Answer:
Correct option not indicated
Explanation:
There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).
The formula to calculate a centripetal force (F) is
F = mv²/r
Where m is mass, v is velocity and r is radius
where
While the formula to calculate a centrifugal force (F) is
F = mω²r
where m is mass, ω is angular velocity and r is radius of the circular path.
From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.
NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.
Four equal-value resistors are in series with a 5 V battery, and 2.23 mA are measured. What isthe value of each resistor
Answer:
560.54 Ω
Explanation:
Applying,
V = IR'............... Equation 1
Where V = Voltage of the battery, I = currrent, R' = Total resistance of the resistors
make R' the subject of the equation
R' = V/I............ Equation 2
From the question,
Given: V = 5 V, I = 2.23 mA = 2.23×10⁻³ A
Substitute these values into equation 2
R' = 5/(2.23×10⁻³ )
R' = 2242.15 Ω
Since the fours resistor are connected in series and they are equal,
Therefore the values of each resistor is
R = R'/4
R = 2242.15/4
R = 560.54 Ω
What is the strength of the magnetic field a distance 4.4 mm above the center of a circular loop of radius 0.8 mm and current 474.1 A
Answer:
B = 0.118 T
Explanation:
From Biot-Savart Law:
[tex]B = \frac{\mu_o I}{2\pi r}[/tex]
where,
B = strength of magnetic field = ?
μ₀ = 4π x 10⁻⁷ Tm/A
I = current enclosed = 474.1 A
r = radius = 0.8 mm = 8 x 10⁻⁴ m
Therefore,
[tex]B = \frac{(4\pi\ x\ 10^{-7}\ Tm/A)(474.1\ A)}{2\pi(8\ x\ 10^{-4}\ m)}[/tex]
B = 0.118 T
When you take your 1900-kg car out for a spin, you go around a corner of radius 55 m with a speed of 15 m/s. The coefficient of static friction between the car and the road is 0.88. Assuming your car doesn't skid, what is the force exerted on it by static friction?
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
When you stand on tiptoes on a bathroom scale, there is an increase in
A) weight reading.
B) pressure on the scale, not registered as weight.
C) both weight and pressure on the scale.
D) none of the above
Answer:
B) Pressure on the scale, not registered as weight.
Explanation:
This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point
In a new scenario, the block only makes it (exactly) half-way through the rough spot. How far was the spring compressed from its unstretched length
Answer: hello below is the missing part of your question
A mass m = 10 kg rests on a frictionless table and accelerated by a spring with spring constant k = 5029 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.49. The mass leaves the spring at a speed v = 3.4 m/s.
answer
x = 0.0962 m
Explanation:
First step :
Determine the length of the rough patch/spot
F = Uₓ (mg)
and w = F.d = Uₓ (mg) * d
hence;
d( length of rough patch) = w / Uₓ (mg) = 46.55 / (0.49 * 10 * 9.8) = 0.9694 m
next :
work done on unstretched spring length
Given that block travels halfway i.e. d = 0.9694 / 2 = 0.4847 m
w' = Uₓ (mg) * d
= 0.49 * 10 * 9.81 * 0.4847 = 23.27 J
also given that the Elastic energy of spring = work done ( w')
1/2 * kx^2 = 23.27 J
x = [tex]\sqrt{\frac{2*23.27}{5029} }[/tex] = 0.0962 m
Oxygen is obtained through various methods. Which of the following methods involves a chemical
change?
1. Electrolysis of water
2. Distillation of liquid air
3. Heating of KCIO,
02
1 and 2
1 and 3
Answer:
1
Explanation:
Electrolysis is the passing of an current through a conducting solution, when the occurs, a chemical reaction takes place.
Heating a chemical will always cause a chemical reaction, which is why 3 is also correct
Some information as to why 2 is NOT correct.
2 is NOT a chemical reaction, but rather a process of physical separation. It uses selective boiling and condensation, but is not considered a chemical reaction.
as with 3, heating is not considered a chemical reaction, but rather a physical temperature change. This is always what it is considered to be (e.g boiling water is a physical temperature change, not a chemical reaction)
Hope this helps.
Hope this helps.
Paauto A: Isulat sa papel ang alpabetong Ingles at bilang I hanggang 10 sa istilong
Roman ng pagleletra.
Answer:
Explanation:
English alphabets numbered fro 1 to 26
and the numbers 1 to10 so they are written in roman numbers as
1 - I
2 - II
3 - III
4 - IV
5 -V
6 - VI
7 -VII
8 - VIII
9 - IX
10 -X
11 - XI
12 - XII
13 - XIII
14 - XIV
15 - XV
16 - XVI
17 - XVII
18 - XVIII
19 - XIX
20- XX
21 - XXI
22 - XXII
23 - XXIII
24 - XXIV
25 - XXV
26 - XXVI
Two speakers in a stereo emit identical pure tones. As you move around in front of the speakers, you hear the sound alternating between loud and zero. This occurs because of
Answer:
Interference
Explanation:
When two traveling waves traveling waves along the same path are superimposed(combine). The superimposition of these two waves results in the production of a resultant wave which is defined by the net effect of the two waves. Wave interference occurs most types of waves including radio wave, light, acoustic waves and other wave types. Alternating sound between loud and Zero is heard as the two speakers emit identical pure tones because the resultant amplitude after the interference of the two sound waves is the vector sum of each of their amplitudes. A loud sound is heard, when the crest of both waves meets each other and a zero is heard if the crest of one meets the trough of the other as they cancel out.
During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same assumptions as for the 100-m dash, what was his maximum speed for this race
Answer:
The maximum speed of Bolt for the 100 m race is 14.66 m/s
Explanation:
Given;
initial distance covered by Bolt, d = 200 m
time of this motion, t = 19.3 s
The second distance covered by Bolt, = 100 m
Assuming Bolt maintained the same acceleration for both races.
His acceleration can be determined from the 200 m race.
d = ut + ¹/₂at²
where;
u is his initial velocity = 0
d = ¹/₂at²
[tex]at^2 = 2d\\\\a = \frac{2d}{t^2} \\\\a = \frac{2\times 200}{19.3^2} \\\\a = 1.074 \ m/s^2[/tex]
Let the final or maximum velocity for the 100 m race = v
v² = u² + 2ad₂
v² = 2 x 1.074 x 100
v² = 214.8
v = √214.8
v = 14.66 m/s
The maximum speed of Bolt for the 100 m race is 14.66 m/s
Find a parametric representation for the surface. The plane through the origin that contains the vectors i - j and j - k
Answer:
parametric representation: x = u, y = v - u , z = - v
Explanation:
Given vectors :
i - j , j - k
represent the vector equation of the plane as:
r ( u, v ) = r₀ + ua + vb
where: r₀ = position vector
u and v = real numbers
a and b = nonparallel vectors
expressing the nonparallel vectors as :
a = i -j , b = j - k , r = ( x,y,z ) and r₀ = ( x₀, y₀, z₀ )
hence we can express vector equation of the plane as
r(u,v) = ( x₀ + u, y₀ - u + v, z₀ - v )
Finally the parametric representation of the surface through (0,0,0) i.e. origin = 0
( x, y , z ) = ( x₀ + u, y₀ - u + v, z₀ - v )
x = 0 + u ,
y = 0 - u + v
z = 0 - v
∴ parametric representation: x = u, y = v - u , z = - v
The slope of a d vs t graph represents velocity. Describe 3 ways you know this to be true.
Answer:
Look at explanation
Explanation:
I only know 1 way, there is another way you can rephrase this using derivatives but that's pretty much the same thing.
The slope is calculated by Δy/Δx so the slope of distance vs time graph is Δd/Δt which is the velocity
A particle charge of 2.7 µC is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface?
Answer:
3.05×10⁵ Nm²C⁻¹
Explanation:
According to Gauss' law,
∅' = q/e₀............... Equation 1
Where ∅' = net flux through the surface, q = net charge, e₀ = electric permittivity of the space
From the question,
Given: q = 2.7 μC = 2.7×10⁻⁶ C,
Constant: e₀ = 8.85×10⁻¹² C²/N.m²
Substituting these values into equation 1
∅' = (2.7×10⁻⁶)/(8.85×10⁻¹²)
∅' = 3.05×10⁵ Nm²C⁻¹
Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.
I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)
Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.
The 2.0-kg block feels
• the downward pull of its own weight, (2.0 kg) g
• the upward normal force of the surface, magnitude n₁
• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction
• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction
• the applied force, mag. F, pointing in the positive horizontal direction
Meanwhile the 3.0-kg block feels
• its own weight, (3.0 kg) g, pointing downward
• normal force, mag. n₂, pointing upward
• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction
• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)
Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:
• net vertical force:
n₂ - (3.0 kg) g = 0 ==> n₂ = (3.0 kg) g ==> f₂ = 0.30 (3.0 kg) g
• net horizontal force:
c₂ - f₂ = 0 ==> c₂ = 0.30 (3.0 kg) g ≈ 8.8 N
Choose the force diagram that best represents a ball thrown upward by Peter, at the
top of its path.
Diagram A
Diagram B
Diagram C
Diagram D
Answer:Diagram A
Explanation:
Since the air resistance is to be neglected, only the gravitational force acts on the ball ( and has acted all the way from the throw upward). Diagram A reflects this fact correctly indicating the gravity acting on the ball downward.
Infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz. Calculate the wavelength of the infrared radiation.
Answer:
[tex]\lambda=6.83\times 10^{-5}\ m[/tex]
Explanation:
Given that,
An infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 4.39 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
We know that,
[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{4.39\times 10^{12}}\\\\=6.83\times 10^{-5}\ m[/tex]
So, the wavelength of the infrared radiation is [tex]6.83\times 10^{-5}\ m[/tex].
measurement is essential in our life.justify the statement.
Answer:
Measurements allow people to find their way to new places. Measurements such as miles or kilometers are used by GPS systems to give directions. Time measurements help to create schedules so tasks get done on time. Measurements are used in food as well. Ingredients in recipes have to be measured to make the dish correctly. Serving sizes are a measurement that keep people healthy by showing how much of each food you should eat.
how do you calculate voltage drop
Answer:
Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.
Divide by 100.
Multiply by proper voltage drop value in tables. The result is voltage drop.
Explanation:
which vector best represents the net force acting on the +3 C charge
A 1640 kg merry-go-round with a radius of 7.50 m accelerates from rest to a rate of 1.00 revolution per 8.00 s. Estimate the merry-go-round as a solid cylinder and determine the net work needed for this acceleration.
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed, [tex]$\omega = \frac{1}{8}$[/tex] rev/sec
[tex]$=\frac{2 \pi \times 7.5}{8}$[/tex] rad/sec
= 5.89 rad/sec
Therefore, force required,
[tex]$F=m.\omega^2.r$[/tex]
[tex]$$=1640 \times (5.89)^2 \times 7.5[/tex]
= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J
A cylindrical disk of wood weighing 45.0 N and having a diameter of 30.0 cm floats on a cylinder of oil of density 0.850 g>cm3 (Fig. E12.19). The cylinder of oil is 75.0 cm deep and has a diameter the same as that of the wood. (a) What is the gauge pressure at the top of the oil column
Answer:
665.25 Pa
Explanation:
Given data :
Weight of the disk, w = 45 N
Diameter, d = 30 cm
= 0.30 m
Therefore, radius of the disk,
[tex]$r=\frac{d}{2}$[/tex]
[tex]$r=\frac{0.30}{2}$[/tex]
= 0.15 m
Now, area of the cylindrical disk,
[tex]$A=\pi r^2$[/tex]
[tex]$A=3.14 \times (0.15)^2$[/tex]
[tex]$=0.07065 \ m^2$[/tex]
∴ The gauge pressure at the top of the oil column is :
[tex]$p=\frac{w}{A}$[/tex]
[tex]$p=\frac{47}{0.07065}$[/tex]
= 665.25 Pa
Therefore, the gauge pressure is 665.25 Pa.
The definition of pressure allows to find the result for the pressure at the top of the oil cylinder is:
The pressure is: P = 636.6 Pa
The pressure is defined by the relationship between perpendicular force and area.
[tex]P = \frac{F}{A}[/tex]
where P is pressure, F is force, and A is area.
They indicate that the wooden cylinder weighs W = 45.0 N and has a diameter of d = 30 cm = 0.30 m.
The area is:
A = π r² = [tex]\pi \frac{d^2}{4}[/tex]
In the attachment we see a diagram of the forces, where the weight of the cylinder and the thrust are equal.
B-W = 0
B = W
The force applied to the liquid is the weights of the cylinder. Let's replace.
[tex]P= \frac{W}{A} \\P = W \frac{4}{\pi d^2 }[/tex]
Let's calculate.
[tex]P = \frac{45 \ 4 }{\pi \ 0.30^2 }[/tex] P = 45 4 / pi 0.30²
P = 636.6 Pa
In conclusion using the definition of pressure we can find the result for the pressure at the top of the oil cylinder is:
The pressure is: P = 636.6 Pa.
Learn more about pressure here: brainly.com/question/17467912
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]
Therefore, the frequency of this mode of vibration is 138.87 Hz
A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?
Answer:
a n c
Explanation:
If an object, initially at rest, accelerates at the rate of 25m/s2, what will the magnitude of the displacement be after 50s
Answer:
31250 meters
Explanation:
Given data
Intitially at rest, the velocity will be
u= 0m/s
acceleration a= 25m/s^2
Time= 50s
We know that the expression for the displacement is given as
S=U+ 1/2at^2
S= 0+ 1/2*25*50^2
S= 12.5*2500
S=31250 meters
Hence the displacement is 31250 meters
In 1.0 second, a battery charger moves 0.50 C of charge from the negative terminal to the positive terminal of a 1.5 V AA battery.
Part A:
How much work does the charger do? Answer is 0.75 J
Part B:
What is the power output of the charger in watts?
Answer:
W = Q * V work done on charge Q
A. W = .5 C * 1.5 V = .75 Joules
B. P = W / t = .75 J / 1 sec = .75 Watts
The image of the object formed by the lens is real, enlarged and inverted. What is the kind of lens ?
Answer:
Converging (convex) lens.
Explanation:
A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.
Basically, there are two (2) main types of lens and these includes;
I. Diverging (concave) lens.
II. Converging (convex) lens.
A converging (convex) lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. Thus, this type of lens is usually thin at the lower and upper edges and thick across the middle.
Basically, the image of the object formed by a converging (convex) lens. lens is real, enlarged and inverted.
20. How much charge will flow through a 2002 galvanometer
connected to a 40092 circular coil of 1000 turns on a wooden
stick 2 cm in diameter? If a magnetic field B=0.011 T parallel to
the axis of the stick is decreased suddenly to zero?
Answer:
5.76 μC
Explanation:
The induce emf, ε = -ΔΦ/Δt where ΔΦ = change in magnetic flux = NAΔB where N = number of turns of coil = 1000, A = cross-sectional area of coil = πd²/4 where d = diameter of coil = 2 cm = 2 × 10⁻² m and ΔB = change in magnetic field strength = B' - B where B' = final magnetic field = 0 T and B = initial magnetic field strength = 0.011 T. So, ΔB = 0 T - 0.011 T = -0.011 T
So, ε = -ΔΦ/Δt
ε = -NAΔB/Δt
ε = -NAΔB/Δt
Also ε = iR where i = current and R = combined resistance of circular coil and galvanometer = 200 Ω + 400 Ω = 600 Ω (since they are in series)
So, iR = -NAΔB/Δt
iΔt = -NAΔB/R
Δq = -NAΔB/R where Δq = charge = iΔt
substituting the values of the variables into the equation, we have
Δq = -1000 × π(2 × 10⁻² m)²/4 × -0.011 T/600 Ω
Δq = -1000 × 4π × 10⁻⁴ m²/4 × -0.011 T/600 Ω
Δq = 0.011π × 10⁻¹ m²T/600 Ω
Δq = 0.03456 × 10⁻¹ m²T/600 Ω
Δq = 5.76 × 10⁻⁶ C
Δq = 5.76 μC
A room has dimensions of 15 ft by 15 ft by 20 ft contains air with a density of 0.0724 pounds-mass per cubic feet. The weight of air in the room in pounds-force is
Answer:
the weight of the air in pound-force (lb-f) is 325.8 lbf
Explanation:
Given;
dimension of the room, = 15 ft by 15 ft by 20 ft
density of air in the room, ρ = 0.0724 lbm/ft³
The volume of air in the room is calculated as;
Volume = 15 ft x 15 ft x 20 ft = 4,500 ft³
The mass of the air is calculated as;
mass = density x volume
mass = 0.0724 lbm/ft³ x 4,500 ft³
mass = 325.8 lb-m
The weight of the air is calculated as;
Weight = mass x gravity
Weight = 325.8 lb-m x 32.174 ft/s²
Weight = 10482.29 lbm.ft/s²
The weight of the air in pound-force (lb-f) is calculated as;
1 lbf = 32.174 lbm.ft/s²
[tex]Weight =10,482.29\ lbm.ft/s^2\times \frac{1 \ lbf}{32.174 \ lbm.ft/s^2} \\\\Weight = 325.8 \ lbf[/tex]
Therefore, the weight of the air in pound-force (lb-f) is 325.8 lbf
Driving on asphalt roads entails very little rolling resistance, so most of the energy of the engine goes to overcoming air resistance. But driving slowly in dry sand is another story. If a 1500 kg car is driven in sand at 4.9 m/s , the coefficient of rolling friction is 0.060. In this case, nearly all of the energy that the car uses to move goes to overcoming rolling friction, so you can ignore air drag in this problem.
Required:
a. What propulsion force is needed to keep the car moving forward at a constant speed?
b. What power is required for propulsion at 5.0 m/s?
c. If the car gets 15 mpg when driving on sand, what is the car's efficiency? One gasoline contains 1.4×10 ^8 J of chemical energy.
Answer:
a) [tex]F_p=882N[/tex]
b) [tex]P=4410W[/tex]
c) [tex]V_p'=24135[/tex] ,[tex]n=15.2\%[/tex]
Explanation:
From the question we are told that:
Mass [tex]M=1500kg[/tex]
Velocity [tex]v=4.9m/s[/tex]
Coefficient of Rolling Friction [tex]\mu=0.06[/tex]
a)
Generally the equation for The Propulsion Force is mathematically given by
[tex]F_p=\mu*mg[/tex]
[tex]F_p=0.06*1500*9.81[/tex]
[tex]F_p=882N[/tex]
b)
Therefore Power Required at
[tex]V_p=5.0m/s[/tex]
[tex]P=F_p*V_p[/tex]
[tex]P=882*5[/tex]
[tex]P=4410W[/tex]
c)
[tex]V_p' =15mpg[/tex]
[tex]V_p'=15*\frac{1609}[/tex]
[tex]V_p'=24135[/tex]
Generally the equation for Work-done is mathematically given by
[tex]W=F_p*V_p'[/tex]
[tex]W=882*15*1609[/tex]
[tex]W=2.13*10^7[/tex]
Therefore
Efficiency
[tex]n=\frac{W}{E}*100\%[/tex]
Since
Energy in one gallon of gas is
[tex]E=1.4*10^8J[/tex]
Therefore
[tex]n=\frac{2.1*10^7}{1.4*10^8}*100\%[/tex]
[tex]n=15.2\%[/tex]
A pilot drops a bomb from a plane flying horizontally. Where will the plane be located when the bomb hits the ground
Answer:
The plane will be located directly above the bomb because they both have the same horizontal speed.
How many wavelengths of the radio waves are there between the transmitter and radio receiver if the woman is listening to an AM radio station broadcasting at 1180 kHz
Answer:
254 m
Explanation:
Applying,
v = λf............... Equation 1
Where v = velocity of radio wave, λ = wave length, f = frequency
make λ the subject of the equation
λ = v/f............ Equation 2
From the question,
Given: f = 1180 kHz = 1180000 Hz
Constant: v = 3×10⁸ m/s
Substitite into equation 2
λ = 3×10⁸/1180000
λ = 2.54×10²
λ = 254 m