The formula yields the radius $r$ of a circle that is inscribed within three circles with radii $a$, $b$, and $c$ that are mutually external tangents.
[tex][\frac{1}{r} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}][/tex]
The radius of the inscribed circle is related to the radii of the three mutually externally tangent circles using a method known as the radical centre formula. According to this equation, the reciprocals of the radii of the three externally tangent circles add up to the radius of the circle that is inscribed.
The power of point theorem states that the product of the distance between the point and the three points of tangency is equal to the product of the distance between the point and the centres of the circles. This formula is based on the fact that the circles are mutually externally tangent and their centres are collinear. It is crucial to note that the formula can only be used if the circles are mutually externally tangent; otherwise, it is invalid.
To learn more about circles: https://brainly.com/question/20489969
#SPJ4
How to convert log2 to log10?
To convert the log2 to log10, we can use the convert of base formula for logarithms. The change of base formula for logarithms is as written:
log b(x)=logc(x) / logc(b)
By Using this formula, we can convert or find log base 2 to log base 10, where log base 10 is called the common logarithm, and we denote log10 (x) as log(x). The change of base formula gives the following:
log2(x)=log10(x)/log10(2) = log(x)/log (2)
This gives us the formula we can use to convert a logarithm with base 2 to a common logarithm with base 10.
The log function of e to the base 10 is denoted as “log 10 e”. Where the value of e is 2.7182818. The natural log function of e is presented as “log e e”.
To know more about Exponential:
brainly.com/question/23133947
#SPJ4
find value of m
[tex] {m}^{2} + 35 = 240 \div (12 \div 3)[/tex]
Answer:
5 ( or ) - 5
Step-by-step explanation:
12/3 = 4
240/4 = 60
m² + 35 = 60
m² = 60 - 35
m² = 25
m = - 5 ( or ) 5
Because,
( - 5 )² = - 5 * - 5 = 25
5² = 5 * 5 = 25
EKA MATH²
6 M2 TD Lesson
▸
A trainer at a gym earns $2,456.75 every month. She earns an extra $4.75 every time she sells
a gym membership. Last month, the trainer sold 32 gym memberships. What is the total amount
of money the trainer earned last month?
Answer: We know that the trainer earns $2,456.75 every month, and she earns an extra $4.75 every time she sells a gym membership.
And last month she sold 32 gym memberships
We can calculate the total amount of money the trainer earned from selling gym memberships by multiplying the number of memberships sold by the amount earned per membership:
32 memberships * $4.75 per membership = $152.00
To find the total amount of money the trainer earned last month, we can add the amount earned from selling gym memberships to the amount earned from her salary:
$2,456.75 + $152.00 = $2,608.75
So, the total amount of money the trainer earned last month is $2,608.75
Step-by-step explanation:
Select the correct answer.
Which expression is in simplest form?
A. 4x√2xy
B. 3a^2 √4b
C. c^3d √3d^3
D. 14s √st^2
Match the solution to its expression.
The equivalent values to the given expressions are -
2/3 and 3/7 respectively.
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.Given are two expressions as -
1/3 + 1/3
5/7 - 2/7
The given expression are -
1/3 + 1/3
(1 + 1)/3
2/3
5/7 - 2/7
(5 - 2)/7
3/7
Therefore, the equivalent values to the given expressions are -
2/3 and 3/7 respectively.
To solve more questions on expressing evaluation, visit the link below -
brainly.com/question/1041084
#SPJ1
Find three additional points on the parabola that has vertex (1, -2) and passes through (0,– 5). Select all that apply. A. (2,-3) B. (-1,-14) C. (3,2) D. (2,-5) E. (3,-14) F. (-2,7)
Answer: The vertex form of a parabola is:
y = a(x - h)^2 + k
Where (h, k) is the vertex of the parabola.
In this case, we are given that the vertex is (1, -2), so the equation of the parabola will be:
y = a(x - 1)^2 - 2
We know that the parabola passes through (0, -5), and it is given by the equation.
-5 = a(0 - 1)^2 - 2
so,
a = 1/3
The final equation of the parabola is :
y = 1/3(x-1)^2 - 2
so, the points that are on the parabola are:
A. (2,-3)
B. (-1,-14) is not true,
y = 1/3 (-1 -1)^2 - 2 = -1/3 + 2 = 1/3 ≠ -14
C. (3,2)
D. (2,-5)
E. (3,-14) is not true
y = 1/3 (3-1)^2 - 2 = -4/3 ≠ -14
F. (-2,7) is not true
y = 1/3 (-2-1)^2 - 2 = -7/3 + 2 = -1/3 ≠ 7
Therefore A, C and D are the correct answers.
Step-by-step explanation:
Select the correct answer from each drop-down menu.
The boundary of a park is shaped like a circle. The park has a rectangular playground in the center and 2 square flower beds, one on each side
of the playground. The length of the playground is /and its width is w. The length of each side of the flower beds is a. Which two equivalent
expressions represent the total fencing material required to surround the playground and flower beds? Assume that the playground and beds
do not overlap
2(l+w) + 4a and 2l+2w + 2(2a) are two equivalent expressions which represent the total fencing material required to surround the playground and flower beds.
What are mathematical expressions?Mathematical expressions are a way of representing mathematical ideas, concepts, and operations using symbols and notation. They can take many forms, including numbers, variables, and operators. They can also be combined to create more complex expressions, equations, and formulas.
Explain:
The total fencing material required to surround the playground and flower beds would be the sum of the fencing material for the playground and the fencing material for the flower beds.
So, one possible expression for the total fencing material required to surround the playground and flower beds would be: 2(l+w) + 4a
Another possible expression for the total fencing material required to surround the playground and flower beds would be: 2l+2w + 2(2a)
Please note that these expressions are based on the information provided, and the actual total fencing material required will depend on the specific dimensions of the park and playground, and may differ from these expressions.
To know more about variables visit: https://brainly.com/question/15078630
#SPJ4
When a positive number is multiplied by the sum of twice the number and half the number, the result is the original number. What is the number
By setting up the equation and solving we get the positive number is 2/5.
What is positive number?A positive number is a number greater than zero. In mathematical terms, it is a number that is greater than zero on the number line. Positive numbers are often represented with a "+" sign in front of them, but this is not always necessary as the positive sign is the default and is usually omitted.
What is equations?An equation is a mathematical statement that asserts the equality of two expressions. It is a statement that asserts that the two expressions on either side of the "=" sign are equal and have the same value. The expressions on either side of the "=" sign are called the left-hand side (LHS) and the right-hand side (RHS) of the equation.
For example:
2x + 3 = 7
x(2x+x/2)=x
2x^2+x^2/2=x
5x^2/2=x
5x^2=2x
5x=2
x=2/5
To know more about numbers visit:
https://brainly.com/question/17429689
#SPJ1
find x pah lease and thank you
Answer: x=4
Step-by-step explanation: x+3=2x-1, then you do simple algebra
How do you solve 5 v 29?
To solve the equation 5 = v + 29, you can subtract 29 from both sides of the equation. This will isolate the variable on one side of the equation and allow you to find its value.
The given equation is
5 = v + 29
Subtract 29 from both sides:
5 - 29 = v + 29 - 29
-24 = v
So the solution is v = -24.
So, we subtract 29 from both sides of the equation, this operation cancels out the addition of 29 from the variable v, and we get -24 = v. This means that -24 is the value that makes the equation true.
--The question is incomplete, answering to the question below--
"How do you solve 5 = v + 29?"
To know more on equation
https://brainly.com/question/12788590
#SPJ4
Which of the following three equations represent the same line? 12(t) (2,2,4) +t(2,4,6) O A. 1(),12() and Ia(t O B. 11(t) and 12(t) . 12(t) and la(t) D. 1(t) and 1(t) E. none Submit
1(t) = 12(t) (2,2,4) +t(2,4,6) and Ia(t) = 12(t) (2,2,4) +t(2,4,6) represents the same line, as they are both equivalent to 12(t)(2,2,4) + t(2,4,6). So Option A is correct.
The equation of a line in 3-dimensional space can be represented in the form "r(t) = a + tb" where "r(t)" is a vector that represents any point on the line, "a" is a vector that represents a point on the line, and "b" is a vector that represents the direction of the line.
The given equations are:
1(t) = 12(t) (2,2,4) +t(2,4,6)
Ia(t) = 12(t) (2,2,4) +t(2,4,6)
As we can see that both equations are identical to equation 12(t) (2,2,4) +t(2,4,6) thus these three equations represent the same line.
The other given options B, C, and D are not equivalent to each other or to the original equation, thus they do not represent the same line.
To learn more about equations:
https://brainly.com/question/2972832
#SPJ4
A coin with probability p of showing up heads is tossed n times. What is the probability that the number of heads is odd
The chance you get a odd number of heads from the first coin is 1/3,
What is the probability that the number of heads is odd? The tosses of the coin are independent (neither affects the other). Hence, the probability of a head on Flip 1 and a head on Flip 2 is the product of P(H) and P(H), which is 1/2 x 1/2 = 1/4. The same calculation applies to the probability of a head on Flip 1 and a tail on Flip 2For n≥3, if the last outcome is T, then the probability that the first (n−1)tosses do not contain two (or more consecutive heads is p n−1 and if the last outcome is H, then (n−1)th outcome must be T and the probability the first(n−2) tosses do not contain two (or more) consecutive heads is p n−2 . Hence, p n =p n−1 ×P (nth toss results in a tail)+p n−2 ×P (nth toss results in a head and (n−1)th toss results in a tail)=(1−p)p n−1+p(1−p)p n−2To learn more about probability refers to:
brainly.com/question/24756209
#SPJ4
Suzy randomly picks marbles from a bag containing 13 identical marbles. How many possible outcomes are there if she selects 9 marbles
Suzy randomly picks marbles from a bag containing 13 identical marbles. The possible outcomes of the given probability if she selects 9 marbles is:
259,459,200.
What is random?Randomness is commonly used to refer to an event's apparent or actual lack of pattern or predictability. Random events, symbols, or steps frequently occur in no particular order and do not adhere to any recognizable pattern or combination.
Germanic in origin, Randon is a name for boys. With a name that means "wolf shield," you can inspire baby Randon to embrace their sense of adventure. something or someone that is suspiciously out of the ordinary, unidentified, or unknown. a peculiar or erratic individual or thing. Something that is random lacks structure, direction, or intent. Like the random selection of lottery numbers or unplanned random events, it occurs entirely by chance.
To learn more about probability refer to:
https://brainly.com/question/9793303
#SPJ4
Find the ordered triplet (x,y,z) for the following system of equations: x+3y + 2z = 1, 03x+y+5z=10, -2x-3y+z=7
The ordered triplet (x, y, z) or the following system of equations: x+3y + 2z = 1, 03x+y+5z=10, -2x-3y+z=7 is (-170/127, -89/127, 282/127).
Start with the first equation:
x + 3y + 2z = 1
Isolate x by subtracting 3y and 2z from both sides:
x = 1 - 3y - 2z
Substitute this expression of x into the second equation:
0.3x + y + 5z = 10
Substitute the value of x found in step 2 into this equation:
0.3(1 - 3y - 2z) + y + 5z = 10
0.3 -0.9y -0.6z + y + 5z = 10
0.1y + 4.4z = 9.7
y + 44z = 97
Solve for y by isolating it:
y = 97 - 44z
Substitute this expression of y into the first equation:
x + 3(97 - 44z) + 2z = 1
x + 291 - 132z + 2z = 1
Solve for x:
x = 130z - 290
Substitute this expression of x into the third equation:
-2(130z - 290) - 3(97 - 44z) + z = 7
-260z + 580 - 291 + 132z + z = 7
Solve for z:
127z = 282
z = 282/127
Substitute this value of z into the expression of y:
y = 97 - 44(282/127)
= -89/ 127
Substitute the values of z into the expression of x:
x = 130(282/127) - 290
= - 170/ 127
So the solution of the system of equations is: x = -170/127, y = -89/127, z = 282/127.
To know more on system of equation in three variables
https://brainly.com/question/29202248
#SPJ4
3x+5y= 8
2х - 5y = 22
Solve system of equations
Answer:
{x,y}={6,-2}
Step-by-step explanation:
System of Linear Equations entered :
[1] 3x + 5y = 8
[2] 2x - 5y = 22
Solve by Substitution :
// Solve equation [2] for the variable x
[2] 2x = 5y + 22
[2] x = 5y/2 + 11
// Plug this in for variable x in equation [1]
[1] 3•(5y/2+11) + 5y = 8
[1] 25y/2 = -25
[1] 25y = -50
// Solve equation [1] for the variable y
[1] 25y = - 50
[1] y = - 2
// By now we know this much :
x = 5y/2+11
y = -2
// Use the y value to solve for x
x = (5/2)(-2)+11 = 6
Graphic Representation of the Equations :
The answer should be: {x,y}={6,-2}
If θ is an angle in standard position and its terminal side passes through the point (12,-5), find the exact value of \sec\thetasecθ in simplest radical form.
The exact value of secθ in simplest radical for is 1.083
What are trigonometric identities?Trigonometric identities are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.
We are Given θ is an angle in standard position.
Its terminal side passes through the point (12, -5).
To find the exact value of secθ in simplest radical form.
When θ is an angle in standard position and its terminal side passes through the point (x,y), then the exact value of secθ is:
So, we have x = 12 and y = -5 which is in the first quadrant.
Therefore,
r² = x² + y²
r² = ( 12 )² + ( -5 )²
r² = 144 + 25
r² = 169
r = 13
Then,
sec θ = 1/cosθ
sec θ = [ 1/(x/r) ]
sec θ = r/x
sec θ = 13/12
sec θ = 1.083
Learn more about trigonometric;
https://brainly.com/question/21286835
#SPJ1
Solve the Equation.
6x−3(x+8)=9
x=?
Answer:
[tex]x=11[/tex]
Step-by-step explanation:
[tex]6x-3(x+8)=9\\6x-3x-24=9\\3x-24=9\\3x=33\\x=11[/tex]
Answer:
X=11
Step by step:
6x-3(x+8)=9
=6x-3x-24=9
=3x-24=9
+24 +24
=3x=33
=3x/3=33/3
X=11
The shelf life of a dairy product is normally distributed with a mean of 5 days and a standard deviation of 4 days. What is the probability that the product has a shelf life of at least 1 week and at most 2 weeks
The probability that the product will last for at least 1 wee and at most 2 week is 0.30.
What does the probability rule for products mean?This independent transmission of characteristics phenomenon can be explained by the product rule of probability. It claims that multiplying the odds of each event occurring alone will yield the probability of two independent events occurring together.
How do you calculate a product's probability?P(E F) = P(E) P(F) is the product rule, where E and F are independent events. Explain that independence means that the likelihood of one event occurring has no bearing on the likelihood of the other.
The probability that the product will last for at least 1 wee and at most 2 week is 0.30.
To know more about probability visit:-
brainly.com/question/29381779
#SPJ4
What is the slope and y-intercept of this linear equation y 3x 5?
The slope of the line is 3 and the y-intercept is -5.
The slope of a line is the coefficient of the x term (in this case, 3). To calculate the y-intercept, we can plug in x = 0 and solve for y. Doing this, we get y = 0 + 3(0) + 5 = -5. Therefore, the slope is 3 and the y-intercept is -5.
The slope of a linear equation is found by looking at the coefficient of the x term. In this case, the coefficient of the x term is 3, so the slope of the line is 3. To find the y-intercept, we can plug in x = 0 into the equation and solve for y. Doing this, we get y = 0 + 3(0) + 5 = -5, so the y-intercept is -5. Therefore, the slope of the line is 3 and the y-intercept is -5. This equation is therefore a linear equation with a slope of 3 and a y-intercept of -5.
Learn more about slope here
https://brainly.com/question/3605446
#SPJ4
What is the value of the expression 4x 3 x )+ 5x x 2 for x 3?
The value of the given expression 4x(3-x)+5x(x-2) when x = -3 is 3.
What are expressions?A phrase is considered a mathematical expression if it contains at least two numbers or variables and one or more mathematical operations.
A number is 6 more than half of the other number, which is x.
This statement is represented by the mathematical equation x/2 + 6.
So, we have the expression:
4x(3-x)+5x(x-2)
Now, the value of the expression when x = -3.
Insert values and calculate as follows:
4x(3-x)+5x(x-2)
4(-3)(3-(-3))+5(-3)((-3)-2)
-12(6)-15(-5)
-72 + 75
3
Therefore, the value of the given expression 4x(3-x)+5x(x-2) when x = -3 is 3.
Know more about expressions here:
https://brainly.com/question/28934492
#SPJ4
Correct question:
What is the value of the expression 4x(3-x)+5x(x-2) for x=(-3)?
Find the value of x and y so that the quadrilateral is a parallelogram.
(4x - 35° (y + 15)
(2y-5) (3x + 10)
X=
y =
Therefore, for x = 45 and y = 20, the quadrilateral is a parallelogram.
Define quadrilateral.In geometry a quadrilateral is a four-sided polygon, having four edges and four corners.
What is a polygon?A polygon is a closed polygonal chain made up of a limited number of straight-line segments and is a type of planar figure in geometry. A polygon is an area that is bordered by a bounding circuit, a bounding plane, or both.
We know opposite sides of a parallelogram are equal in length and parallel. Given opposite sides of a parallelogram are:
(4x - 35) and (3x + 10)
(y + 15) and (2y - 5)
Now, setting those opposite sides equal to each other:
4x - 35 = 3x + 10 = >x = 45
y + 15 = 2y - 5 => y = 20
Therefore, x = 45 and y = 20, the quadrilateral is a parallelogram.
To know more about geometry visit: https://brainly.com/question/16836548
#SPJ4
Find the measure of the indicated angle to the nearest degree.
Answer:
? ≈ 20°
Step-by-step explanation:
using the cosine ratio in the right triangle
cos ? = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{16}{17}[/tex] , then
? = [tex]cos^{-1}[/tex] ( [tex]\frac{16}{17}[/tex] ) ≈ 20° ( to the nearest degree )
Simplify the expression. (-3+ 4n²) - (5 - 2n²)
Answer:
2(3n^2-4) and 6n^2-8
Step-by-step explanation:
There are two different answers but try at least both of them.
HELP ASAP
PLEASE REFER TO PHOTO
According to the pattern Brett receives points as follows 5,10,15,20,25,30,35 and according to the pattern of Yolanda, Yolanda receives points as 25,60,95,130,165,200,235 .
What is recursion ?
It is a process in which it calls itself to solve the given problem is called as recursion.
The recursive formula to find the nth term of a geometric sequence is:
an = an-1 * r for n ≥ 2
In Brett's case,
if n=2
a2 = a1 * r
given a2 = 10 a1 =5
10 = 5 *d
d=2
a4 = a3 * d = 20*2 = 40
a5 = a4*d = 40*2 = 80
a6 = a5*d = 80*2 = 160
a7 = a6 * d = 160*2 = 320
In Yolanda case,
The recursive formula to find the nth term of an arithmetic sequence is:
an = an-1 + d for n ≥ 2
if n=2
a2 = a1 + d
60 = 25 + d
d = 35
a4 = a3+d = 95 + 35 = 130
a5 = a4+d = 130 + 35 = 165
a6 = a5+d = 165 + 35 = 200
a7 = a6 +d = 200 + 35 = 235
Hence the pattern in Brett's case could be 5,10,15,20,25,30,35 and in Yolando's case could be 25,60,95,130,165,200,235 .
To learn more about recursion from the given link.
https://brainly.com/question/28166275
#SPJ1
According to the pattern Brett receives points as follows 5,10,15,20,25,30,35 and according to the pattern of Yolanda, Yolanda receives points as 25,60,95,130,165,200,235 .
What is recursion ?It is a process in which it calls itself to solve the given problem is called as recursion.
The recursive formula to find the nth term of a geometric sequence is:
an = an-1 * r for n ≥ 2
In Brett's case,
if n=2
a2 = a1 * r
given a2 = 10 a1 =5
10 = 5 *d
d=2
a4 = a3 * d = 20*2 = 40
a5 = a4*d = 40*2 = 80
a6 = a5*d = 80*2 = 160
a7 = a6 * d = 160*2 = 320
In Yolanda case,
The recursive formula to find the nth term of an arithmetic sequence is:
an = an-1 + d for n ≥ 2
if n=2
a2 = a1 + d
60 = 25 + d
d = 35
a4 = a3+d = 95 + 35 = 130
a5 = a4+d = 130 + 35 = 165
a6 = a5+d = 165 + 35 = 200
a7 = a6 +d = 200 + 35 = 235
Hence the pattern in Brett's case could be 5,10,15,20,25,30,35 and in Yolando's case could be 25,60,95,130,165,200,235 .
To learn more about recursion from the given link.
https://brainly.com/question/30027987
#SPJ1
How do you find the angles of an isosceles triangle given three sides and no angles?
The Law of Cosines can be used to calculate the angles of an isosceles triangle given three side lengths. Two of the angles are equal, while the third can be found by subtracting the two known angles from 180°.
Since you are given three sides of an isosceles triangle, you can use the Law of Cosines to calculate the angles of the triangle. The Law of Cosines states that for a triangle with side lengths a, b, and c and angle C opposite side c, the following equation holds:
c² = a² + b² - 2abcosC
Therefore, you can rearrange the equation to solve for angle C:
C = arccos((a² + b² - c²) / (2ab))
For an isosceles triangle, two of the angles will be equal, so you can calculate those two angles using the equation above, and the third angle can be found by subtracting the two known angles from 180°.
Learn more about triangle here
https://brainly.com/question/2773823
#SPJ4
Solve for x. The triangles in each pair are similar.
Apply arithmetic operations on both sides of the equation to move the variable to one side and all other values to the opposite side.
How Do You Solve for x?Let's begin with a basic equation: x + 2 = 7.
How may x be obtained on its own?
x + 2 - 2 = 7 - 2 x = 5 after deducting 2 from both sides.
Put the solution, x = 5, back into the equation to confirm it. We get 5 + 2= 7.
Since LHS = RHS
In the triangle, find x.
Use triangle properties or the Pythagorean theorem to find the value of x, the unknown side or angle in a triangle.
Let's use an example to better understand how to solve for x in a triangle.
Using the Pythagorean theorem, we obtain AC2 = AB2 + BC2 where x2 = 72 + 242 x = 49 + 576 x = 625 x = 25 units.
To learn more about variable refer to:
https://brainly.com/question/30210023
#SPJ1
HELPPP!!!!
Option A: You are given $100 on the first day and then receive $10 each day for the month of February.
Option B: You are given one cent on the first day and that amount will double each consecutive day for the month of February.
Write a function rule to represent the total amount earned with Option A.
Write a function rule to represent the amount of money you will have earned with Option B.
Answer:
For Option A, the function rule would be:
totalAmountEarned(days) = 100 + 10*days
For Option B, the function rule would be:
totalAmountEarned(days) = 2^days
Step-by-step explanation:
18 9/10 + 8 3/10 ?????.....
27 2/10
or
27 1/5
----------------------------------
The experimental calculation of the specific heat of aluminum was found to be. 156 cal/g °C, but the actual value was given as. 185 cal/g °C. What is the percent error?
The percentage error is 16%
We know that the formula for the percentage error.
E = (absolute error / actual value) × 100
The formula for the absolute error is:
A = |actual value - experimental value|
A = |V1 - V2|
where V1 is the actual value
V2 is the experimental value
E is the percentage error
A is the absolute error
In this question, the experimental calculation of the specific heat of aluminum = 156 cal/g °C
And the actual specific heat of aluminum = 185 cal/g °C
Using above formula of absolute error,
A = |185 - 156|
A = 29 cal/g °C
And the percent error would be,
E = (absolute error / actual value) × 100
E = (29 / 185) × 100
E = 0.16 × 100
E = 16%
Learn more about the percentage error here:
brainly.com/question/17207115
#SPJ4
How many numbers among 1000-2000 are multiples of any two but not three of the first three odd prime numbers?
Hint: the first three odd prime numbers are 3,5,7
Answer: The first three odd prime numbers are 3, 5, and 7. A number is a multiple of two but not three of these prime numbers if it is divisible by two of them, but not the third.
To find the number of numbers between 1000 and 2000 that are multiples of two but not three of the first three odd prime numbers, we can count the number of multiples of each pair of prime numbers and subtract the number of multiples of all three prime numbers.
There are 200 multiples of 3 and 5 between 1000 and 2000 (200 numbers for each, for a total of 200 * 2 = 400). There are 133 multiples of 3 and 7 between 1000 and 2000 (133 numbers for each, for a total of 133 * 2 = 266). There are 80 multiples of 5 and 7 between 1000 and 2000 (80 numbers for each, for a total of 80 * 2 = 160). There are no multiples of all three prime numbers between 1000 and 2000.
Thus, the total number of numbers between 1000 and 2000 that are multiples of two but not three of the first three odd prime numbers is 400 + 266 + 160 = 826.
Step-by-step explanation: