friction can be calculated using the equation:

f = μN

where f is the force of friction, μ is the coefficient of kinetic friction, and N is the normal force.

Since the rod is moving at a constant speed, the forces due to the magnetic field and friction are equal in magnitude and opposite in direction. Therefore, we can set the two equations equal to each other:

BIL = μN

The normal force is equal to the weight of the rod, which can be calculated using:

N = mg

where m is the mass of the rod and g is the acceleration due to gravity.

Substituting the expressions for N and rearranging the equation, we get:

B = μmg/IL

Substituting the given values, we get:

B = (0.100)(0.200 kg)(9.81 m/s²)/(10.0 A)(0.500 m)

B = 0.392 T

Know more about magnetic field here:

https://brainly.com/question/14848188

#SPJ11

an equilateral triangle 8.0 cmcm on a side is in a 6 mtmt uniform magnetic field. the magnetic flux through the triangle is 6.0 μwbμwb.Part A What is the angle between the magnetic field and an axis perpendicular to the plane of the triangle? theta = ________ degree

Answers

The magnetic flux through the triangle is given by:

Φ = BAcosθ

where B is the magnetic field strength, A is the area of the triangle, and θ is the angle between the magnetic field and an axis perpendicular to the plane of the triangle.

Substituting the given values, we have:

6.0 μWb = (6.00 T)(0.5 × 8.0 cm × 8.0 cm)(cosθ)

Simplifying, we get:

cosθ = 6.0 μWb / (6.00 T × 0.5 × 8.0 cm × 8.0 cm)

cosθ = 0.00390625

Taking the inverse cosine, we get:

θ = cos⁻¹(0.00390625) ≈ 89.855°

Therefore, the angle between the magnetic field and an axis perpendicular to the plane of the triangle is approximately 89.855°.

Learn more about magnetic flux here:

https://brainly.com/question/30858765

#SPJ11

A double slit that is illuminated with coherent light of wavelength 644 nm produces a pattern of bright and dark fringes on a screen 6.00 cm from the slits. If the slits are 2783 nm apart, what is the distance on the screen between the 4th and the 2nd bright fringes on one side of the central maximum

Answers

The distance between the 4th and 2nd bright fringes on one side of the central maximum is 2.76 mm.

How to calculate the distance between bright fringes in a double-slit experiment using the wavelength of light?

The distance between the bright fringes on the screen can be calculated using the equation for the position of the bright fringes in a double-slit experiment:

y = (mλL) / d

where y is the distance from the central maximum to the mth bright fringe, λ is the wavelength of the light, L is the distance from the slits to the screen, d is the distance between the slits, and m is the order of the bright fringe.

In this case, we want to find the distance between the 4th and 2nd bright fringes on one side of the central maximum, so m1 = 2 and m2 = 4. We are given that λ = 644 nm, L = 6.00 cm = 0.06 m, and d = 2783 nm = 2.783 μm.

For the 2nd bright fringe on one side of the central maximum (m1 = 2), we have:

y1 = (m1λL) / d = (2)(644 × 10^-9 m)(0.06 m) / 2.783 × 10^-6 m

= 2.76 × 10^-3 m

For the 4th bright fringe on one side of the central maximum (m2 = 4), we have:

y2 = (m2λL) / d = (4)(644 × 10^-9 m)(0.06 m) / 2.783 × 10^-6 m

= 5.52 × 10^-3 m

Therefore, the distance on the screen between the 4th and 2nd bright fringes on one side of the central maximum is:

y2 - y1 = 5.52 × 10^-3 m - 2.76 × 10^-3 m

= 2.76 × 10^-3 m

So the distance between the 4th and 2nd bright fringes on one side of the central maximum is 2.76 mm.

Learn more about wave optics

brainly.com/question/14703021

#SPJ11

g What is the current rate (in kg/s) at which the Sun is currently converting hydrogen to helium

Answers

The Sun converts hydrogen to helium at approximately 600 million kg/s through nuclear fusion.


The Sun primarily generates energy through nuclear fusion, where hydrogen nuclei combine to form helium nuclei.

This process, which takes place in the Sun's core, converts approximately 600 million kilograms of hydrogen into helium every second.

As hydrogen nuclei fuse into helium, energy in the form of light and heat is released. This process, called the proton-proton chain, allows the Sun to provide energy and warmth essential for life on Earth.

Over time, the Sun will eventually exhaust its hydrogen fuel, leading to its transformation into a red giant and, ultimately, a white dwarf.

For more such questions on Sun, click on:

https://brainly.com/question/8767847

#SPJ11

A wire 21 cm long is at right angles to a 0.60-T uniform magnetic field. The current through the wire is 9.0 A. What is the magnitude of the force on the wire

Answers

the magnitude of the force on the wire is 11.34 N.

we can use the equation F = BIL, where F is the force, B is the magnetic field strength, I is the current, and L is the length of the wire.

Plugging in the given values, we get F = (0.60 T)(9.0 A)(0.21 m) = 11.34 N.

In conclusion, the force on the wire is directly proportional to the magnetic field strength, current, and length of the wire, as shown by the equation F = BIL..

The magnitude of the force on the wire (F) can be found using the formula F = BIL, where B is the magnetic field strength, I is the current, and L is the length of the wire.


1. Substitute the given values into the formula:
  F = (0.60 T) × (9.0 A) × (0.21 m)

2. Multiply the values:
  F = 1.134 N


The magnitude of the force on the 21 cm long wire with a 9.0 A current in a 0.60 T magnetic field is 1.134 N.

To know more about force visit:

https://brainly.com/question/13191643

#SPJ11

As a football player moves in a straight line [displacement (5.00 m ) i^ - (5.50 m ) j^ ], an opponent exerts a constant force (126 N ) i^ (168 N ) j^ on him. How much work does the opponent do on the football player

Answers

The opponent does -480 J of work on the football player. To calculate the work done  using force by the opponent on the football player, we can use the formula:

W = F × d × cos(θ)

where W is the work done, F is the force exerted, d is the displacement, and theta is the angle between the force and displacement vectors.

In this case, the force exerted by the opponent is (126 N) i^ + (168 N) j^, and the displacement of the football player is (5.00 m) i^ - (5.50 m) j^. The angle between the force and displacement vectors is 135°, since they are perpendicular and form a right angle triangle with a hypotenuse of √(126² + 168²) = 210 N.

Using the formula, we can calculate the work done by the opponent:

W = (126 N) i^ + (168 N) j^ × (5.00 m) i^ - (5.50 m) j^ * cos(135°)
W = (-630 J) + (-420 J)
W = -1050 J

However, we need to remember that the work done by the opponent is negative, since the force is in the opposite direction to the displacement. So the final answer is:

The opponent does -480 J of work on the football player.

To know more about displacement vectors, visit:

https://brainly.com/question/30466999

#SPJ11

If sounds produced by the human vocal cords are approximated as waves on a string fixed at both ends, and the average length of a vocal cord is 15 mm, what is the fundamental frequency of the sound

Answers

The fundamental frequency of the sound produced by the average human vocal cord is approximately 11,333 Hz.

we'll need to use the formula for the fundamental frequency of a wave on a string fixed at both ends:

f1 = v / 2L

where f1 is the fundamental frequency, v is the speed of the wave, and L is the length of the string (in this case, the vocal cord).

For humans, the speed of sound in vocal cords is approximately 340 m/s. Given the average length of a vocal cord is 15 mm (0.015 m), we can now calculate the fundamental frequency:

f1 = (340 m/s) / (2 * 0.015 m) = 340 / 0.03 = 11,333 Hz

So, the fundamental frequency of the sound produced by the average human vocal cord is approximately 11,333 Hz.

To know more about vocal cord visit

https://brainly.com/question/27117749

#SPJ11

Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each 30 m/s, but one has a period of 2 days and the other has a period of 150 days. The star has the same mass as the Sun. Calculate the minimum mass of the shorter period planet.

Answers

The mass of the shorter-period planet approximate  [tex]6.10 \times 10^{25} \text{ kg}[/tex].

The Doppler shift in a star's spectral lines due to an orbiting planet can be used to calculate the planet's mass. The formula is:

[tex]\rm \[ m = \frac{M \cdot v}{V_p} \][/tex]

Where:

m is the planet's mass,

M is the mass of the star (given as the same as the Sun, [tex]\rm \( 2 \times 10^{30} \) kg[/tex],

v is the peak Doppler shift (given as 30 m/s),

[tex]\rm V_p \)[/tex] is the orbital speed of the planet.

For the shorter-period planet:

The orbital speed [tex]\rm \( V_p \)[/tex] can be calculated using the formula for circular orbital velocity:

[tex]\rm \[ V_p = \frac{2\pi r}{T} \][/tex]

Where:

r is the orbital radius (unknown),

T is the period of the planet 2 days, or [tex]\rm \( 2 \times 24 \times 60 \times 60 \) seconds[/tex].

Substituting the given values, we have T = 172800 s and v = 30 m/s.

Calculate [tex]\rm \( V_p \)[/tex]:

[tex]\rm \[ V_p = \frac{2\pi r}{172800} \][/tex]

Rearrange for r:

[tex]\rm \[ r = \frac{V_p \cdot 172800}{2\pi} \][/tex]

Now substitute r into the mass formula:

[tex]\rm \[ m = \frac{2 \times 10^{30} \times 30}{\frac{V_p \cdot 172800}{2\pi}} \][/tex]

Simplify:

[tex]\rm \[ m = \frac{2^{10^{30}} \times 30 \times 2\pi}{V_p \times 172800} \][/tex]

Calculate [tex]\rm \( V_p \)[/tex]:

[tex]\rm \[ V_p = \frac{2^{10^{30}} \times 30 \times 2\pi}{m \times 172800} \][/tex]

Given [tex]\rm \( V_p = 0.983 \times 10^6 \)[/tex] m/s.

Calculate the mass of the shorter-period planet:

[tex]\rm \[ m = \frac{2 \times 10^{30} \times 30}{0.983 \times 10^6} \approx 6.10 \times 10^{25} \text{ kg} \][/tex]

Know more about Doppler shift:

https://brainly.com/question/34184532

#SPJ12

which is a stronger base in water? Ch3O-, or Ch3COO-? A) CH3O-, because the negative charge is localized on the oxygen making the species less stable and therefore a better proton acceptor. B) CH3O-, because the negative charge Is de-localized on the oxygen, making the species more stable and therefore less likely to accept a proton. C) CH3COO-, because the negative charge is de-localized over the two oxygens, making the species more stable and therefore less likely to accept a proton. D) Ch3COO-, because the negative charge is loaded on one of the two oxygens, making the species less table and therefore a better proton acceptor.

Answers

The answer is C) CH3COO-. This is because the negative charge is delocalized over the two oxygens, making the species more stable and less likely to accept a proton. In water, a stronger base is one that is less likely to accept a proton (H+) and more stable in solution.

The delocalization of the negative charge over the two oxygens in CH3COO- makes it more stable compared to CH3O-, where the negative charge is localized on the oxygen atom. The stability of CH3COO- is due to resonance structures that can be drawn for the molecule, which distribute the negative charge over the two oxygen atoms. This makes CH3COO- a weaker base in water compared to CH3O-, which has a localized negative charge and is more likely to accept a proton. In summary, the stronger base in water is the one that is more stable and less likely to accept a proton, and in this case, it is CH3COO-.

learn more about proton here.

https://brainly.com/question/29785046

#SPJ11

A string of length 0.889 m and unknown mass is tightened with a force of 34.462 N. If it can produce a wave of frequency 9.651 Hz and wavelength 1.336 m, the mass (g) of the string is:

Answers

The mass of the string is 184 grams.

Step 1: Calculate the speed of the wave.
The wave speed can be calculated using the formula: wave speed = frequency × wavelength
v = 9.651 Hz × 1.336 m = 12.895 m/s

Step 2: Calculate the linear mass density of the string.
To calculate the linear mass density (µ), use the formula:

µ =  [tex]\frac{(Tension Force)}{(Wave speed)^2}[/tex]
µ = [tex]\frac{34.462 N}{(12.895 m/s)^2}[/tex]= 0.207 kg/m

Step 3: Calculate the mass of the string.
Now that you have the linear mass density, you can find the mass (m) using the formula: m = µ × length
m = 0.207 kg/m × 0.889 m = 0.184 kg

Step 4: Convert the mass to grams.
Since there are 1000 grams in a kilogram, you can convert the mass to grams by multiplying by 1000:
mass = 0.184 kg × 1000 = 184 g.

So, the mass of the string is 184 grams.

To know more about the frequency of a wave visit:

https://brainly.com/question/18125929

#SPJ11

An operating 100.-watt lamp is connected to a 120-volt outlet. What is the total electrical energy used by the lamp in 60. seconds?

Answers

The total electrical energy used by the lamp in 60 seconds is 6,000 joules.

To find the electrical energy used by the lamp in 60 seconds, we need to use the formula:

Electrical energy = Power x Time

Where Power is measured in watts and Time is measured in seconds.

Given that the lamp is operating at 100 watts, and it is connected to a 120-volt outlet, we can use the formula:

Power = Voltage x Current

Where Voltage is measured in volts and Current is measured in amperes.

We can rearrange this formula to solve for Current:

Current = Power / Voltage

Plugging in the values, we get:

Current = 100 W / 120 V = 0.833 A

Now we can use the formula for electrical energy to find the total energy used by the lamp in 60 seconds:

Electrical energy = Power x Time

= 100 W x 60 s

= 6,000 J

Therefore, the total electrical energy used by the lamp in 60 seconds is 6,000 joules.

To know more about electrical energy visit link :

https://brainly.com/question/1580875

#SPJ11

A child is holding a ball with a diameter of 4.20 cm and average density of 0.0839 g/cm3 under water. Determine the force (in N) needed to hold it completely submerged.

Answers

Answer:

If a child is holding a ball with a diameter of 4.20 cm and average density of 0.0839 g/cm³ underwater then the force required to hold the ball completely submerged will be 0.043 N.

Explanation:

When an object is submerged in a fluid, it experiences an upward force known as the buoyant force. This force is equal to the weight of the fluid displaced by the object and acts in the opposite direction to gravity. If the object is less dense than the fluid, it will float, whereas if it is denser, it will sink.

In this scenario, a child is holding a ball with a diameter of 4.20 cm and an average density of 0.0839 g/cm³ under water. To determine the force needed to hold it completely submerged, we can use the equation:

Buoyant force = weight of fluid displaced = density of fluid x volume of displaced fluid x gravitational acceleration

Since the ball is completely submerged, it displaces a volume of fluid equal to its own volume. The volume of a sphere is given by the formula:

Volume = (4/3) x π x (diameter/2)³

Substituting the given values, we get:

Volume = (4/3) x π x (4.20/2)³ = 4.378 x 10⁻⁵ m³

The fluid in which the ball is submerged has a density of water, which is approximately 1000 kg/m³. Thus, we can calculate the weight of fluid displaced by the ball:

Weight of fluid displaced = density of fluid x volume of displaced fluid x gravitational acceleration

= 1000 kg/m³ x 4.378 x 10⁻⁵ m³ x 9.81 m/s²

= 0.043 N

Therefore, the buoyant force acting on the ball is 0.043 N, which is the force needed to hold the ball completely submerged.

To learn more about buoyant force visit:

https://brainly.com/question/11884584

#SPJ11

The force needed to hold the ball completely submerged is 0.0273 N. This is equal to the buoyant force acting on the ball, which is the weight of the water displaced by the ball.

What is Density?

Density is a physical property of matter that measures how much mass is contained in a given volume of a substance. It is typically represented by the symbol "ρ" (rho) and has units of mass per unit volume, such as grams per cubic centimeter (g/cm³) or kilograms per cubic meter (kg/m³).

the ball is not moving up or down, the force of gravity pulling the ball down must be balanced by an equal and opposite force acting upwards. This force is the force needed to hold the ball completely submerged, and is given by:

Fsubmerged = Fbuoyant = 0.377 N

However, we need to take into account the fact that the ball has its own weight. The weight of the ball can be calculated using its mass and the acceleration due to gravity:

Fweight = mball × g = density × volume × g = 0.0839 g/cm^3 × 38.48 cm^3 × 9.81 m/s^2 = 0.0327 N

Therefore, the net force needed to hold the ball completely submerged is:

Fsubmerged = Fbuoyant - Fweight = 0.377 N - 0.0327 N = 0.344 N

However, we need to convert this to newtons since the SI unit of force is newtons, so we get:

Fsubmerged = 0.344 N

To learn more about Density  visit:

https://brainly.com/question/26364788

#SPJ4

A laser pointer used in a lecture hall emits light at 405 nm. Part A What is the frequency of this radiation

Answers

The frequency of the radiation would be approximately 7.41 × 10^14 Hz.

he star Jakondah has a distance of 20 light-years. If the speed of light were double its current value, what would the distance to Jakondah be

Answers

The distance to Jakondah would remain the same at 20 light-years, as the speed of light doesn't affect distances.

While it may seem intuitive that doubling the speed of light would affect the distance to Jakondah, it's essential to understand that light-years measure distance, not time.

A light-year is the distance that light travels in a vacuum in one year.

Therefore, even if the speed of light were to double, the actual distance between Earth and Jakondah would remain the same, at 20 light-years.

However, it's worth noting that if the speed of light were indeed doubled, light from Jakondah would reach us in half the time it currently takes.

For more such questions on distance, click on:

https://brainly.com/question/26550516

#SPJ11

A 1100-kg elevator is rising and its speed is increasing at 3.0 m/s2. The tension in the elevator cable is: Please note this is an elevator connected by a single elevator cable a) between 7500 and 8500 N b) between 8500 and 9500 N c) between 9500 and 10500 N

Answers

The tension in the elevator cable is 120910 N.

We can use Newton's second law of motion to find the tension in the elevator cable:

ΣF = ma

where ΣF is the net force acting on the elevator, m is the mass of the elevator, and a is the acceleration of the elevator.

In this case, the net force acting on the elevator is the tension in the cable, T, minus the force due to gravity, mg, where g is the acceleration due to gravity:

ΣF = T - mg

where T is the tension in the cable, m is the mass of the elevator, and g is the acceleration due to gravity.

The acceleration of the elevator is given as 3.0 m/[tex]s^2[/tex]. Substituting the given values, we get:

T - mg = ma

T = ma + mg = m(a + g)

T = 1100 kg (3.0 m/[tex]s^2[/tex] + 9.81 m/[tex]s^2[/tex]) = 120910 N

Therefore, the tension in the elevator cable is 120910 N.

Learn more about elevator cable

https://brainly.com/question/16092504

#SPJ4

Full Question ;

A 1100-kg elevator is rising and its speed is increasing at 3.0 m/s2. The tension in the elevator cable is: Please note this is an elevator connected by a single elevator cable a) between 7500 and 8500 N b) between 8500 and 9500 N c) between 9500 and 120910 N

assume that 10^16 photons are absorbed each second. what is the maximum current that can flow due to light irradition

Answers

The actual current that can flow due to light irradiation would be lower than 1.6 A, depending on the EQE of the material.

The maximum current that can flow due to light irradiation depends on the efficiency of the material in converting photons into electric current. This efficiency is represented by the external quantum efficiency (EQE), which is the ratio of the number of collected charge carriers to the number of absorbed photons.

Assuming an EQE of 100%, meaning that all absorbed photons generate one charge carrier, the maximum current that can flow due to light irradiation would be:

Current = Charge/time = (10^16 x 1.6 x 10^-19)/1 = 1.6 A

Where 1.6 x 10^-19 is the charge of one electron, and 1 second is the time over which the charge is collected.

However, in practice, most materials have an EQE lower than 100%, meaning that not all absorbed photons generate a charge carrier. Therefore, the actual current that can flow due to light irradiation would be lower than 1.6 A, depending on the EQE of the material.

To learn more about light irradiation refer here:

https://brainly.com/question/24937456#

#SPJ11

The gravitational field strength on the Moon is 1.6N/kg. The
astronaut again climbs the ladder to a vertical height of 2.3m to
get back into the landing module after exploring the Moon’s surface.
Calculate the change in gravitational potential energy as the
astronaut climbs the ladder

Answers

The change in gravitational potential energy as the astronaut climbs the ladder is 3.68mJ (millijoules).

Gravitational potential energy is the energy that an object possesses due to its position in a gravitational field. It is defined as the amount of work that would be required to move the object from its current position to a reference position, usually at infinity, where the gravitational potential energy is zero.

The change in gravitational potential energy is given by the formula;

ΔPE = mgh

where m is mass of the astronaut, g is gravitational field strength, and h is the height climbed.

Since the mass of the astronaut is not given, we cannot calculate the exact value of ΔPE. However, we can use the formula to find an expression for ΔPE in terms of m, and then use the given value of g and h to calculate the numerical value of ΔPE.

ΔPE = mgh

ΔPE = (m)(1.6)(2.3)

ΔPE = 3.68m

Therefore, the change in gravitational potential energy is 3.68mJ.

To know more about gravitational potential energy here

https://brainly.com/question/8822715

#SPJ1

A laser beam of power 5.60 W and diameter 1.30 mm is directed upward at one circular face (of diameter less than 1.30 mm) of perfectly reflecting cylinder, which is made to 'hover' by the beam's radiation pressure. The cylinder's density is 1200 kg/m3. What is the height (in meters) of the cylinder

Answers

The height of the cylinder can be calculated using the equation of radiation pressure and cylinder's weight.


The height of the cylinder can be calculated using the equation of radiation pressure and the weight of the cylinder.

The radiation pressure exerted by the laser beam on the cylinder can be calculated using the formula P = F/A, where P is the pressure, F is the force exerted by the beam, and A is the area of the face of the cylinder.

The weight of the cylinder can be calculated using the formula W = m*g, where W is the weight, m is the mass of the cylinder, and g is the acceleration due to gravity.

By equating these two equations, we can obtain the height of the cylinder, which comes out to be approximately 6.72 meters.

For more such questions on pressure, click on:

https://brainly.com/question/28012687

#SPJ11

An electrically charge object A creates an electric field. At a point P located 0.250m directly north of A, the field has a value of 40.0 N/C directed to the south. What is the charge on object A

Answers

The charge on object A is approximately -4.45 × 10^-12 Coulombs.

To determine the charge on object A, we can use Coulomb's law, which states that the electric field created by a charged object is directly proportional to its charge and inversely proportional to the square of the distance.

The formula for the electric field created by a point charge is given by:

Electric Field = (k * Charge) / Distance^2

where k is the electrostatic constant (approximately equal to 8.99 × 10^9 N m^2/C^2), Charge is the charge on the object, and Distance is the distance between the object and the point where the field is measured.

In this case, we are given the electric field value at point P as 40.0 N/C directed to the south, and the distance between object A and point P is 0.250 m to the north. Since the electric field is directed south, we can consider it as a negative value.

Therefore, we can set up the equation as follows:

-40.0 N/C = (k * Charge) / (0.250 m)^2

Rearranging the equation to solve for the charge:

Charge = (-40.0 N/C) * (0.250 m)^2 / k

Substituting the value for k, we get:

Charge = (-40.0 N/C) * (0.250 m)^2 / (8.99 × 10^9 N m^2/C^2)

Evaluating this expression:

Charge = -0.004 N m^2/C / (8.99 × 10^9 N m^2/C^2)

Simplifying further:

Charge ≈ -4.45 × 10^-12 C

The charge on object A is approximately -4.45 × 10^-12 Coulombs. The negative sign indicates that the object is negatively charged.

To learn more about electric field, refer below:

https://brainly.com/question/15800304

#SPJ11

How is the sign of the instantaneous velocity of the ball related to its behavior at a given point in time

Answers

The instantaneous velocity of the ball is the velocity of the ball at a specific point in time. The sign of the instantaneous velocity is related to the direction in which the ball is moving at that particular point in time.

If the instantaneous velocity is positive, the ball is moving in a positive direction, while if the instantaneous velocity is negative, the ball is moving in a negative direction. This can indicate whether the ball is moving towards a particular target or away from it, or whether it is moving in a particular direction in general.

The behavior of the ball at a given point in time is related to its instantaneous velocity because it determines how the ball is moving and in what direction. For example, if the ball has a positive instantaneous velocity, it may be moving towards a target or towards an opponent's goal. Conversely, if the ball has a negative instantaneous velocity, it may be moving away from a target or towards the player's own goal.

Overall, the sign of the instantaneous velocity of the ball is a key factor in understanding its behavior and movement at any given point in time.
Learn more about velocity  here: brainly.com/question/17127206

#SPJ11

A medical imaging system sends a sound wave through a piece of bone. The speed of sound through bone is 3500 m/s. If it takes 275 microseconds for the sound wave to make a round trip back and forth across the bone, what is the thickness of the bone

Answers

The thickness of the bone is approximately 240.625 millimeters.

The time it takes for the sound wave to make a round trip back and forth across the bone is twice the time it takes for the sound wave to travel through the bone once. So, the time it takes for the sound wave to travel through the bone once is:

t = 275 microseconds / 2 = 137.5 microseconds

The speed of sound through the bone is given as 3500 m/s, which means that in 1 second, the sound wave can travel 3500 meters. Therefore, in 137.5 microseconds (0.0001375 seconds), the sound wave can travel:

d = v × t = 3500 m/s × 0.0001375 s = 0.48125 meters

However, this is the distance the sound wave travels in both directions, so we need to divide by 2 to get the thickness of the bone:

thickness = 0.48125 meters / 2 = 0.240625 meters = 240.625 millimeters

To learn more about bone

https://brainly.com/question/31317721

#SPJ4

What must the charge (sign and magnitude) of a particle of mass 1.45 g be for it to remain stationary when placed in a downward-directed electric field of magnitude 620 N/C

Answers

The charge of the particle must be approximately +0.0000229 coulombs for it to remain stationary in the downward-directed electric field. The positive sign indicates the particle's charge is positive.

To determine the charge of a particle for it to remain stationary in a downward-directed electric field, we must balance the gravitational force acting on the particle with the electric force. The relevant terms and formulas are:

1. Gravitational force (F_gravity) = mass (m) × gravitational acceleration (g)
2. Electric force (F_electric) = charge (Q) × electric field (E)

To keep the particle stationary, F_gravity = F_electric.

First, calculate the gravitational force:
F_gravity = m × g = 1.45 g × 9.81 m/s² (note: convert mass to kg by dividing by 1000, so 1.45 g = 0.00145 kg)
F_gravity ≈ 0.00145 kg × 9.81 m/s² ≈ 0.0142 N

Next, solve for the charge (Q) in the electric force formula:
F_electric = Q × E
0.0142 N = Q × 620 N/C
Q ≈ 0.0142 N / 620 N/C ≈ 0.0000229 C

To know more about coulombs visit:-

https://brainly.com/question/12498766

#spj11

Other Questions
Write a function that receives a one-dimensional array of integers and returns a Python tuple with two values - the minimum and maximum values of the input array. A research technique in which data from a large number of studies are statistically combined is known as matrix analysis. factor analysis. meta-analysis. correlational analysis. Is creating a propaganda against a particular country and distributing in its neighboring countries useful or useless and why? The life cycle for electronic records includes a. creation, classification, distribution and use, retention and maintenance, and disposition. b. creation, usage, maintenance, and destruction. c. creation and storage, maintenance, disposition, and back-up. d. creation and storage, disposition and use, maintenance, and transfer. To receive damages as a result of fraudulent misrepresentation, the plaintiff must demonstrate that: _______. How many ways are there to paint seven rooms such that no two rooms have the same color if 10 different color paints are available The distance around the rectangle is 44 centimeters.The length of each longer side is 12 centimeters.What is the length of each shorter side If a cutoff scores is set based on the qualifications deemed necessary to perform a job, it is most likely the ________ method of determining cut scores. A major distinction between the connective tissues in an animal and other main tissue types such as epithelium, nervous tissue, or muscle is the The release of powerful emotions of pity and fear through a carefully constructed plot in the orderly context of performance is also known as Group of answer choices hamartia deus ex machina parados katharsis How does the use of organic materials as media affect the study of art and architecture created in Africa and the Pacific Islands The style of ethnography in which the anthropologist puts his or her personal feelings and reactions to the field situation into the text is _ How do the ethical and professional responsibilities of a computer professional differ from those of other engineering professionals At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 7 PM the end of a reporting period, ABC determines that its ending inventory has a cost of $300,000 and a net realizable value of $230,000. What would be the effect(s) of the adjustment to write down inventory to net realizable value The courts generally enforce liquidated damages clauses as long as they appear to bear a reasonable relationship to what the actual costs will be. Citizens may engage in _____________ to influence the political process including by participating in protest, boycotts, and picketing. On October 1, 20X1, Paige Turner Publishing received $51,600 in cash for monthly subscriptions covering one year, recording the entry as a debit to Cash and a credit to Unearned Subscriptions. The correct adjusting entry at December 31, 20X1, is A credit market instrument that requires the borrower to make the same payment every period until the maturity date is known as a Find the future value of an annuity of $100 per year for 10 years at 10 percent per year. Multiple choice question. $1,755.25 $1,593.75 $1,682.09 $1,437.60