The practice of statistics fifth edition chapter 11

Answers

Answer 1

Chapter 11 of The Practice of Statistics fifth edition covers the topic of inference for distributions of categorical data.

This involves using statistical methods to draw conclusions about population parameters based on samples of categorical data.Some of the key topics covered in chapter 11 include:

Contingency Tables: This refers to a table that summarizes data for two categorical variables. The chapter covers how to create and interpret contingency tables as well as how to perform chi-square tests for independence on them.Inference for Categorical Data:

The chapter covers the various methods used to test hypotheses about categorical data, including chi-square tests for goodness of fit and independence, as well as the use of confidence intervals for proportions of categorical data.Simulation-Based Inference:

The chapter discusses how to use simulations to perform inference for categorical data, including the use of randomization tests and simulation-based confidence intervals.

The chapter also includes real-world examples and case studies to illustrate how these statistical methods can be applied in practice.

To know more about statictics visit :-

https://brainly.com/question/15525560

#SPJ11


Related Questions


d. Based on the December 31, Year 2, balance sheet, what is the largest cash dividend Dakota could pay

Answers

Based on the Year 2 balance sheet, the largest cash dividend that Dakota could pay is $16,500.

What is the largest cash dividend Dakota could pay?

Cash dividends refers to the payments that companies make to their shareholders which is usually on the strength of earnings. They often represent opportunity for companies to share the benefit of business profits.

Based on the balance sheet, the largest cash dividend that Dakota could pay in Year 2 is:

= $ 31,500 + $ 5,000 - $ 20,000

= $ 16,500.

Missing questions:Dakota Company experienced the following events during Year 2:

Acquired $20,000 cash from the issue of common stock.

Paid $20,000 cash to purchase land.

Borrowed $2,500 cash.

Provided services for $40,000 cash.

Paid $1,000 cash for utilities expense.

Paid $20,000 cash for other operating expenses.

Paid a $5,000 cash dividend to the stockholders.

Determined that the market value of the land purchased in Event 2 is now $25,000.

Read more about cash dividend

brainly.com/question/30452482

#SPJ1

find the standard equation of the sphere with the given characteristics. center: (−1, −6, 3) radius: 5

Answers

The standard equation of the sphere with the given characteristics, center (-1, -6, 3), and radius 5 is

[tex](x+1)^{2} +(y+6)^{2}+ (z-3)^{2} =25[/tex].

The standard equation of a sphere is [tex](x-h)^{2} +(y-k)^{2}+ (z-l)^{2} =r^{2}[/tex], where (h, k, l) is the center of the sphere and r is the radius.
Using this formula and the given information, we can write the standard equation of the sphere:
[tex](x-(-1))^{2}+ (y-(-6))^{2} +(z-3)^{2}= 5^{2}[/tex]
Simplifying, we get:
[tex](x+1)^{2} +(y+6)^{2}+ (z-3)^{2} =25[/tex].
Therefore, the standard equation of the sphere with center (-1, -6, 3) and radius 5 is [tex](x+1)^{2} +(y+6)^{2}+ (z-3)^{2} =25[/tex].

Learn more about the standard equation of the sphere here:

https://brainly.com/question/31706340

#SPJ11

since cos(x) = − 8 17 and 180° < x < 270°, the angle is in quadrant iii , and the half-angle is in the range

Answers

The half-angle x/2 lies in the range 90° < x/2 < 135° (Quadrant II) and has a sine value of √(25/34).

Based on the given information, cos(x) = -8/17, and the angle x lies in the range 180° < x < 270°, which places it in Quadrant III. In this quadrant, cosine is negative, which confirms the value of cos(x). Now, we need to find the half-angle (x/2) and determine its range.

Since x is in Quadrant III, the angle x/2 will lie in the range 90° < x/2 < 135°, placing it in Quadrant II. In this quadrant, sine and cosine have opposite signs, so while cos(x) is negative, sin(x/2) will be positive. To find the value of sin(x/2), we can use the half-angle identity:

sin(x/2) = ±√[(1 - cos(x))/2] = √[(1 - (-8/17))/2] = √(25/34)

Since x/2 is in Quadrant II, sin(x/2) must be positive, so we take the positive square root:

sin(x/2) = √(25/34)

You can learn more about half-angle at: brainly.com/question/29173442

#SPJ11

What is the range of possible lengths for the third side of a triangle that has side lengths of 7 and 10? Please show your answer in this format: a < n < b. The a and b will be the numbers you need to add in for this answer. If your answer is correct but you were marked wrong please let your teacher know.

Answers

The range of possible values for the third side of the triangle is:

3 < n < 17

How to find the range of possible lengths?

For any triangle we can define the triangular inequality, it says that the sum of any two sides must be longer than the remaining side.

So if the lengths of the sides are A, B, and C, that inequality says that:

A + B > C

A + C > B

B + C > A

In this case, we can define:

A = 7

B = 10

C = n

Then the triangular inequality becomes:

7 + 10 > n

7 + n > 10

10  + n > 7

Solving these 3, we will get:

17 > n

n > 3

n > -3

Then the range of possible values for the last side is:

3 < n < 17

Learn more about triangles:

https://brainly.com/question/1058720

#SPJ1

Answer:

The range of possible lengths for the third side of the triangle is greater than 3 units and less than 17 units in other words 3 < n < 17

Can someone help me quickly
What is the volume of a cone whose diameter is 324pi cm2, and the length of the diameter of the base is 24cm?​

Answers

The height of the given cone is 6.75 cm.

Given that, the volume of a cone is 324π cm² and the length of the diameter is 24 cm.

Here, radius of the cone = 24/2 = 12

We know that, the volume of the cone is 1/3 πr²h.

Now, 1/3 πr²h = 1/3 π×12²h

324π = 1/3 π×12²×h

324 = 1/3 ×144×h

324 = 48h

h=324/48

h=6.75 cm

Therefore, the height of the given cone is 6.75 cm.

To learn more about the volume of a cone visit:

https://brainly.com/question/1984638.

#SPJ1

1.formulate and write mathematically the four maxwell’s equations in integral form

Answers

This equation relates the circulation of the magnetic field around a closed loop (left-hand side) to the current flowing through that loop (first term on the right-hand side) and to the time-varying electric field

equations describe the behavior of electromagnetic fields and are fundamental to the study of electromagnetism. Here are the four Maxwell's equations in integral form:

1. Gauss's law for electric fields:

∮E⋅dA=Q/ε0

This equation relates the electric flux through a closed surface (left-hand side) to the charge enclosed within that surface (right-hand side).

2. Gauss's law for magnetic fields:

∮B⋅dA=0

This equation states that the magnetic flux through any closed surface is always zero, which means that there are no magnetic monopoles.

3. Faraday's law of electromagnetic induction:

∮E⋅dl=−dΦB/dt

This equation relates a changing magnetic field (the time derivative of magnetic flux ΦB) to an induced electric field (left-hand side).

4. Ampere's law with Maxwell's correction:

∮B⋅dl=μ0(I+ε0dΦE/dt)
To learn more about : magnetic field

https://brainly.com/question/14411049

#SPJ11

Maxwell's equations describe the fundamental principles of electromagnetism. These equations are comprised of four integral forms: Gauss's law, Gauss's law for magnetism, Faraday's law of induction, and Ampere's law with Maxwell's correction.

Gauss's law states that the electric flux through a closed surface is equal to the charge enclosed within the surface. Gauss's law for magnetism states that there are no magnetic monopoles, and that the magnetic flux through a closed surface is always zero. Faraday's law of induction states that a changing magnetic field induces an electric field. Ampere's law with Maxwell's correction states that a changing electric field can induce a magnetic field. Formulating these four equations in integral form involves expressing them using calculus and integrating over a surface or volume.

1. Gauss's Law for Electric Fields:
∮E⋅dA = (1/ε₀) ∫ρ dV
This equation relates the electric flux through a closed surface to the enclosed electric charge.
2. Gauss's Law for Magnetic Fields:
∮B⋅dA = 0
This equation states that the magnetic flux through a closed surface is zero, as there are no magnetic monopoles.
3. Faraday's Law of Electromagnetic Induction:
∮E⋅dl = -d(∫B⋅dA)/dt
This equation shows the relationship between a changing magnetic field and the induced electric field that creates a voltage.
4. Ampère's Law with Maxwell's Addition:
∮B⋅dl = μ₀ (I + ε₀ d(∫E⋅dA)/dt)
This equation connects the magnetic field around a closed loop to the current passing through the loop and the changing electric field.

Learn more Maxwell's equations  about here: brainly.com/question/31958772

#SPJ11

Suppose a 3 x 3 matrix A has only two distinct eigenvalues. Suppose that tr(A) = -3 and det(A) = -28. Find the eigenvalues of A with their algebraic multiplicities.

Answers

the eigenvalues of A are λ = 2 and μ = -2/3, with algebraic multiplicities 1 and 2, respectively.

We know that the trace of a matrix is the sum of its eigenvalues and the determinant is the product of its eigenvalues. Let the two distinct eigenvalues of A be λ and μ. Then, we have:

tr(A) = λ + μ + λ or μ (since the eigenvalues are distinct)

-3 = 2λ + μ ...(1)

det(A) = λμ(λ + μ)

-28 = λμ(λ + μ) ...(2)

We can solve this system of equations to find λ and μ.

From equation (1), we can write μ = -3 - 2λ. Substituting this into equation (2), we get:

-28 = λ(-3 - 2λ)(λ - 3)

-28 = -λ(2λ^2 - 9λ + 9)

2λ^3 - 9λ^2 + 9λ - 28 = 0

We can use polynomial long division or synthetic division to find that λ = 2 and λ = -2/3 are roots of this polynomial. Therefore, the eigenvalues of A are 2 and -2/3, and their algebraic multiplicities can be found by considering the dimensions of the eigenspaces.

Let's find the algebraic multiplicity of λ = 2. Since tr(A) = -3, we know that the sum of the eigenvalues is -3, which means that the other eigenvalue must be -5. We can find the eigenvector corresponding to λ = 2 by solving the system of equations (A - 2I)x = 0, where I is the 3 x 3 identity matrix. This gives:

|1-2 2 1| |x1| |0|

|2 1-2 1| |x2| = |0|

|1 1 1-2| |x3| |0|

Solving this system, we get x1 = -x2 - x3, which means that the eigenspace corresponding to λ = 2 is one-dimensional. Therefore, the algebraic multiplicity of λ = 2 is 1.

Similarly, we can find the algebraic multiplicity of λ = -2/3 by considering the eigenvector corresponding to μ = -3 - 2λ = 4/3. This gives:

|-1/3 2 1| |x1| |0|

| 2 -5/3 1| |x2| = |0|

| 1 1 5/3| |x3| |0|

Solving this system, we get x1 = -7x2/6 - x3/6, which means that the eigenspace corresponding to λ = -2/3 is two-dimensional. Therefore, the algebraic multiplicity of λ = -2/3 is 2.

To learn more about polynomial visit:

brainly.com/question/11536910

#SPJ11

Express the confidence interval (0.068,0.142) in the form of p-E«p

Answers

The confidence interval (0.068,0.142) in the form of p-E«p is p - E < p < p + E, where p = 0.105 and E = 0.037.

To express the confidence interval (0.068, 0.142) in the form of p ± E, we first need to find the sample proportion p and the margin of error E.

The sample proportion p is the midpoint of the confidence interval, so we have:

p = (0.068 + 0.142) / 2 = 0.105

The margin of error E is half the width of the confidence interval, so we have:

E = (0.142 - 0.068) / 2 = 0.037

Therefore, we can express the confidence interval (0.068, 0.142) in the form of p ± E as:

p - E < p < p + E

0.105 - 0.037 < p < 0.105 + 0.037

0.068 < p < 0.142

So the confidence interval (0.068, 0.142) can be expressed as p - E < p < p + E, where p = 0.105 and E = 0.037.

Know more about confidence interval here:

https://brainly.com/question/15712887

#SPJ11

consider the function f ' (x) = x2 x − 56 (a) find the intervals on which f '(x) is increasing or decreasing. (if you need to use or –, enter infinity or –infinity, respectively.) increasing

Answers

, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

To find the intervals on which f'(x) is increasing or decreasing, we need to first find the critical points of f(x), i.e., the values of x where f'(x) = 0 or where f'(x) does not exist. Then, we can use the first derivative test to determine the intervals of increase and decrease.

We have:

f'(x) = x^2 - 56

Setting f'(x) = 0, we get:

x^2 - 56 = 0

Solving for x, we obtain:

x = ±sqrt(56) = ±2sqrt(14)

So, the critical points of f(x) are x = -2sqrt(14) and x = 2sqrt(14).

Now, we can use the first derivative test to find the intervals of increase and decrease. We construct a sign chart for f'(x) as follows:

|       -    2sqrt(14)   +    2sqrt(14)   +

f'(x) | - 0 + 0 +

From the sign chart, we see that f'(x) is negative on the interval (-infinity, -2sqrt(14)), and positive on the interval (-2sqrt(14), 2sqrt(14)) and (2sqrt(14), infinity).

Therefore, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

Learn more about intervals here:

https://brainly.com/question/13708942

#SPJ11

A regular poly has 26 sides ,find the size for each interior angle

Answers

Answer:

2160/13.

Step-by-step explanation:

Exterior angle = 360/number of sides

Interior angle = 180 – exterior angle

exterior angle = 360/26

= 180/13.

interior angle = 180 - (180/13)

= 2160/13.

Function A is represented by the equation y=3x+7.
Function B is represented by the table.
X
1
4
y
3
b
Stella claims that both functions will have the same rate of change no matter what the value of b is because the rate
of change of function A is 3 and the difference between the x-values in the table is 3.
Select all values of b that prove Stella's claim is not correct by making the rate of change of function B greater than
the rate of change of function A

Answers

All values of b that prove Stella's claim is not correct by making the rate of change of function B greater than the rate of change of function A are:

D. 15

E. 17

How to calculate the rate of change of a line?

In Mathematics and Geometry, the rate of change (slope) of any straight line can be determined by using this mathematical equation;

Rate of change = (Change in y-axis, Δy)/(Change in x-axis, Δx)

Rate of change = rise/run

Rate of change = (y₂ - y₁)/(x₂ - x₁)

When b = 6, the rate of change of function B is given by:

Rate of change = (6 - 3)/(4 - 1)

Rate of change = 3/3

Rate of change = 1 (not greater than 3).

When b = 12, the rate of change of function B is given by:

Rate of change = (12 - 3)/(4 - 1)

Rate of change = 9/3

Rate of change = 3 (not greater than 3).

When b = 15, the rate of change of function B is given by:

Rate of change = (15 - 3)/(4 - 1)

Rate of change = 12/3

Rate of change = 4 (greater than 3).

When b = 15, the rate of change of function B is given by:

Rate of change = (17 - 3)/(4 - 1)

Rate of change = 14/3

Rate of change = 4.7 (greater than 3).

Read more on rate of change here: brainly.com/question/25184007

#SPJ1

Missing information:

Select all values of b that prove Stella's claim is not correct by making the rate of change of function B greater than the rate of change of function A.

6

8

12

15

17

Given y=(x+2)(2x2+3)3 find the equation of the tangent line to this function when x = 1. First find the point on this function and the slope of the tangent line to this function when x = 1. Next use these to find the equation of the tangent line to this function when x = 1. Finally, put this equation in slope intercept form. All work must be shown!!
Point on function when x = 1 is (1, _____)
Slope of tangent line when x = 1 is _____________
Equation of tangent line in slope intercept form is:
_______________________________________

Answers

The equation of the tangent line in slope-intercept form is y = 67x - 40.

To find the point on the function when x = 1, we simply substitute x = 1 into the given equation:

y = (1+2)(2(1)^2+3)^3 = 27

So the point on the function when x = 1 is (1,27).

To find the slope of the tangent line when x = 1, we take the derivative of the given function and evaluate it at x = 1:

y' = (2x^2+7x+6)(2x^2+3)^2 + 3(x+2)(4x^3+18x^2+18x)

y'(1) = (2(1)^2+7(1)+6)(2(1)^2+3)^2 + 3(1+2)(4(1)^3+18(1)^2+18(1))

= 67

So the slope of the tangent line when x = 1 is 67.

Using the point-slope form of the equation of a line, we can write the equation of the tangent line when x = 1 as:

y - 27 = 67(x - 1)

Simplifying, we get:

y = 67x - 40

So the equation of the tangent line in slope-intercept form is y = 67x - 40.

Learn more about tangent line here

https://brainly.com/question/30162650

#SPJ11

evaluate the line integral ∫c f · dr, where c is given by the vector function r(t). f(x, y) = xyi 6y2j r(t) = 15t5i t5j 0 ≤ t ≤ 1

Answers

The value of the line integral ∫c f · dr is 1.885.

To evaluate the line integral ∫c f · dr, where c is given by the vector function r(t) and f(x,y) = xyi + 6y²j, we need to first parameterize the curve c using the given vector function r(t).

r(t) = 15t⁵i + t⁵j

The curve c starts at the point (0,0) when t=0 and ends at the point (15,1) when t=1.

Next, we need to calculate the differential of r(t) with respect to t:

dr/dt = 75t⁴i + 5t⁴j

We can now substitute the parameterization of c and the differential dr/dt into the formula for line integrals to get:

∫c f · dr = ∫[0,1] f(r(t)) · (dr/dt) dt

= ∫[0,1] (15t⁶)(t⁵)i + 6(t⁵)²(j) · (75t⁴i + 5t⁴j) dt

= ∫[0,1] (15t¹¹) dt + ∫[0,1] (6t¹⁰) dt

=[tex](15/12)t^{12} |_0^1 + (6/11)t^{11} |_0^1[/tex]

= (15/12) + (6/11)

= 1.885

For similar questions on line integral

https://brainly.com/question/25706129

#SPJ11

a polyhedron has 9 faces and 21 edges how many vertices are there? Please help

Answers

14 vertices in this polyhedron.

Euler's formula, which states that for any polyhedron (a three-dimensional solid object with flat polygonal faces), the number of vertices (V), edges (E), and faces (F) are related by the equation:

V - E + F = 2

This formula is named after the mathematician Leonhard Euler, who first discovered it in the 18th century.

It's a fundamental result in geometry and has many important applications.

The polyhedron has 9 faces and 21 edges.

We can plug these values into Euler's formula and solve for the number of vertices:

V - 21 + 9 = 2

Simplifying the left-hand side, we get:

V - 12 = 2

Adding 12 to both sides, we get:

V = 14

So the polyhedron has 14 vertices.

Euler's formula is a powerful tool for analyzing polyhedra, and can be used to derive many other results in geometry.

It's also related to other important mathematical concepts, such as topology and graph theory.

For similar questions on polyhedron

https://brainly.com/question/12943884

#SPJ11

evaluate ∫413x 5x√ dx. enter your answer as an exact fraction if necessary.
∫^16_9 (-x^1/2-5)dx
provide your answer below:

Answers

The value of the second integral is -109/3.

For the first integral, we can use the power rule and the constant multiple rule of integration:

∫413x 5x√ dx = [tex]4/3 \times 13x^{3/2 }\times 2/3 \times 5x3/2+1/2 + C[/tex]

= 40[tex]x^{5/2[/tex] / 15 + C

= 8[tex]x^{5/2[/tex] / 3 + C

where C is the constant of integration.

For the second integral, we can use the power rule and the constant multiple rule of integration:

∫[tex]^{16}_9 (-x^1/2-5)dx = (-2/3 \times x^(3/2) - 5x)^{16_9}[/tex]

= [tex](-2/3 \times 16^{(3/2)} - 5 \times 16) - (-2/3 \times 9^{(3/2)} - 5 \times 9)[/tex]

= (-2/3 × 64 - 80) - (-2/3 × 27 - 45)

= (-128/3 - 80) - (-54/3 - 45)

= -208/3 + 99/3

= -109/3

Therefore, the value of the second integral is -109/3.

for such more question on integral

https://brainly.com/question/27746495

#SPJ11

To evaluate ∫413x 5x√ dx, we can use integration by substitution. Let u = 5x√, then du/dx = 5/2x^1/2 and dx = 2/5u^2/5 du.

Substituting these into the integral, we get:

∫413x 5x√ dx = ∫4u u(2/5u^2/5) du

Simplifying:

∫413x 5x√ dx = 8/5 ∫u^7/5 du

Integrating:

∫413x 5x√ dx = 8/5 * (5/12)u^(12/5) + C

Substituting back in for u:

∫413x 5x√ dx = 2/3 x^(3/2) * (5x√)^(2/5) + C

Simplifying:

∫413x 5x√ dx = 2/3 x^(3/2) * (5x)^(2/5) + C

Now, to evaluate ∫^16_9 (-x^1/2-5)dx, we can use the power rule of integration:

∫^16_9 (-x^1/2-5)dx = [-2/3x^(3/2) - 5x] from 9 to 16

Substituting in the limits:

∫^16_9 (-x^1/2-5)dx = [-2/3(16)^(3/2) - 5(16)] - [-2/3(9)^(3/2) - 5(9)]

Simplifying:

∫^16_9 (-x^1/2-5)dx = [(-32/3) - 80] - [(-18/3) - 45]

∫^16_9 (-x^1/2-5)dx = -112/3

Therefore, the answer to the second integral is -112/3.
To evaluate the given integral ∫^16_9 (-x^(1/2) - 5) dx, we'll find the antiderivative of the function and then apply the Fundamental Theorem of Calculus.

Learn more abour fraction here : brainly.com/question/10354322

#SPJ11

True or False: the number of true arithmetical statements involving positive integers, +, x,(,) and = is countable, i.e. "(17+31) x 2 = 96". Defend your answer.

Answers

False, the number of true arithmetical statements involving positive integers, +, x,(,) and = is countable, i.e. "(17+31) x 2 = 96".

The number of true arithmetical statements involving positive integers, +, x,(,) and = is uncountable. There are infinitely many true arithmetical statements involving positive integers and the other specified symbols. For any given set of positive integers, there are infinitely many arithmetic statements that can be formed using those integers and the symbols. Additionally, there are infinitely many possible sets of positive integers that could be used to form arithmetic statements. Therefore, the total number of true arithmetical statements involving positive integers, +, x,(,) and = is uncountable. It's worth noting that the set of possible arithmetical statements involving positive integers, +, x,(,) and = is a subset of the set of all possible mathematical statements involving those symbols, which is itself uncountable.

Learn more about arithmetical statements here

https://brainly.com/question/30051191

#SPJ11

the time until a person is served in a cafeteria is t, which follows an exponential distribution with mean of β = 4 minutes. what is the probability that a person has to wait more than 10 minutes

Answers

The probability that a person has to wait more than 10 minutes is approximately 0.0821 or 8.21%.

We know that the probability density function of the exponential distribution with mean β is given by:

f(t) = (1/β) * exp(-t/β)

where t is the time and exp(x) is the exponential function with base e raised to the power x.

To find the probability that a person has to wait more than 10 minutes, we need to integrate the probability density function from t = 10 to infinity:

P(t > 10) = ∫[10,∞] f(t) dt

Substituting the value of β = 4, we get:

P(t > 10) = ∫[10,∞] (1/4) * exp(-t/4) dt

Using integration by substitution, let u = -t/4, then du = -1/4 dt:

P(t > 10) = ∫[-10/4,0] e^u du

P(t > 10) = [-e^u]_(-10/4)^0

P(t > 10) = [-e^0 + e^(-10/4)]

P(t > 10) = [1 - e^(-5/2)]

Therefore, the probability that a person has to wait more than 10 minutes is approximately 0.0821 or 8.21%.

To know more about probability refer here:

https://brainly.com/question/30034780

#SPJ11

suppose f 3 = 2 and f ′ 3 = −3. let g(x) = f(x) sin(x) and h(x) = cos(x) f(x) . find the following. (a) g ′ 3 (b) h ′ 3

Answers

The chain rule is a formula in calculus that describes how to compute the derivative of a composite function.

We can use the product rule and the chain rule to find the derivatives of g(x) and h(x):

(a) Using the product rule and the chain rule, we have:

g'(x) = f'(x)sin(x) + f(x)cos(x)

At x=3, we know that f(3) = 2 and f'(3) = -3, so:

g'(3) = f'(3)sin(3) + f(3)cos(3) = (-3)sin(3) + 2cos(3)

Therefore, g'(3) = -3sin(3) + 2cos(3).

(b) Using the product rule and the chain rule, we have:

h'(x) = f'(x)cos(x) - f(x)sin(x)

At x=3, we know that f(3) = 2 and f'(3) = -3, so:

h'(3) = f'(3)cos(3) - f(3)sin(3) = (-3)cos(3) - 2sin(3)

Therefore, h'(3) = -3cos(3) - 2sin(3).

To learn more about calculus visit:

brainly.com/question/31801938

#SPJ11

find a cartesian equation for the curve and identify it. r = 3 cos()
a. hyperbola b. parabola c. circle d. ellipse
e. limaçon

Answers

The limaçon has a characteristic loop is evident in the Cartesian equation. e.

The given equation is in polar form and it represents a limaçon.

We can convert this equation into Cartesian form using the following equations:

x = r cosΘ()

y = r sin(Θ)

Substituting r = 3 cos(Θ) get:

x = 3 cos(Θ) cos(Θ)

= 3 cos²(Θ)

y = 3 cos(Θ) sin(Θ)

= 3 sin(Θ) cos(Θ)

= (3/2) sin(2Θ)

The Cartesian equation of the curve is:

x²/9 + y²/27 = cos²(Θ) + (1/4)sin²(2Θ)

This equation represents a limaçon is a type of curve formed by a point moving around a fixed point while a second point moves around the first.

For similar questions on Cartesian
https://brainly.com/question/30444906

#SPJ11

A company is designing a new cylindrical water bottle. The volume of the bottle will be 207 cm3. The height of the water bottle is 7.9 cm. What is the radius of the water​ bottle? Use 3.14 for pi.

Answers

The required radius of the water bottle is approximately 2.88 cm.

To find the radius of the cylindrical water bottle, we can use the formula for the volume of a cylinder:

Volume = π * radius² * height

Given that the volume of the bottle is 207 cm³ and the height is 7.9 cm, we can rearrange the formula to solve for the radius:

207 = 3.14 * radius² * 7.9

Dividing both sides of the equation by (3.14 * 7.9), we get:

radius² = 207 / (3.14 * 7.9)

radius² = 8.308

radius = √(8.308)

radius ≈ 2.88 cm (rounded to two decimal places)

Therefore, the radius of the water bottle is approximately 2.88 cm.

Learn more about the volume of the cylinder here:

https://brainly.com/question/15891031

#SPJ1

The sum of two numbers is 55 the smaller number is 21 less than the larger number what are the numbers?

Answers

We know that the sum of two numbers is 55. This means that if we add two numbers together, we get 55.

We also know that the smaller number is 21 less than the larger number. This means that the smaller number is 21 units smaller than the larger number.

To find the two numbers, we can use these two pieces of information together.

We can start by writing an equation using the given information:

x + (x - 21) = 55

Here, x represents the larger number and (x - 21) represents the smaller number.

We can simplify this equation by adding x and (x - 21) on one side and then subtracting 21 from both sides:

2x + 21 - 21 = 55 - 21

Simplifying this equation, we get:

2x = 34

Dividing both sides by 2, we get:

x = 17

Therefore, the two numbers are 21 and 17.

Learn more about numbers Visit : brainly.com/question/25734188

#SPJ11

Identify the graph that represents .y=(x-1)²+2

Answers

Here is the rule

y = (x - h)² + k

Vertex = (h, k)

The vertex represents the lowest point on the graph, or the minimum value of the quadratic function.

y= (x - 1)² + 2

Vertex = (1, 2)

Second graph or the middle picture one

A house blueprint shows the bedroom is 4 in wide and the actual length of the bedroom is 20 feet wide. if the bedroom has a length of 16 feet what is the length on the blueprint? show all steps.

Answers

The length on the blueprint is approximately 0.2667 units.

To find the length on the blueprint, we can set up a proportion using the given information.

Let's denote the length on the blueprint as "x".

According to the blueprint, the width is 4 inches, and the actual length is 20 feet. We can set up the following proportion:

Width on Blueprint / Actual Width = Length on Blueprint / Actual Length

Plugging in the values:

4 inches / 20 feet = x / 16 feet

Now, we need to convert the units to be consistent. Since we have feet in the denominator on both sides, we can convert inches to feet by dividing by 12:

(4 inches / 12 feet) / 20 feet = x / 16 feet

Simplifying:

1/3 / 20 = x / 16

Now, we can cross multiply:

(1/3) × 16 = 20 ×x

Simplifying further:

16/3 = 20x

To solve for x, we can divide both sides by 20:

(16/3) / 20 = x

Simplifying:

16 / (3 × 20) = x

16 / 60 = x

Now, we can simplify the fraction:

4/15 = x

So, the length on the blueprint is 4/15 of a unit.

Alternatively, if you want to convert the fraction to decimal form, you can divide 4 by 15:

4 ÷ 15 ≈ 0.2667

Therefore, the length on the blueprint is approximately 0.2667 units.

Learn more about proportion here:

https://brainly.com/question/26974513

#SPJ11

Which statement best describes the purpose of the clerk's interaction with Louisa in scene 2?
Responses

The interaction alerts Louisa that Niles' niece will be joining their meeting.
The interaction alerts Louisa that Niles' niece will be joining their meeting.

The interaction gives Louisa confidence to challenge Niles' opinion of her book.
The interaction gives Louisa confidence to challenge Niles' opinion of her book.

The interaction prepares Louisa for the disappointment that Niles will likely not publish her book.
The interaction prepares Louisa for the disappointment that Niles will likely not publish her book.

The interaction helps Louisa understand that she may need to change some of the language in her book.

Answers

The statement "The interaction prepares Louisa for the disappointment that Niles will likely not publish her book" best describes the purpose of the clerk's interaction with Louisa in scene 2.

What is the novel "Pride and Prejudice" about?

With elegance and wit characteristic of author Jane Austen's writing style, "Pride and Prejudice" transports readers into England's early 19th century society where main character Elizabeth Bennet endeavors to find love within societal conventions that demand she secure a marriage partner.

Similarly positioned is her friend Louisa who pursues potential suitors while also seeking publication for her own written works. However, when seeking aid from a publishing house, Louisa encounters an unencouraging clerk who highlights the challenges of publication within the industry.

Learn more about Pride and Prejudice here https://brainly.com/question/30928818

#SPJ1

A normal population has the mean of 60 and the variance of 25. A random sample of size n = 54 is selected. (a) Find the standard deviation of the sample mean Round your answer to two decimal places (e.g. 98.76) (b) How large must the sample be if you want to halve the standard deviation of the sample mean?

Answers

(a) The standard deviation of the sample mean is 1.94 (rounded to two decimal places).

(b) How large should the sample be to achieve a halved standard deviation of the sample mean?

To find the standard deviation of the sample mean (also known as the standard error), we divide the population standard deviation by the square root of the sample size. Given that the population has a variance of 25, the standard deviation is √25 = 5. Since we are working with a sample size of 54, we divide the population standard deviation by the square root of 54 to obtain the standard deviation of the sample mean, which is approximately 1.94 when rounded to two decimal places.

To halve the standard deviation of the sample mean, we need to increase the sample size. The standard deviation of the sample mean decreases as the square root of the sample size increases. In other words, if we want to halve the standard deviation, we need to quadruple the sample size. Therefore, the sample size should be increased to 216 (54 * 4) in order to achieve this reduction.

In conclusion, the standard deviation of the sample mean for a random sample of size 54 is approximately 1.94. To halve the standard deviation, the sample size should be increased to 216.

Learn more about standard deviation

brainly.com/question/29115611

#SPJ11

What is the parent function of y=-5(x-3)+7

Answers

86%
i took el test and i aced it so

need help quickly! lots of points!!!! i doubt it will be hard for you guys, you all seem very smart

Answers

Answer:

Step-by-step explanation:

1. Sherelle's reasons for saying that the 1916 coin is most likely in her bag:

She might argue that she is older than Venita and therefore more likely to have inherited the coin from their grandmother.

She might claim that she has a special connection to their grandmother and was entrusted with the coin as a keepsake.

Sherelle might suggest that she has been collecting coins for a longer time than Venita and is more likely to have come across the 1916 coin in her collection.

Venita's reasons for saying that the 1916 coin is most likely in her bag:

She might argue that she has a strong interest in history and specifically coins, making her more likely to have acquired the 1916 coin through her own efforts.

Venita might claim that she has been studying and researching coins extensively, including the history and value of different years, making her more aware of the significance of the 1916 coin.

She might suggest that she recently found the 1916 coin at a coin shop or auction and specifically placed it in her bag for safekeeping.

Considering the information provided, it is difficult to determine with certainty whose bag is more likely to contain the 1916 coin. Both Sherelle and Venita present valid arguments based on their personal circumstances and interests. Without additional information, it is impossible to make an accurate judgment. It would be helpful to investigate further or ask their grandmother directly to determine the true location of the 1916 coin.

2. To find the five-number summary and construct the box-and-whisker plots for each data set, we need to arrange the numbers in ascending order.

Sherelle's data set: 26, 39, 56, 58, 60, 62, 65, 66, 66, 68, 71, 72, 72, 73, 74, 75, 81, 83, 84, 85

Venita's data set: 44, 45, 51, 51, 53, 53, 55, 57, 58, 62, 65, 66, 69, 69, 70, 73, 75, 77, 78, 79

Now we can find the five-number summary for each data set:

Sherelle's data set:

Minimum: 26

First quartile (Q1): 58

Median (Q2): 68

Third quartile (Q3): 75

Maximum: 85

Venita's data set:

Minimum: 44

First quartile (Q1): 53

Median (Q2): 65

Third quartile (Q3): 73

Maximum: 79

Sherelle might give the following reasons for saying that the 1916 coin is most likely in her bag:

Higher frequency of older coins: If Sherelle's bag has a higher proportion of older coins in general, it increases the likelihood of finding a coin from 1916. She could argue that her bag contains more coins from earlier years, making it more probable to have a coin from 1916.

Coin distribution pattern: If Sherelle's bag follows a pattern where the older coins tend to be grouped together, she may believe that the 1916 coin is more likely to be in her bag. She might argue that her bag contains a cluster of coins from the early 1900s, increasing the chance of having the specific 1916 coin.

On the other hand, Venita might give the following reasons for saying that the 1916 coin is most likely in her bag:

Higher randomness in coin selection: If Venita's bag has a more diverse mix of coins from various years, she could argue that the chances of having the 1916 coin are higher. She might claim that her bag includes a wider range of years, making it more likely to contain the specific coin from 1916.

Equal probability: Venita might believe that since the coin is equally likely to be in either bag, the probability is 50/50. She may argue that there is no reason to assume the 1916 coin is more likely to be in Sherelle's bag.

Considering the information provided, it is difficult to determine which bag is more likely to contain the 1916 coin. Without additional information about the distribution or characteristics of the coins in each bag, it would be purely speculative to make a definitive conclusion. Both Sherelle and Venita have their own reasons, but ultimately, it is a matter of chance unless further information is available.

A mother divided her land of 141/4 acres among her 5 adopted adult children. samuel received 11 acres, sophia received 9 acres, anthony received 8 acres, jasmine received 5 acres, and juan received 4 1/4 acres.
which of the children received more land if the land was divided evenly among them compared to the way the mother divided it?

a)anthony

b)jasmine

c)juan

d)sofia

Answers

The child who received more land if the land was divided evenly among them compared to the way the mother divided it is Sofia. Option (d) is correct.

A mother divided her land of 141/4 acres among her 5 adopted adult children such that Samuel received 11 acres, Sophia received 9 acres, Anthony received 8 acres, Jasmine received 5 acres, and Juan received 4 1/4 acres.

Among the given children, the child who received more land if the land was divided evenly among them compared to the way the mother divided it is Sofia.

To determine the land received by each child if the land was divided evenly among them, divide the total area by the number of children.

Therefore, each child would receive 141/4 ÷ 5 acres.

141/4 ÷ 5 = 113/20 ≈ 5.65 acres.

(to two decimal places)

Approximately, each child would receive 5.65 acres of land.

Which is not how the mother divided her land among the children.

Now, let's compare the area of land that each child received with the 5.65 acres they would have received if the land was divided evenly among them.Samuel received 11 acres.

11 > 5.65

So, Samuel received more land than they would have received if the land was divided evenly among them.Sophia received 9 acres.

9 < 5.65

So, Sophia received less land than they would have received if the land was divided evenly among them.

Anthony received 8 acres.

8 < 5.65

So,

Anthony received less land than they would have received if the land was divided evenly among them.

Jasmine received 5 acres.

5 = 5.65

So, Jasmine received the same land as they would have received if the land was divided evenly among them.

Juan received 4 1/4 acres.

21/4 = 5.25 and

5.25 < 5.65

So, Juan received less land than they would have received if the land was divided evenly among them.

To know more about  divided,visit:

https://brainly.com/question/15381501

#SPJ11

let r = e2 for 0 ≤ ≤ . find the length l of the graph of the polar equation. enter pi for if needed.

Answers

To find the length l of the graph of the polar equation r = e^(2θ) for 0 ≤ θ ≤ π, we can use the arc length formula for polar curves.   Answer :  0.

The arc length formula for a polar curve r = f(θ) is given by:

l = ∫[a, b] √(r^2 + (dr/dθ)^2) dθ,

where a and b are the starting and ending angles.

In this case, we have r = e^(2θ), so dr/dθ = 2e^(2θ). Substituting these values into the arc length formula, we get:

l = ∫[0, π] √(e^(4θ) + (2e^(2θ))^2) dθ

 = ∫[0, π] √(e^(4θ) + 4e^(4θ)) dθ

 = ∫[0, π] √(5e^(4θ)) dθ

 = √5 ∫[0, π] e^(2θ) dθ.

To evaluate this integral, we can use the substitution u = 2θ, du = 2dθ:

l = √5 ∫[0, π] e^(2θ) dθ

 = √5 ∫[0, 2π] e^u (du/2)

 = √5 (1/2) ∫[0, 2π] e^u du

 = (√5/2) [e^u] evaluated from 0 to 2π

 = (√5/2) (e^(2π) - e^0)

 = (√5/2) (1 - 1)

 = 0.

Therefore, the length l of the graph of the polar equation r = e^(2θ) for 0 ≤ θ ≤ π is 0 units.

Learn more about angles : brainly.com/question/31818999

#SPJ11

what is the surface area of the pryamid below 10 7 7

Answers

The surface area of the given pyramid, can be found to be A. 648 square units.

How to find the surface area of pyramid ?

First find the area of the square base :

= 12 x 12

= 144 square units

Then find the area of a single triangular face of the regular pyramid :

= 1 / 2 x base  x height

= 1 / 2 x 12 x 21

= 126 square units

Seeing as there are 4 triangular faces, the total area would then be:

= 144 + ( 126 x 4 triangular faces )

= 648 square units

Find out more on area at https://brainly.com/question/30511438

#SPJ1

Other Questions
If 7.40 g of O3 reacts with 0.670 g of NO, how many grams of NO3 will be produced? Identify the limiting reagent from the reaction.2O3 + 3NO 3NO3O3 produces _____0.72____ grams of NO2NO produces ________ grams of NO2The limiting reagent (reactant) is- A theater uses a letter to show which row a seat is in, and a number to show the column. If there are 8 rows and 10 columns, what is the probability that you select a seat at random that is in column 1? given its internet base, can amazons success be easily duplicated by copying its web materials? if so, why has amazon been so dominant in recent years? which would you most likely find in a forager society? a. polytheism. b. ancestral worship. c. a shaman. d. a priest/priestess. Please help me answer this question ASAP!! Its due tomorrow! Will mark as brainliest if explained very simply and correct. does a prediction value of m equals space 6.5 plus-or-minus 1.8 space g r a m s agree well with a measurement value of m equals space 4.9 plus-or-minus 0.6 space g r a m s? true false Which of the following statement is correct? a. SUID gives persistent permissions to a user b. The rw-r--r-- file corresponds to the umask values 027 c. Command chmod o+t file can make files in the directory that can only be removed by the file/directory owner or root. d. Is -I can change the file permission Scientists are working on nanotechnology devices that can unclog arteries, detect and eradicate cancer cells, and filter water pollution.Question 2 options:TrueFalse the nurse is caring for a child with a fractured femur in traction. which action will the nurse complete while caring for this client? Payback and ARREach of the following scenarios is independent. All cash flows are after-tax cash flows.Required:1. Brad Blaylock has purchased a tractor for $93,750. He expects to receive a net cash flow of $31,250 per year from the investment. What is the payback period for Jim?2. Bertha Lafferty invested $360,000 in a laundromat. The facility has a 10-year life expectancy with no expected salvage value. The laundromat will produce a net cash flow of $108,000 per year. What is the accounting rate of return?3. Melannie Bayless has purchased a business building for $336,000. She expects to receive the following cash flows over a 10-year period:Year 1: $42,000Year 2: $58,800Years 3-10: $84,000What is the payback period for Melannie? What is the accounting rate of return? discuss how the issue of drugs in sports can call into question the integerity of that particular sport A bowl of lollipops contains 8 cherry lollipops and 30 other lollipops. what is the probability that a randomly chosen lollipop will be cherry? write your answer as a fraction or whole number. how does s logistics and supply chain management activities help the company create value for its customers? static/global variables are stored separately from const variables and string constants. static/global variables are stored separately from const variables and string constants. true false g Consent means giving permission for something to happen. What else is true about consent? (check all that apply) (a) Consent must be voluntary (b) Consent may be inferred from silence (c) Consent to one type of activity may not imply consent to other activities (d) Consent one time means consent every time quizletthe term questionnaire suggests a collection of: a. values b. responses c. answer options d. beliefs Repeat Exercise 7.28 for the following MIPS program. Recall thatthe pipelined MIPS processor has a hazard unit.Which registers are being written, and which are being read on the fifth cycle?add $s0, $t0, $t1sub $s1, $t2, $t3and $s2, $s0, $s1or $s3, $t4, $t5slt $s4, $s2, $s3 The number of turns of a pencil sharpener needed to sharpen a brand W pencil is approximately Normallydistributed with a mean of 4. 6 and a standard deviation of 0. 67. The number of turns needed to sharpen a brand Hpencil is approximately Normally distributed with a mean of 5. 2 and a standard deviation of 0. 33. If 30 pencils ofeach brand are randomly selected and sharpened, what is the probability that the brand W pencils will have a highermean number of turns needed to sharpen than brand H?O approximately 0O 0. 0005O 0. 9995O approximately 1 Luis prepares a carbonated beverage using CO2 gas, solid sugar (C12H22O11) and liquid water. Identify the only solutes. what are the characteristics of an ideal site for harnessing tidal energy