The multidrug-resistant pumps in many bacterial cell membranes confer antibiotic resistance by ________.

Answers

Answer 1

The multidrug-resistant pumps in many bacterial cell membranes confer antibiotic resistance by actively pumping out or effluxing antibiotics from within the bacterial cell.

These pumps are specialised transport proteins that are capable of recognising a wide variety of antibiotics and expelling them from the cell before they can exert their antimicrobial effects. This process occurs before the antibiotics can have an effect on the microbes. This efflux mechanism provides bacteria with a means of surviving in the presence of antibiotics and contributes to the development of multidrug resistance.

Multidrug resistance is the process by which bacteria become resistant to various types of antibiotics. Bacteria can preserve their ability to survive and continue to reproduce by purposefully eliminating antibiotics from their cellular environment. This makes it more difficult to treat diseases caused by the bacteria.

Learn more about Multidrug resistance, here:

https://brainly.com/question/10329419

#SPJ12


Related Questions

The absorption of simple sugars and amino acids in the small intestine occurs by ________. exocytosis osmosis simple diffusion bulk flow facilitated diffusion

Answers

The absorption of simple sugars and amino acids in the small intestine occurs by facilitated diffusion.

Facilitated diffusion is a type of passive transport where substances move across a cell membrane from an area of high concentration to an area of low concentration with the help of transport proteins.

In the case of simple sugars and amino acids, they are transported from the lumen of the small intestine into the epithelial cells lining the intestine, and then into the bloodstream, where they can be delivered to the rest of the body.

This process is essential for the absorption of nutrients from food and for providing the body with the energy and materials it needs to function properly.

To learn more about Facilitated diffusion here:

https://brainly.com/question/14852229

#SPJ4

The absorption of simple sugars and amino acids in the small intestine occurs by facilitated diffusion.

Facilitated diffusion is a type of passive transport that involves the movement of molecules across a membrane from an area of high concentration to an area of low concentration, facilitated by a carrier protein. In the small intestine, simple sugars and amino acids are absorbed by the cells lining the intestinal wall, called enterocytes.

Enterocytes contain carrier proteins on their cell membranes that bind to and transport specific nutrients, such as glucose and amino acids, from the lumen of the small intestine into the enterocyte. Once inside the enterocyte, these nutrients can be further processed and transported to the rest of the body via the bloodstream.

Facilitated diffusion is an important mechanism for the absorption of nutrients in the small intestine because it allows for the efficient uptake of specific molecules while maintaining a concentration gradient that promotes the continued movement of nutrients from the lumen of the small intestine into the enterocytes. Other mechanisms of nutrient absorption in the small intestine include active transport and endocytosis, but facilitated diffusion is the primary mechanism for the absorption of simple sugars and amino acids.

learn more about facilitated diffusion here:

https://brainly.com/question/14852229

#SPJ11

Matt has sustained damage to his anterior cingulated cortex. What sort of disruptions in behavior would we expect to see as a result of this damage

Answers

Damage to the anterior cingulated cortex can cause a disruption in behavior such as difficulty in decision making and problem solving, difficulty regulating emotions, difficulty with multitasking, and impulsivity.

The anterior cingulate cortex plays a major role in executive function, which is the ability to plan, initiate, and monitor one’s own behavior. Damage to this region of the brain can cause difficulty with emotional regulation and impulse control.

People with damage to the anterior cingulate cortex often struggle to make decisions and can become easily overwhelmed in complex situations. They may also have difficulty multitasking, as well as difficulty controlling their emotions in certain situations.

Overall, damage to the anterior cingulated cortex can lead to disruptions in behavior such as difficulty making decisions, difficulty with multitasking, impulsivity, and difficulty with emotional regulation.

Know more about anterior cingulated cortex here

https://brainly.com/question/4565946#

#SPJ11

TRUE or FALSE Stage 2 (the Dark Reactions) of photosynthesis involves a cycle of reactions that does not directly depend on energy derived from sunlight.

Answers

TRUE.  Stage 2, also known as the Dark Reactions or Calvin Cycle of photosynthesis is a cycle of reactions that do not directly depend on energy derived from sunlight.

The Dark Reactions, also known as the Calvin Cycle, is a set of biochemical reactions that occur in the stroma of chloroplasts during photosynthesis. Unlike Light Reactions, which require energy from sunlight to occur, Dark Reactions do not directly depend on energy derived from sunlight. Instead, the Dark Reactions use the energy-rich molecules ATP and NADPH, which are produced during the Light Reactions, to power the conversion of carbon dioxide into organic compounds such as glucose. This process is also known as carbon fixation. Dark Reactions play a crucial role in the process of photosynthesis by converting carbon dioxide into organic compounds

To learn more about dark reactions, visit here:

https://brainly.com/question/11678433

#SPJ11

The removal of a keystone species from a community will initiate changes in that community's structure and typically results in __________.

Answers

The removal of a keystone species from a community will initiate changes in that community's structure and typically results in a reduction in diversity or collapse of community structure.

This is a kind of cascading effect or a domino effect, where other species are affected due to the absence of the keystone species. This can lead to significant changes in the ecosystem, such as a decline in biodiversity and changes in the food web.

An example of this is the intertidal sea star Pisaster ochraceous.  It is found in the northwestern United States. In a study, the sea stars were experimentally removed from the intertidal zone where they lived. As a result, populations of their prey (mussels) increased, altering the species composition of the community and sharply reducing species diversity. When the sea stars were present, about 25 species of barnacles and algae were found in the lower part of the intertidal zone, but when they were missing, the mussel population expanded downward and almost entirely replaced these other species.

Learn more about Keystone species here: https://brainly.com/question/30820453

#SPJ11

In a population of lizards that is in Hardy-Weinberg equilibrium, 4% exhibit the recessive phenotype for color pattern. The dominant allele (striped pattern) for this trait exhibits incomplete dominance over the recessive allele (spotted pattern). What is the frequency of the dominant allele in this population

Answers

The frequency of the dominant allele in this population is approximately 0.8.

To determine the frequency of the dominant allele in a population that is in Hardy-Weinberg equilibrium, we need to first find the frequency of the recessive allele. In this case, 4% (0.04) of the population exhibits the recessive phenotype for color pattern. Since the recessive phenotype is only expressed when an individual has two recessive alleles, we can represent this as q^2 = 0.04. To find the frequency of the recessive allele (q), we take the square root of 0.04, which is approximately 0.2.

Now that we have the frequency of the recessive allele, we can determine the frequency of the dominant allele (p) using the Hardy-Weinberg equation: p + q = 1. We substitute the value of q (0.2) into the equation: p + 0.2 = 1. Solving for p, we find that the frequency of the dominant allele in this population is approximately 0.8.

Learn more about allele here:

https://brainly.com/question/7602134

#SPJ11

If at a given moment a neuron receives more inhibitory messages than excitatory messages from its incoming synapses it will probably

Answers

If at a given moment a neuron receives more inhibitory messages than excitatory messages from its incoming synapses, it will probably not fire an action potential. This is because the net effect of inhibitory signals is to reduce the overall excitability of the neuron, making it less likely to fire.

Neurons integrate the signals they receive from multiple incoming synapses, both excitatory and inhibitory, before deciding whether to fire an action potential or not.

If the net effect of the incoming signals is excitatory and reaches a certain threshold, the neuron will depolarize and fire an action potential. However, if the net effect is inhibitory, the neuron will become more polarized and less likely to fire.

It is important to note that the balance of excitatory and inhibitory signals received by a neuron can change over time, depending on the activity of its incoming synapses.

Therefore, a neuron that is not firing an action potential at a given moment may still become active if the balance of incoming signals shifts towards excitatory input.

For more such answers on neurons

https://brainly.com/question/11538106

#SPJ11

Point mutations that occur in a population to any extent are referred to as Group of answer choices Transition mutation Missense mutation Silent mutations Nonsense mutation Single nucleotide polymorphisms

Answers

A nonsense mutation is a type of point mutation where a single nucleotide change results in the formation of a stop codon, leading to premature termination of protein synthesis.

Point mutations that occur in a population to any extent are referred to as single nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms are variations in the DNA sequence that involve a single nucleotide, such as a substitution of one nucleotide for another.

A transition mutation is a specific type of point mutation where a purine nucleotide (adenine or guanine) is substituted with another purine nucleotide, or a pyrimidine nucleotide (cytosine or thymine) is substituted with another pyrimidine nucleotide.

A missense mutation is a type of point mutation where a single nucleotide change results in a codon that codes for a different amino acid in a protein sequence.

A silent mutation is a type of point mutation where a single nucleotide change does not result in a change to the amino acid sequence of the protein.

A nonsense mutation is a type of point mutation where a single nucleotide change results in the formation of a stop codon, leading to premature termination of protein synthesis.

What is single nucleotide polymorphisms (SNPs)?

SNPs are the most common type of genetic variation in humans and are responsible for many differences in traits and disease susceptibility among individuals. The other options listed are specific types of point mutations:

To know more about the SNPs visit:

brainly.com/question/29022729

#SPJ11

The science of classifying organisms into an internationally shared classification system with each organism placed into increasingly more inclusive groupings is known as

Answers

The science of classifying organisms into an internationally shared classification system with each organism placed into increasingly more inclusive groupings is known as Taxonomy.

It is the basis of modern biological classification, and is an important tool for understanding the diversity of life on Earth. Taxonomy involves assigning each organism to a hierarchical group, known as a taxon, based on characteristics such as morphology, physiology, and genetics.

Each taxon is placed into increasingly more inclusive groupings, from the most specific to the most general. For example, a species may be placed into the family Canidae, which is then grouped within the larger order Carnivora, which is then placed in the more general class Mammalia.

know more about biological classification here

https://brainly.com/question/11136571#

#SPJ11

An example of a phenotypic trait that allows identification of the genetic variation coding for the phenotype is human:

Answers

An example of a phenotypic trait that allows identification of the genetic variation coding for the phenotype in humans is the

The ABO blood group system is determined by the presence or absence of specific antigens on the surface of red blood cells. The ABO gene, which codes for the enzymes responsible for the synthesis of these antigens, has three common alleles: A, B, and O. The A and B alleles produce different antigens, while the O allele produces none. The presence or absence of these antigens determines an individual's blood type (A, B, AB, or O).

Since the ABO blood group system is determined by a single gene with three common alleles, it is relatively simple to identify the genetic variation responsible for the phenotype. Genotyping can be performed to determine an individual's ABO genotype, allowing for the identification of the genetic variation coding for the phenotype.

Learn more about “ ABO blood group system.“ visit here;

https://brainly.com/question/19731989

#SPJ4

Products of the rough and smooth endoplasmic reticulum are packaged in the ______ and sent to other locations in the cell or cell membrane in ______.

Answers

The products of the rough and smooth endoplasmic reticulum are packaged in the Golgi apparatus and sent to other locations in the cell or cell membrane in vesicles.


1. Proteins and lipids are synthesized in the rough and smooth endoplasmic reticulum, respectively.
2. These products are transported to the Golgi apparatus in vesicles.
3. The Golgi apparatus modifies, sorts, and packages the products.
4. Finally, the packaged products are sent to their destinations within the cell or to the cell membrane in vesicles.

The Golgi apparatus is an organelle found in eukaryotic cells that is involved in processing, modifying, and packaging proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

To learn more about endoplasmic reticulum refer here:

https://brainly.com/question/13118914#

#SPJ11

arasympathetic preganglionic neurons release the neurotransmitter ________; sympathetic preganglionic neurons release the neurotra

Answers

Parasympathetic preganglionic neurons release the neurotransmitter acetylcholine; sympathetic preganglionic neurons release the neurotransmitter norepinephrine.

In the parasympathetic nervous system,  the neurotransmitter acetylcholine binds to nicotinic acetylcholine receptors, as a ligand-gated ion channel, on the postganglionic neurons. The actions of acetylcholine in the parasympathetic nervous system are generally opposite to those of the sympathetic nervous system, which uses norepinephrine as its primary neurotransmitter. While the sympathetic nervous system is responsible for the "fight or flight" response, the parasympathetic nervous system is responsible for the "rest and digest" response, promoting relaxation, digestion, and other functions that help conserve energy.

To learn more about neurotransmitter, visit here:

"parasympathetic preganglionic neurons release the neurotransmitter"   https://brainly.com/question/30325107

#SPJ11

Inhibitors of dihydrofolate (DHF) reductase (methotrexate, for example) are also often used in cancer treatment. The basis for their action is that

Answers

Inhibitors of dihydrofolate (DHF) reductase, such as methotrexate, are often used in cancer treatment due to their ability to target rapidly dividing cells. The basis for their action is that they interfere with the enzyme DHF reductase,

This enzyme plays a crucial role in the synthesis of nucleotides required for DNA replication. By inhibiting this enzyme, methotrexate and similar drugs disrupt the formation of tetrahydrofolate, a key molecule needed for the production of thymidine and purines. As a result, cancer cells are deprived of the necessary building blocks to replicate their DNA, ultimately leading to the inhibition of cell division and growth.

This selective action against rapidly dividing cells, such as cancer cells, allows these inhibitors to effectively target malignant tissues while causing minimal harm to healthy cells with slower rates of division. So therefore the basis for their action is interfere with the enzyme DHF reductase, such as methotrexate are often used in cancer treatment due to their ability to target rapidly dividing cells.

To learn more about synthesis of nucleotides here:

https://brainly.com/question/28222581

#SPJ11

The drug oligomycin inhibits ATP synthase by preventing protons from flowing through the enzyme. Oligomycin must bind to the __________ of ATP synthase.

Answers

Oligomycin binds specifically to the F0 subunit of ATP synthase, which forms the transmembrane channel through which protons flow, thus blocking the proton transport needed to generate ATP.

Oligomycin is an antibiotic that inhibits oxidative phosphorylation by targeting the ATP synthase enzyme. This enzyme is responsible for synthesizing ATP from ADP and inorganic phosphate (Pi) using the proton motive force generated by the electron transport chain. The F0 subunit consists of several components, including subunit a, which forms the channel, and subunits b, d, F6, and OSCP, which are involved in proton translocation and binding.

In summary, oligomycin inhibits ATP synthase by binding to the F0 subunit, specifically the interface between subunit a and subunit c, which prevents the flow of protons through the enzyme and thereby inhibits ATP synthesis.

To know more about Oligomycin:

https://brainly.com/question/21559239

#SPJ11

Plssss help 50pts and brainliest for whoever answers first and actually gets it right

Answers

Punnett squares are used to determine the offspring and parental genotypes and phenotypes. Assuming the simulation showed both phenotypes among the progeny, Flower C must be heterozygous Hh for the trait, expressing the dominant phenotype.

What is a Punnett square?

The Punnett square is a graphic representation that shows the different types of gamete combinations according to the alleles involved in a cross.

Punnett square shows the probabilities of getting offspring with different genotypes and their consequent phenotypes.

In the exposed example, we need to cross flower A (hh) with flower C. We have two options for flower C: HH or Hh.

Cross 1:

Parentals) hh   x   HH

Gametes) h   h    H    H

Punnett square)    h     h

                      H    Hh   Hh

                      H    Hh   Hh

F1) 100% of the progeny is expected to be heterozygous for the trait and express the dominant phenotype.

Cross 2:

Parentals) hh   x   Hh

Gametes) h   h    H    h

Punnett square)    h     h

                      H    Hh   Hh

                      h     hh   hh

F1) 50% of the progeny is expected to be heterozygous for the trait and express the dominant phenotype.

     50% of the progeny is expected to be homozygous recessive for the trait and express the recessive phenotype.

     

Let us assume in the simulation we observed the following numbers from the cross AxC (first generation)

20 individuals expressing the dominant trait (H-)10 individuals expressing the recessive trait (hh)

The two phenotypes were produced from this cross.

Knowing that parental A is homozygous recessive, hh (recessive phenotype) and parental C expresses the dominant phenotype (at least one dominant allele, H-), these results suggests that parental C must be heterozygous for the trait.

If this is the case, then parental C had 50% chances of transmitting a dominant allele H to the progeny and 50% chances of transmitting a recessive allele h.

The progeny had 50% chances of being homozygous recessive (hh) and 50% chances of being heterozygous (Hh). This is why both phenotypes appear among the offspring.

If parental C was homozygous dominant, then the whole progeny should be heterozygous and only express the dominant phenotype.

You can learn more about punnett squares at

https://brainly.com/question/25357981

#SPJ1

A particular mRNA is 300 nucleotides long. If a mutation in the middle of the sequence changed a codon from a AAA to a UAA then what would be a reasonable prediction

Answers

If a mutation occurs in the middle of a 300-nucleotide mRNA sequence, changing a codon from AAA to UAA, a reasonable prediction would be the introduction of a premature stop codon.

AAA codes for the amino acid lysine, whereas UAA is one of the three stop codons in the genetic code. Stop codons signal the end of translation, causing the ribosome to release the newly synthesized polypeptide chain.

This premature stop codon could lead to a truncated protein, as translation would terminate earlier than intended. Depending on the protein's function and structure, the truncation may affect its stability, folding, or ability to interact with other molecules. Consequently, this could result in loss of function or a dominant negative effect, potentially leading to various cellular or physiological abnormalities.

However, it is important to consider that not all mutations have drastic consequences. The effects of this specific mutation would ultimately depend on the protein's function and the importance of the lost amino acid sequence for its activity.

For more such questions on mutation, click on:

https://brainly.com/question/1593977

#SPJ11

what might you expect to find if you compared the development of embryos among the organisms using as activity

Answers

If we were to compare the development of embryos among different organisms, we would likely find a range of similarities and differences depending on the species being compared.

For example, some organisms may have a similar number and sequence of developmental stages, while others may have more unique or specialized developmental pathways. Additionally, we might observe differences in the timing of key developmental events, such as the formation of major organs or the onset of movement.

One interesting area of comparison might be the role of maternal factors in early embryonic development. In some species, embryos rely heavily on nutrients and signaling molecules provided by the mother for successful development, while in others the early embryo is more self-sufficient. Examining these differences could shed light on the evolution of maternal care and the interplay between genetic and environmental factors in development.

Overall, comparing the development of embryos across different organisms would likely reveal a wealth of fascinating insights into the diversity of life and the underlying mechanisms that drive embryonic development.

To know more about embryos, refer

https://brainly.com/question/2625384

#SPJ11

_______ is the the process that overcomes the problem of binocular disparity. It is the basis of stereopsis.

Answers

The process that overcomes the problem of binocular disparity and is the basis of stereopsis is called fusion. Fusion is the ability of the brain to merge slightly different images from each eye into a single, three-dimensional perception.

This process is critical for depth perception and allows us to accurately judge distances and navigate our environment. The brain achieves fusion by analyzing the differences between the images received by each eye and using this information to create a single, cohesive visual experience.

The process of fusion is complex and involves the integration of information from multiple brain regions, but it is a crucial component of our visual system and allows us to perceive the world in three dimensions.

The process that overcomes the problem of binocular disparity and serves as the basis of stereopsis is binocular fusion. This process enables the brain to merge the slightly different images from each eye into a single, three-dimensional perception, enhancing depth perception and allowing us to perceive the world around us more accurately.

To know more about binocular disparity, refer

https://brainly.com/question/28249382

#SPJ11

The achievable range of motion at a joint or group of joints without causing injury is referred to as

Answers

The achievable range of motion at a joint or group of joints without causing injury is referred to as the "safe range of motion" or "functional range of motion."

Safe range of motion or functional range of motion is the range within which your joints can comfortably and safely move without the risk of injury or damage to the surrounding tissues. This range varies depending on an individual's level of flexibility, strength, and any underlying medical conditions or injuries. It is important to stay within this safe range during exercise or physical activity to avoid injury and promote optimal joint health.

Learn more about achievable range of motion: https://brainly.com/question/31226378

#SPJ11

A thin, triangular space filled with CSF that lies between the anterior horn of the lateral ventricles is:

Answers

The thin, triangular space filled with CSF that lies between the anterior horn of the lateral ventricles is called the interventricular foramen, also known as the foramen of Monro. This opening allows for the flow of CSF between the lateral ventricles and the third ventricle in the brain.

It is an important pathway for the regulation of CSF pressure and volume, as well as the exchange of nutrients and waste products between the brain and the rest of the body. Dysfunction of this pathway can lead to various neurological disorders, such as hydrocephalus, which is the buildup of CSF within the brain. Overall, the interventricular foramen plays a critical role in maintaining proper brain function and health.

Learn more about ventricles here:

https://brainly.com/question/29564818

#SPJ11

Suppose that a dinosaur's body was not preserved in a way that produced a fossil; however, some of its footprints made during its life were preserved. These are considered what type of fossil

Answers

The footprints made by a dinosaur during its life are considered trace fossils.

Trace fossils are the remains of an organism's activity, such as footprints, burrows, or feces, rather than the remains of the organism's body itself. Although the dinosaur's body was not preserved in a way that produced a fossil, its footprints left behind a record of its existence and activity.

These footprints were then preserved over time and can now be studied by paleontologists to learn more about the dinosaur's behavior and habitat. Trace fossils provide valuable information about the behavior and movements of ancient organisms.

To learn more about fossil fuels visit:

https://brainly.com/question/29770775

#SPJ11

0. The rhomboid major and minor muscles are deep to the ________. a. rectus abdominis b. scalene muscles c. trapezius d. ligamentum nuchae

Answers

Answer: Trapezius

Explanation:

RNA interference (RNAi): A) aborts translation of the principal open reading frame because of the presence of a smaller open reading frame upstream in the mRNA. B) initiates the lytic cycle of the bacteriophage  Cactivates transcription in yeast cells. D) affects alternative splicing in eukaryotes. E) triggers degradation of RNA transcripts containing homologous sequences.

Answers

RNA interference (RNAi)  E) triggers degradation of RNA transcripts containing homologous sequences.

RNA interference is a biological process in which RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), inhibit gene expression by neutralizing targeted mRNA molecules.

In this process, the RNA-induced silencing complex (RISC) identifies and binds to the target mRNA transcript based on the homologous sequence with the siRNA or miRNA. The mRNA transcript is then cleaved or blocked, leading to its degradation or the prevention of translation, respectively. This mechanism plays a crucial role in gene regulation, defending against viral infections, and maintaining genome stability in eukaryotic organisms.

Learn more about gene here:

https://brainly.com/question/8832859

#SPJ11

During cellular respiration, the maximum theoretical number of ATPs generated per cell is 30 in skeletal muscle. How many ATP is generated through anaerobic respiration?

Answers

Through anaerobic respiration, the maximum theoretical number of ATP generated per cell is only 2.

This is because anaerobic respiration only involves glycolysis, which produces a net gain of 2 ATP molecules. This process occurs in the absence of oxygen, so it is not as efficient as aerobic respiration, which occurs in the presence of oxygen and yields a maximum of 30 ATP molecules.

However, anaerobic respiration is important in situations where there is a lack of oxygen, such as during intense exercise when the demand for ATP is high. In these cases, the body relies on anaerobic respiration to produce ATP quickly.

To know more about ATP visit:

https://brainly.com/question/29775075

#SPJ11

Briefly describe the microstructure of wood with regard to the various cell types that comprise the material. Explain the principal differences in cellular microstructure between hardwood and softwood.

Answers

The microstructure of wood is primarily composed of various cell types, which are organized in a cellular pattern. The three main cell types in wood are:

1. Tracheids: These are elongated cells that provide both structural support and water transport in the wood.
2. Vessel elements: These cells are primarily found in hardwoods and form the water-conducting vessels.
3. Fibers: These cells provide additional strength and support to the wood.

In hardwood, the cellular microstructure is characterized by the presence of vessel elements that form a network of vessels, providing efficient water transport. Hardwood also contains a higher proportion of fibers, which contributes to its increased strength and density compared to softwood.

On the other hand, softwood lacks vessel elements and relies solely on tracheids for both structural support and water transport. As a result, the cellular microstructure of softwood is more uniform and less complex compared to hardwood.

In summary, the microstructure of wood is made up of various cell types arranged in a cellular pattern. The principal differences in cellular microstructure between hardwood and softwood lie in the presence of vessel elements and the proportion of fibers, which contribute to the unique properties of each wood type.

Learn more about :

Tracheids : brainly.com/question/15302827

#SPJ11

Detritus is composed of _____. detritivores dead organic matter inorganic minerals excreted wastes dead organic matter and excreted wastes

Answers

Detritus is composed of dead organic matter and excreted wastes.

Detritivores are organisms that feed on detritus, breaking it down into smaller particles and decomposing it further into inorganic minerals. The decomposition process releases nutrients into the ecosystem that can be utilized by primary producers like plants. Without the action of detritivores, dead organic matter would accumulate, and the ecosystem would become choked with debris. Detritivores play a critical role in maintaining the balance of ecosystems, and the detritus they consume serves as an important food source for many other organisms, including scavengers and decomposers.

To know more about Detritus :

https://brainly.com/question/30436510

#SPJ11

Final answer:

Detritus is composed of dead organic matter and excreted wastes. It is part of the detrital food web, where it is consumed and recycled back into the ecosystem by decomposers and detritivores.

Explanation:

Detritus is composed of dead organic matter and excreted wastes. This term is often associated with the detrital food web within ecosystems. A detrital food web includes organisms that feed on decaying organic matter (dead organisms), commonly known as decomposers, and detritivores. These are usually microorganisms like bacteria or fungi that recycle organic material back into the active part of the ecosystem as they are consumed by other organisms. An example of this can be seen in a meadow ecosystem, where plants may support a grazing food web of other organisms and consumers, while simultaneously supporting a detrital food web of bacteria, fungi, and detritivorous invertebrates feeding off dead plants and animals. Thus, all ecosystems require a method to recycle material from dead organisms, and most grazing food webs have an associated detrital food web.

Learn more about Detritus here:

https://brainly.com/question/34706411

#SPJ6

In harsh and unpredictable environments, the odds of survival of any individual offspring are generally quite __________. Hence, under these conditions, selection usually favors life-history strategies that are ________ and produce ____________ offspring.

Answers

In harsh and unpredictable environments, the odds of survival of any individual offspring are generally quite low. Hence, under these conditions, selection usually favors life-history strategies that are short-lived and produce undeveloped offspring.

The environment in which a person lives, or the harshness of the environment, can be assessed, for instance, by the local mortality rate and the accessibility of resources. The level of unpredictable variability in the results of adaptively significant behavior is referred to as the environment's unpredictableness.

In general, an environment that makes survival difficult or impossible might be said to as harsh. It is possible to classify as difficult settings for humans the -70°C of Russian Siberia and the 57°C of the Sahara Desert.

learn more about unpredictable environment:

https://brainly.com/question/30278229

#SPJ4

The olfactory (I) nerves consist of approximately 40 bundles of axons of olfactory neurons that extend through foramina in the cribriform plate of the _____ bone.

Answers

The olfactory (I) nerves consist of approximately 40 bundles of axons of olfactory neurons that extend through foramina in the cribriform plate of the ethmoid bone.

The ethmoid bone is located at the front of the skull, between the eye sockets, and forms the roof of the nasal cavity. As air flows through the nasal passages, odor molecules bind to receptors on the cilia of the olfactory neurons, triggering a nerve impulse that is transmitted to the olfactory bulbs in the brain via the olfactory nerves. The olfactory system is important for our ability to detect and differentiate between a wide range of odors, which can have important implications for our health, safety, and quality of life.

Learn more about molecules ,

https://brainly.com/question/19922822

#SPJ4

In the late Devonian era, the seas began to recede and the land became more fertile. These environmental changes resulted in the emergence of land-dwelling vertebrates. Some animals are better able to survive and reproduce under changing environmental conditions. This is an example of:

Answers

It is accurate to say that natural selection occurs. Terrestrial vertebrates first appeared at the end of the Devonian period. Ammonites, bony fish, and sharks all made their initial appearances as the oceans prospered.

The first true forests, amphibians, and insects all emerged at this time, and it was also the time when life on land truly began to take root. The Late Devonian mass extinction led to a dramatic decline in biodiversity and a "floral crisis" among land plants. Global marine ecosystems underwent a lasting transformation as a result of the destruction of Devonian-style reefs. It's unclear what led to these extinctions. Leading theories include the possibility that oceanic volcanism or global cooling will cause changes in sea level and ocean anoxia.

To know more about natural selection, click here:

https://brainly.com/question/2725702

#SPJ4

In the late Devonian era, the seas began to recede and the land became more fertile. These environmental changes resulted in the emergence of land-dwelling vertebrates. Some animals are better able to survive and reproduce under changing environmental conditions. This is an example of ______.

why was blending inheritance a problem for Darwin's theory of evolution by natural selection

Answers

Blending inheritance was a problem for Darwin's theory of evolution by natural selection because it suggested that the traits of offspring were a uniform average of the traits of their parents.

In other words, if one parent had a trait that was advantageous for survival and reproduction, and the other parent did not, the offspring would have an intermediate level of that trait that was less advantageous than the original parent. This would make it difficult for natural selection to act on traits and for advantageous traits to spread through a population over time.

However, the rediscovery of Mendelian genetics in the early 20th century helped to resolve this issue by showing that traits are inherited as discrete units, or genes, rather than as blended averages of parental traits. According to Mendelian genetics, each parent contributes one copy of each gene to their offspring, and the offspring's traits are determined by the combination of these genes.

This allowed for natural selection to act on traits more effectively, as advantageous traits could be inherited by offspring in a non-blended manner and could spread more quickly through a population. This helped to provide a stronger scientific basis for Darwin's theory of evolution by natural selection and led to a better understanding of how traits are inherited and how populations evolve over time.

Learn more about “ Mendelian genetics “ visit here;

https://brainly.com/question/31142921

#SPJ4

Complete Question

Why was blending inheritance a problem for Darwin's theory of evolution by natural selection, and how did the rediscovery of Mendelian genetics help to resolve this issue?

Lee Hartwell won the Nobel Prize in Medicine, in part for his cdc screen in budding yeast. His primary screen was to identify temperature sensitive allele of genes that were essential. What was his secondary screen

Answers

Hartwell's secondary screen was to identify the genes affected by these temperature sensitive alleles. He used a two-hybrid method to identify interactions between proteins and other genes.

This approach identified genes that were involved in the same pathways as the temperature sensitive alleles, and could provide clues to the cellular processes that were disrupted at different temperatures.

This approach also allowed him to identify many genes that were essential for the cell to function, thus providing a powerful tool for further studies of gene regulation and function.

Know more about alleles here

https://brainly.com/question/14206531#

#SPJ11

Other Questions
what is the return on investment if you buy 250 shares of stock for $5000 and sell it one year later for $5500? what is the return in dollar value? what is the percentage return? Which Windows component prompts the user for credentials or permission to protect against unauthorized activities, such as an unintended software installation A 100% rise time should be as small as possible and no greater than 3 s. How can the given criteria be satisfied Explain how the Tracert command help identifying problems within the scope of a private network or if the problem is external How do neurons of the vascular organ of the lamina terminalis (OVLT) respond when the blood becomes hypertonic Leases can end in several key ways. Mutual agreement and eviction are two. What is another way that a lease can terminate? After 1965, American involvement in Vietnam expanded and men throughout the country were drafted overseas. What was the reaction to the draft on the home front Select number of permutations to be equal to 10,000. Then, click on Generate Permutations. Make sure that the correct alternative hypothesis is selected. What is the p-value Which of the following is true of firms that implement a MRP system? Group of answer choices They can often increase their inventory. They are not efficient in responding to customer demands. They can price their products competitively. They use TQM as a subapproach to MRP. Drug problems among workers is costing the U.S. economy upwards of ________ in lost work, health care costs, and even crime and accidents. A longitudinal research study that followed 430 elementary schoolchildren from the third grade to the fifth grade and tracked their use of verbal, relational, and physical aggression found: Personality disorders can be classified into three clusters. One cluster expresses anxiety and such a strong fear of rejection that it predisposes them to withdraw from society. This describes the Lee takes a goal-centered, team approach, integrating production and people concerns in a mutually reinforcing effort where all behaviors enhance each other. Where does Lee fall within the managerial grid The similarity of the embryos of chickens and humans is evidence of ________. artificial selection genetic drift common ancestry decreased genetic variation Income received from partnership investments is characterized under the tax code as: A earned income The artists in the Modern Woodcut Movement took advantage of the reproducibility of print technology. What is an irrelevant statement about reproducibility In a model based on a weakly dependent time series with serial correlation and strictly exogenous explanatory variables, _____. What are the symbol transmission rate, Rs, in giga symbols per-second (GSps), needed medium bandwidth, W, in GHz, and application data rate, Rb, in Gbps Differences in human capital can help to explain: differences in wages of workers over time. differences in wages among workers with the same skills and education. differences in wages among workers within a country. differences in wages between workers in different countries. What is the significance of using the scientific method Explain with examples for class Nine 9