Answer:
The answer is D - Atom
The smallest unit of an element that can exist either alone or in combination with other such particles of the same or different elements is the atom.
What is an atom?
An atom is defined as the smallest unit of matter which forms an element. Every form of matter whether solid,liquid , gas consists of atoms . Each atom has a nucleus which is composed of protons and neutrons and shells in which the electrons revolve.
The protons are positively charged and neutrons are neutral and hence the nucleus is positively charged. The electrons which revolve around the nucleus are negatively charged and hence the atom as a whole is neutral and stable due to presence of oppositely charged particles.
Atoms of the same element are similar as they have number of sub- atomic particles which on combination do not alter the chemical properties of the substances.
Learn more about atom,here:
https://brainly.com/question/13654549
#SPJ2
Write the half-reaction for ribose conversion to CO2. Is it an oxidation- or reduction- half reaction
Answer:
[tex]5H_2O+C_5H_{10}O_5\rightarrow 5CO_2+20H^++20e^-[/tex]
Explanation:
Hello.
In this case, when ribose (C₅H₁₀O₅) yields carbon dioxide (CO₂) we write:
[tex]C_5H_{10}O_5\rightarrow CO_2[/tex]
Which needs to be balanced by adding water and hydrogen ions:
[tex]5H_2O+C_5H_{10}O_5\rightarrow 5CO_2+20H^++20e^-[/tex]
You can also see that there are 20 transferred electrons, since the carbon atoms in the ribose have 0 as their oxidation state and the carbon atoms in the carbon dioxide have +4 as the oxidation state, thus, each carbon transfers 4 electrons, a five carbon atoms transfer 20 electrons overall.
In such a way, since the carbon is increasing its oxidation state, such half reaction is an oxidation half reaction.
Best regards.
2NH.
N2 + 3H2
Reactants
Product
On the balanced equation above, how many
atoms of each element are in the reactant?
N =
H =
Answer:
N=2
H=6
Explanation:
1.Balance a chemical equation in terms of moles.
2.Use the balanced equation to construct conversion factors in terms of moles.
3.Calculate moles of one substance from moles of another substance using a balanced chemical equation.
The law of conservation of matter says that matter cannot be created or destroyed. In chemical equations, the number of atoms of each element in the reactants must be the same as the number of atoms of each element in the products.
(P.s it could also be where you have to solve it in which you have to simplify it first then solve it.) like adding them all up.
Hope this is the answer. :)
Has 121 nuetrons and 80 electrons plz help i will pick you as brainliest
Answer:
Mercury Atom
Explanation:
If you are talking about what has 121 neutrons and 80 electrons, then it would be a Mercury Atom. Hope this helps!
write the equation for the beta decay of 53/26 FE
Answer:
53/26Fe = 0/-1,B + 53/27 Co
What are the signs that you are getting nervous 18 POINTS )
Define a function compute_gas_volume that returns the volume of a gas given parameters pressure, temperature, and moles. Use the gas equation PV
Answer:
def compute_volume(pressure,moles,temperature):
volume = (8.314 * moles * temperature)/pressure
print("Volume: "+str(volume))
Explanation:
This line defines the function
def compute_volume(pressure,moles,temperature):
This line calculates the volume
volume = (8.314 * moles * temperature)/pressure
This line prints the calculated volume
print("Volume: "+str(volume))
is used to locate and track severe storm
Answer:
Weather radar is used to locate and track severe storm.
Identify the correct net ionic equation for the reaction that occurs when solutions of Pb(NO3)2 and NH4Cl are mixed.
Answer:
Pb2+(aq) + 2Cl–(aq) ----> PbCl2(s)
Explanation:
The net ionic equation shows the main reaction that takes place in a system. Hence, a net ionic equation focusses only on those species that actually participate in the reaction.
For the reaction between Pb(NO3)2 and NH4Cl , the net ionic equation is;
Pb^+(aq) + 2Cl^-(aq) ---> PbCl2(s)
The correct net ionic equation for the reaction that occurs when solutions of Pb(NO₃)₂ and NH₄Cl are mixed is
Pb⁺(aq) + 2Cl¯(aq) —> PbCl₂(s)To know the the correct net ionic equation for the reaction that occurs when solutions of Pb(NO₃)₂ and NH₄Cl are mixed, we shall write the net ionic equation for the reaction. This is illustrated below:
Pb(NO₃)₂(aq) —> Pb⁺(aq) + NO₃¯(aq)
NH₄Cl(aq) —> NH₄⁺(aq) + Cl¯(aq)
Pb(NO₃)₂(aq) + NH₄Cl(aq) —>
Pb⁺(aq) + NO₃¯(aq) + NH₄⁺(aq) + Cl¯(aq) —> PbCl₂(s) + NO₃¯(aq) + NH₄⁺(aq)
Cancel the spectator ions (i.e NO₃¯ and NH₄⁺) and write 2 before Cl¯ to obtain the net ionic equation as shown below:
Pb⁺(aq) + 2Cl¯(aq) —> PbCl₂(s)Thus, the correct net ionic equation for the reaction that occurs when solutions of Pb(NO₃)₂ and NH₄Cl are mixed is
Pb⁺(aq) + 2Cl¯(aq) —> PbCl₂(s)Learn more: https://brainly.com/question/21883718
hello I am working on naming compounds and wondering if you could help me figure out the name
Al2(SO4)3 aluminium sulfate
17. What is the average atomic mass of the following isotopic mixture - 22.00% of 159.3 g/mole; 78.00% of
161.2g/mole?
The average atomic mass is given by the individual atomic masses of the isotope of the element and its percentage. The average atomic mass of the isotopic mixture is 159.8 g/mole.
What are isotopes?Isotopes are atoms of the same element that have the same number of protons in their nucleus but have a different number of neutrons that alters their atomic masses. The relative abundance of the isotope of the element affects the average atomic mass of the mixture.
The formula for average atomic mass for the mixture of isotopes is given as:
Average atomic mass = ∑ (mass × abundance)
Given,
Abundance of isotope 1 = 22.00 %
Mass of isotope 1 = 159.3 g/mole
Abundance of isotope 2 = 78.00 %
Mass of isotope 2 = 161.2g/mole
Substituting values in the formula of average atomic mass as:
Average atomic mass = isotope 1 (mass × abundance) + isotope 2 (mass × abundance)
= (0.22) × (159.3) + (0.78) × (161.2)
= 34.046 + 125.736
= 159.8 g/mole
Therefore, the average atomic mass of the mixture of the two isotopes is 159.8 g/mole.
Learn more about isotopes and average mass, here:
https://brainly.com/question/2159355
#SPJ2
The amount of force that is exerted on a balloon by the gas inside the balloon is.
O A) temperature
OB) prlessure
O C) volume
O D) heat
Answer:
pressure
Explanation:
pressure is the amount of force exerted on an area. when you blow up the balloon you're filling it with gas particles. the gas particles move freely within the balloon and may collide with one another exerting pressure on the inside of the balloon.
The pressure of the gas is the amount of force that is exerted on a balloon by the gas inside the balloon. Therefore, option B is correct.
What is pressure?Pressure can be described as the force applied perpendicular to the surface of a body per unit area. Pressure can be defined as a standard mechanical quantity and is derived from a unit of force divided by a unit of area.
The SI unit of measurement of pressure, the pascal (Pa) or Newton per square meter (N/m²). Pressure can be defined as the amount of force exerted perpendicular to the surface per unit area.
Mathematically, the pressure exerted by force can be calculated as:
[tex]{\displaystyle p={\frac {F}{A}}}[/tex]
where, p is the pressure, F is the magnitude of the normal force, and A is the area of the surface.
Therefore, the amount of force that is exerted on the balloon by the gas inside the balloon is equal to pressure.
Learn more about pressure, here:
https://brainly.com/question/27637460
#SPJ2
How many grams are in 9.97 moles of Be(NO3)2?
Use two digits past the decimal for all values.
Answer:
1,869.97 grams of Be(NO3)2
Explanation:
Be(NO3)2 = Be N2 O6
Be=9.012182g/mole
N2=28.0134g/mole
O6=96g/mole
therefore Be(NO3)2 gives you 187.56g in one mole
so 9.97 moles means there is 9.97 times more
9.97mole Be(NO3)2 * 187.56g Be(NO3)2/1mole Be(NO3)2 = 1,869.97g of Be(NO3)2
i need to know how to get a boy to like me
Answer:
To get a boy to like you you have to 1.dress up cutely
2.talk to him ask him what he likes
3. wear a little bit of make-up not to much
4. wear you hair down and have a little bit of hair on your chest
5. Be really confident and don't wait till a really longg time and mess up like i did.
Explanation:
Answer:
Put your hair down. Also, dont use too much makeup. Just wear mascara and lipgloss. Be kind. Be confident.
Explanation:
If u wear to much makeup he will think ur a try-hard. Stop trying to be cool, it's just dumb. If ur rude, then hes gonna think that u dont like him.
Assuming constant pressure, rank these reactions from most energy released by the system to most energy absorbed by the system, based on the following descriptions:
Surroundings get colder and the system decreases in volume.
Surroundings get hotter and the system expands in volume.
Surroundings get hotter and the system decreases in volume.
Surroundings get hotter and the system does not change in volume.
A mole of X reacts at a constant pressure of 43.0 atm via the reaction.
X(g)+4Y(g)→2Z(g), ΔH∘=−75.0 kJ
Also assume that the magnitude of the volume and temperature changes are similar among the reactions. Rank from most energy released to most energy absorbed. To rank items as equivalent, overlap them. View Available Hint(s)
Answer:
The options are
A.Surroundings get colder and the system decreases in volume.
B.Surroundings get hotter and the system expands in volume.
C.Surroundings get hotter and the system decreases in volume.
D.Surroundings get hotter and the system does not change in volume.
From the Most energy released to the most absorbed , the order is
B. Surroundings get hotter and the system expands in volume.
D. Surroundings get hotter and the system does not change in volume.
C. Surroundings get hotter and the system decreases in volume.
A. Surroundings get colder and the system decreases in volume.
Help
Save & Exit
Submit
Rank the following elements in order from least to most number of moles of atoms in a 10.0 g sample: Sn, Si, Se, S
Answer:
[tex]\rm Sn[/tex], [tex]\rm Se[/tex], [tex]\rm S[/tex], [tex]\rm Si[/tex].
Explanation:
The relative atomic mass of an element is numerically equal to the mass (in grams) of one mole of its atoms. This quantity can help estimate the number of moles of atoms in each of these four [tex]10.0\; \rm g[/tex] samples.
Look up the relative atomic mass for each of these four elements (on a modern periodic table.)
[tex]\rm Si[/tex]: [tex]28.085[/tex].[tex]\rm S[/tex]: [tex]32.06[/tex].[tex]\rm Se[/tex]: [tex]78.971[/tex].[tex]\rm Sn[/tex]: [tex]118.710[/tex].The relative atomic mass of [tex]\rm Si[/tex] is (approximately) [tex]28.085[/tex]. Therefore, the each mole of silicon atoms would have a mass of approximately [tex]28.085\; \rm g[/tex]. How many moles of silicon atoms would there be in a [tex]10.0\; \rm g[/tex] sample?
Given:
[tex]m(\rm Si) = 10.0\; \rm g[/tex]. [tex]M(\mathrm{Si}) = 28.085\; \rm g \cdot mol^{-1}[/tex].Number of mole of silicon atoms in the sample: [tex]\displaystyle n(\mathrm{Si}) = \frac{m(\mathrm{Si})}{M(\mathrm{Si})} = \frac{10.0\; \rm g}{28.085\; \rm g \cdot mol^{-1}}\approx 0.356\; \rm mol[/tex].
Similarly:
[tex]\displaystyle n(\mathrm{S}) = \frac{m(\mathrm{S})}{M(\mathrm{S})} = \frac{10.0\; \rm g}{32.06\; \rm g \cdot mol^{-1}}\approx 0.312\; \rm mol[/tex].
[tex]\displaystyle n(\mathrm{Se}) = \frac{m(\mathrm{Se})}{M(\mathrm{Se})} = \frac{10.0\; \rm g}{78.971\; \rm g \cdot mol^{-1}}\approx 0.127\; \rm mol[/tex].
[tex]\displaystyle n(\mathrm{Sn}) = \frac{m(\mathrm{Sn})}{M(\mathrm{Sn})} = \frac{10.0\; \rm g}{118.710\; \rm g \cdot mol^{-1}}\approx 0.0842\; \rm mol[/tex].
Therefore, among these [tex]10.0\; \rm g[/tex] samples:
[tex]n(\mathrm{Sn}) < n(\mathrm{Se}) < n(\mathrm{S}) < n(\mathrm{Si})[/tex].
It is not a coincidence that among these four samples, the one with the fewest number of atoms corresponds to the element with the largest relative atomic mass.
Consider two elements, with molar mass [tex]M_1[/tex] and [tex]M_2[/tex] each. Assume that [tex]n_1[/tex] moles and [tex]n_2[/tex] moles of atoms of each element were selected, such that the mass of both samples is [tex]m[/tex]. That is:
[tex]m = n_1\cdot M_1[/tex].
[tex]m = n_2\cdot M_2[/tex].
Equate the right-hand side of these two equations:
[tex]n_1 \cdot M_1 = n_2\cdot M_2[/tex].
[tex]\displaystyle \frac{n_1}{n_2} = \frac{M_2}{M_1} = \frac{1/M_1}{1/M_2}[/tex].
In other words, the number of moles atoms in two equal-mass samples of two elements is inversely proportional to the molar mass of the two elements (and hence inversely proportional to the formula mass of the two elements.) That explains why in this question, the sample containing the smallest number of atoms corresponds to element with the largest relative atomic mass among those four elements.
For the solution resulting from dissolved 0.32 g of naphthalene (C10H8) in 25 g of benzene (C6H6) at temperature of 26.1°C, calculate the vapor pressure lowering, the boiling point elevation, and the freezing point depression. The vapor pressure of benzene at the temperature of the experiment is 100 torr. (Kf of benzene = 2.67 °C/m, Kb of benzene = 5.12 °C/m)
Answer:
See explanation
Explanation:
Number of moles of naphthalene = 0.32g/128.1705 g/mol = 0.0025 moles
Molality = number of moles/ mass of Solvent in kilograms
Molality = 0.0025/0.025 Kg
Morality = 0.1 m
But
∆T= K × i × m
Where ∆T = boiling point elevation
i= number of particles (this is equal to 1 because naphthalene is molecular and not ionic)
m= molality of naphthalene = 0.1 m
K= boiling point elevation constant = 5.12 °C/m
∆T= 5.12 °C/m ×0.1 = 0.512°C
For freezing point depression
∆T= K× i × m
Where ∆T= freezing point depression
i= number of particles (this is equal to 1 because naphthalene is molecular and not ionic)
m= molality of naphthalene = 0.1 m
K= freezing point depression constant = 2.67 °C/m
∆T= 2.67 °C/m ×0.1 = 0.267°C
From Raoult's law;
∆P = XBPA°
Where;
∆P = vapour pressure lowering
XB = mole fraction of solute
PA° = vapour pressure of pure solvent
Number of moles of solvent = mass/molar mass = 25g/ 78 g/mol= 0.3205 moles
Total number of moles = number of moles of solute + number of moles of solvent = 0.0025 moles + 0.3205 moles = 0.323 moles
Mole fraction of solute = 0.0025 moles/0.323 moles = 0.0077
Vapour pressure of benzene = 100 torr
Therefore;
∆P = 0.0077 × 100torr = 0.77 torr
Hence;
∆P = 0.77 torr
Products made of plastic can last a very long time. Explain both the positive and negative effects of plastic being long-lasting. thank uuu
Answer:Because plastic products are durable, they can last for a long time. This makes them affordable because they do not have to be replaced often. On the other hand, the popular use of plastics means that many plastics are thrown away. Plastics litter the ocean, causing harm to marine birds and mammals. Plastic breaks down into plastic dust, which can last for up to a thousand years.
^^^^^copy and paste this part^^^^^
Explanation:Plastic is he hardest material to break down with harm to sea life and land life they may be affordable but costly to the environment.
A solution of 0.050 M benzoic acid, HC7H5O2 , is 3.5% ionized. at 25 oC. a) What are the [H ] and pH of this solution
Answer:
[H⁺] = 0.00175 M
pH = 2.757
Explanation:
The ionization of benzoic acid is given below:
C₆H₅COOH ----> C₆H₅COO⁻(aq) + H⁺(aq)
1 mole of H⁺ ions are produced from the dissociation of 1 mole C₆H₅COOH.
Therefore 0.050 M benzoic acid produces 0.050 M H⁺.
However, the benzoic acid is only 3.5% ionized, therefore concentration of H+ ion, [H⁺] = 3.5/100 * 0.050 M
[H⁺] = 0.00175 M
pH = - log[H⁺]
pH = - log(0.00175)
pH = 2.757
50 POINTS!
There are 5.5 L of a gas present at -38.0 C. What is the temperature if the volume of the gas has changed to 1.30 L?
If 25.6 mL isopropyl alcohol fully decomposes, what mass of H2 is formed? The density of isopropyl alcohol is 0.785 g/mL. g
Answer:
The correct answer is 0.67 g H₂
Explanation:
Isopropyl alcohol (C₃H₇OH) can decompose to give acetone (C₂H₆OH) and hydrogen gas (H₂) according to the following chemical equation:
C₃H₇OH (g) ⇒ C₂H₆CO(g) + H₂(g)
We can calculate the initial mass of isopropyl alcohol from the density and volume data:
density = m/V = 0.785 g/mL
⇒ m = density x V = 0.785 g/mL x 25.6 mL = 20.096 g C₃H₇OH
According to the chemical equation 1 mol of C₃H₇OH gives 1 mol H₂. The molar mass of C₃H₇OH is:
molar mass C₃H₇OH = (12 g/mol x 3) + (1 g/mol x 7) + 16 g/mol + 1 g/mol = 60 g/mol
molar mass H₂ = 1 g/mol x 2 = 2 g/mol
So, we obtain: 2 g H₂ from 60 g C₃H₇OH. We multiply this stoichiometric ratio (2 g H₂/60 g C₃H₇OH) by the initial mass of C₃H₇OH to obtain the mass of H₂ is formed:
20.096 g C₃H₇OH x (2 g H₂/60 g C₃H₇OH) = 0.6698 g ≅ 0.67 g H₂
__________ 5. Chemical equilibrium is the result of A. all of the reactants being converted into products. B. stoppage of further reaction. C. formation of products equal in mass to the mass of the reactants. D. opposing reactions attaining equal rates. E. a loss of pressure in the system.
Answer:
The correct option is C
Explanation:
Chemical equilibrium is a state in which there is no net change in the amount of reactant and products formed over time. This reaction is a reversible reaction, hence the reaction can keep proceeding in either direction until the products formed are equal in mass to that of the reactants or the products been reversed back to the reactants until both sides (product and reactant) achieve equal mass.
Which of the following is true?
A) The closer an electron is to the nucleus, the higher its energy level.
B) The closer an electron is to the nucleus, the lower its energy level.
C) The closer an electron is to the nucleus, the more its energy level fluctuates.
D) There is no relationship between proximity to the nucleus and the energy level of an electron
Answer:
B) The closer an electron is to the nucleus the lower it's energy level.
Explanation:
This is because the attractive force for electrons to the nucleus is stronger. Thus, the orbital energy becomes less.
A gas mixture contains HBr, NO2, and C2H6 at STP. If a tiny hole is made in the container, which gas will effuse fastest? NO2 C2H6 HBr They all effuse at the same rate. Which gas molecules have the highest average kinetic energy at this temperature? HBr NO2 C2H6 They all have the same average kinetic energy.
Answer:
C2H6
Explanation:
Let us first consider the molar Masses of each gas
HBr - 80.91 g/mol
NO2 - 46.0055 g/mol
C2H6 - 30.07 g/mol
We must remember that the greater the molar mass of a gas the lesser its velocity and average kinetic energy.
Looking at the gases listed, C2H6 have the highest average kinetic energy at this temperature since it has the lowest molecular mass. This reasoning is directly derived from Graham's law of diffusion in gases.
Hence C2H6 will effuse fastest when a hole is made in the container. It also possess the greatest average kinetic energy because it has the lowest molecular mass.
Is a diamond a homogeneous or heterogeneous mixture or a substance
Answer:
heterogeneous
Explanation:
It's a heterogeneous mixture. Diamond is made of just one element: carbon. Each carbon atom in diamond is connected to four other carbon atoms, in a crystal that extends on and on. There are other forms of pure carbon where the atoms are bonded differently, notably charcoal and graphite.
What is the percent of iron and oxygen in iron(III) oxide?
Answer:
69.94% iron by mass.
Explanation:
Level 1 01 Which correctly pairs the outside particles with their charge? A. Electrons: Positive B. Protons: Positive C. Neutrons: Neutral D. Electrons: Negative
Answer:
D. Electrons: Negative.
Explanation:
Hello, happy to help you today!
In this case, by considering the Bohr's atomic model in which atom is composed by a nuclei containing both protons and neutrons which are positively and neutrally charged respectively and surrounding electrons assembled in orbits or levels of energy which are negatively charged in order to provide a balance to the atom, the correct statement is: D. Electrons: Negative. Also consider the Bohr's model on the attached picture.
My best regards to you!
What metalloid has commonly been used as an insecticide due
to its effectiveness as a poison.
Answer:
Arsenic.
Explanation:
Hello there!
In this case, since insecticides are substances that act as poisons to get rid of insects in order to prevent their presence and/or reproduction in houses, companies, crops and others, a substance that has been widely used is the metalloid arsenic due to its direct affection of the insect's body (movement, performance, cellular functions).
In addition, high levels of arsenic in food could cause arsenic poisoning in humans as well, that is why such practice must be properly performed and by using the correct security protocol.
Best regards!
Answer:
As
Explanation:
hoffe das hilf jedem in der zukunft
True or false: BrF5(aq) is a good insulator.
Answer:
true
hope this helps :)
Explanation:
True, [tex]BrF_5[/tex] (aq) is a good insulator.
What is an insulator?A material or an object that does not easily allow heat, electricity, light, or sound to pass through it.
Bromine pentafluoride appears as a colourless, fuming liquid with a pungent odour. Used to make other chemicals and in rockets.
Hence, [tex]BrF_5[/tex] (aq) is a good insulator.
Learn more about insulators here:
https://brainly.com/question/24909989
#SPJ2
Soil is an example of a:
a. solution
b. heterogeneous mixture
c. solid solution
Answer:
Heterogeneous mixture
Explanation:
Soil is composed of small pieces of a variety of materials, so it is a heterogeneous mixture.
Plz help me with this if you give me a good answer i will give you eaxtra points plz help its do today
Answer:
Generally described, the input/output device includes a housing for one or more input components such as a keyboard and/or microphone, one or more output components such as a display screen or a speaker, a data storage device such as a hard drive, a processor, and a phone interface.
An input mechanism to allow the user to interact with the phone. The most common input mechanism is a keypad, but touch screens are also found in smartphones. Basic mobile phone services to allow users to make calls and send text messages. All GSM phones use a SIM card to allow an account to be swapped among devices.
The maximum possible power output of a handheld cellular phone is 0.6 watts. Like others have posted, the system controls the actual output of the phone and it is typically much less than that, usually less than 100 milliwatts.
Explanation: