Complete question:
A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.
Answer:
The tension on the rope is 1.95 N
Explanation:
The general equation of a progressive wave is given as;
[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]
Compare the given equation with the general equation of wave, the following parameters will be deduced.
A = 0.75 cm
k = 0.400π cm⁻¹
ω = 250π s⁻¹
The frequency of the wave is calculated as;
ω = 2πf
2πf = 250π
2f = 250
f = 250/2
f = 125 Hz
The wavelength of the wave is calculated as;
[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]
The velocity of the wave is calculated as;
v = fλ
v = 125 x 0.05
v = 6.25 m/s
The tension on the rope is calculated as;
[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]
Therefore, the tension on the rope is 1.95 N
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
A 0.060 kg ball hits the ground with a speed of –32 m/s. The ball is in contact with the ground for 45 milliseconds and the ground exerts a +55 N force on the ball.
What is the magnitude of the velocity after it hits the ground?
Answer:
9.25 m/s
Explanation:
Could you show detailed steps in how to solve this problem please
Answer: See attached pic. Hope this helps.
Explanation:
If I could lift up to ten tons and I threw a ball the size of an orange but weighed a ton, to the ground, how big of an impact would it make? And could you also show me the equation to solve similar problems myself. Thank you.
Answer:
The impact force is 98000 N.
Explanation:
mass = 10 tons
The impact force is the weight of the object.
Weight =mass x gravity
W = 10 x 1000 x 9.8
W = 98000 N
The impact force is 98000 N.
In the figure, particle A moves along the line y = 31 m with a constant velocity v with arrow of magnitude 2.8 m/s and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with zero initial speed and constant acceleration a with arrow of magnitude 0.35 m/s2. What angle between a with arrow and the positive direction of the y axis would result in a collision?
Answer:
59.26°
Explanation:
Since a is the acceleration of the particle B, the horizontal component of acceleration is a" = asinθ and the vertical component is a' = acosθ where θ angle between a with arrow and the positive direction of the y axis.
Now, for particle B to collide with particle A, it must move vertically the distance between A and B which is y = 31 m in time, t.
Using y = ut + 1/2a't² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a' = vertical component of particle B's acceleration = acosθ.
So, y = ut + 1/2a't²
y = 0 × t + 1/2(acosθ)t²
y = 0 + 1/2(acosθ)t²
y = 1/2(acosθ)t² (1)
Also, both particles must move the same horizontal distance to collide in time, t.
Let x be the horizontal distance,
x = vt (2)where v = velocity of particle A = 2.8 m/s and t = time for collision
Also, using x = ut + 1/2a"t² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a" = horizontal component of particle B's acceleration = asinθ.
So, x = ut + 1/2a"t²
x = 0 × t + 1/2(ainsθ)t²
x = 0 + 1/2(asinθ)t²
x = 1/2(asinθ)t² (3)
Equating (2) and (3), we have
vt = 1/2(asinθ)t² (4)
From (1) t = √[2y/(acosθ)]
Substituting t into (4), we have
v√[2y/(acosθ)] = 1/2(asinθ)(√[2y/(acosθ)])²
v√[2y/(acosθ)] = 1/2(asinθ)(2y/(acosθ)
v√[2y/(acosθ)] = ytanθ
√[2y/(acosθ)] = ytanθ/v
squaring both sides, we have
(√[2y/(acosθ)])² = (ytanθ/v)²
2y/acosθ = (ytanθ/v)²
2y/acosθ = y²tan²θ/v²
2/acosθ = ytan²θ/v²
1/cosθ = aytan²θ/2v²
Since 1/cosθ = secθ = √(1 + tan²θ) ⇒ sec²θ = 1 + tan²θ ⇒ tan²θ = sec²θ - 1
secθ = ay(sec²θ - 1)/2v²
2v²secθ = aysec²θ - ay
aysec²θ - 2v²secθ - ay = 0
Let secθ = p
ayp² - 2v²p - ay = 0
Substituting the values of a = 0.35 m/s, y = 31 m and v = 2.8 m/s into the equation, we have
ayp² - 2v²p - ay = 0
0.35 × 31p² - 2 × 2.8²p - 0.35 × 31 = 0
10.85p² - 15.68p - 10.85 = 0
dividing through by 10.85, we have
p² - 1.445p - 1 = 0
Using the quadratic formula to find p,
[tex]p = \frac{-(-1.445) +/- \sqrt{(-1.445)^{2} - 4 X 1 X (-1)}}{2 X 1} \\p = \frac{1.445 +/- \sqrt{2.088 + 4}}{2} \\p = \frac{1.445 +/- \sqrt{6.088}}{2} \\p = \frac{1.445 +/- 2.4675}{2} \\p = \frac{1.445 + 2.4675}{2} or p = \frac{1.445 - 2.4675}{2} \\p = \frac{3.9125}{2} or p = \frac{-1.0225}{2} \\p = 1.95625 or -0.51125[/tex]
Since p = secθ
secθ = 1.95625 or secθ = -0.51125
cosθ = 1/1.95625 or cosθ = 1/-0.51125
cosθ = 0.5112 or cosθ = -1.9956
Since -1 ≤ cosθ ≤ 1 we ignore the second value since it is less than -1.
So, cosθ = 0.5112
θ = cos⁻¹(0.5112)
θ = 59.26°
So, the angle between a with arrow and the positive direction of the y axis would result in a collision is 59.26°.
a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration
Answer:
0
Explanation:
a = dv/dt
if v is constant than the slope of the v graph will be 0, so dv/dt is 0
a= 0
If the cornea is reshaped (this can be surgically done or with contact lenses) to correct myopia, should its curvature be made greater or smaller? Explain. Also, explain how hyperopia can be corrected?
Answer:
Myopia curvature of the cornea if it is negative the curvatures are positive,
hypermetry,
Explanation:
Myopia is the visual defect that does not allow to see distant objects, which is why it is corrected with a divergent lens so that the image is formed on the retina, therefore, by reforming the curvature of the cornea if it is negative
therefore the curvature must decrease
To correct hypermetry, the curvatures are positive, consequently the curvature of the lens must increase
A frictionless piston-cylinder device contains 10 kg of superheated vapor at 550 kPa and 340oC. Steam is then cooled at constant pressure until 60 percent of it, by mass, condenses. Determine (a) the work (W) done during the process. (b) What-if Scenario: What would the work done be if steam were cooled at constant pressure until 80 percent of it, by mass, condenses
Answer:
a) the work (W) done during the process is -2043.25 kJ
b) the work (W) done during the process is -2418.96 kJ
Explanation:
Given the data in the question;
mass of water vapor m = 10 kg
initial pressure P₁ = 550 kPa
Initial temperature T₁ = 340 °C
steam cooled at constant pressure until 60 percent of it, by mass, condenses; x = 100% - 60% = 40% = 0.4
from superheated steam table
specific volume v₁ = 0.5092 m³/kg
so the properties of steam at p₂ = 550 kPa, and dryness fraction
x = 0.4
specific volume v₂ = v[tex]_f[/tex] + xv[tex]_{fg[/tex]
v₂ = 0.001097 + 0.4( 0.34261 - 0.001097 )
v₂ = 0.1377 m³/kg
Now, work done during the process;
W = mP₁( v₂ - v₁ )
W = 10 × 550( 0.1377 - 0.5092 )
W = 5500 × -0.3715
W = -2043.25 kJ
Therefore, the work (W) done during the process is -2043.25 kJ
( The negative, indicates work is done on the system )
b)
What would the work done be if steam were cooled at constant pressure until 80 percent of it, by mass, condenses
x₂ = 100% - 80% = 20% = 0.2
specific volume v₂ = v[tex]_f[/tex] + x₂v[tex]_{fg[/tex]
v₂ = 0.001097 + 0.2( 0.34261 - 0.001097 )
v₂ = 0.06939 m³/kg
Now, work done during the process will be;
W = mP₁( v₂ - v₁ )
W = 10 × 550( 0.06939 - 0.5092 )
W = 5500 × -0.43981
W = -2418.96 kJ
Therefore, the work (W) done during the process is -2418.96 kJ
If there are no other changes, explain what effect reducing the mass of the car will have on its acceleration when starting to move.
Answer:
when the mass of an object is decreased, the acceleration will increase
when mass is increased, acceleration decreases
a certain projetor uses a concave mirror for projecting an object's image on a screen .it produces on image that is 4 times bigger than the object and the screen is 5 m away from the mirror as shown in fig 5.2, calculate the focal length of the mirror.
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:
[tex]M = \frac{q}{p}[/tex]
where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,
[tex]4 = \frac{5\ m}{p}\\\\p = \frac{5\ m}{4}\\\\p = 1.25\ m[/tex]
Now using thin lens formula:
[tex]\frac{1}{f}=\frac{1}{p}+\frac{1}{q}\\\\\frac{1}{f} = \frac{1}{1.25\ m}+\frac{1}{5\ m}\\\\\frac{1}{f} = 1\ m^{-1}\\\\[/tex]
f = 1 m
A coin and feather are dropped in a moon. what will fall earlier on ground.give reasons.if they are dropped in the earth,which one will fall faster
Answer:
on the moon, they will fall at the timeon earth, the coin will fall faster to the groundExplanation:
A coin and feather dropped in a moon experience the same acceleration due to gravity as small as 1.625 m/s², and because of the absence of air resistance both will fall at the same rate to the ground.
If the same coin and feather are dropped in the earth, they will experience the same acceleration due to gravity of 9.81 m/s² and because of the presence of air resistance, the heavier object (coin) will be pulled faster to the ground by gravity than the lighter object (feather).
Consider a tall building of height 200.0 m. A stone A is dropped from the top (from the cornice of the building). One second later another stone B is thrown vertically up from the point on the ground just below the point from where stone A is dropped.Birthstones meet at half the height of the tower. (a) Find the initial velocity of vertical throw of stone B.(b) Find the velocities of A and B, just before they meet.
Answer:
a) v₀ = 44.27 m / s, b) stone A v = 44.276 m / s, stone B v = 0.006 m / s
Explanation:
a) This is a kinematics exercise, let's start by finding the time it takes for stone A to reach half the height of the building y = 100 m
y = y₀ + v₀ t - ½ gt²
as the stone is released its initial velocity is zero
y- y₀ = 0 - ½ g t²
t = [tex]\sqrt{ -2(y-y_o)/g}[/tex]
t = [tex]\sqrt{ -2(100-200)/9.8}[/tex]
t = 4.518 s
now we can find the initial velocity of stone B to reach this height at the same time
y = y₀ + v₀ t - ½ g t²
stone B leaves the floor so its initial height is zero
100 = 0 + v₀ 4.518 - ½ 9.8 4.518²
100 = 4.518 v₀ - 100.02
v₀ = [tex]\frac{100-100.02}{4.518}[/tex]
v₀ = 44.27 m / s
b) the speed of the two stones at the meeting point
stone A
v = v₀ - gt
v = 0 - 9.8 4.518
v = 44.276 m / s
stone B
v = v₀ -g t
v = 44.27 - 9.8 4.518
v = 0.006 m / s
If the source moves, the wavelength of the sound in front of the direction of motion is____than the wavelength behind the direction of motion.
a. the same.
b. smaller than.
c. unrealted to.
d. larger then.
Answer:
B. Smaller than
Explanation:
This question is from the Doppler effect. As the object which is in motion goes off from the other, there's a reduction in the frequency. This is due to the fact that successive soundwave get to be longer. So that the pitch will then be lowered. When the person observing moves towards what is making the sound, each soundwave that follows gets faster than the previous.
At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.58 g
Answer:
w = 1,066 rad / s
Explanation:
For this exercise we use Newton's second law
F = m a
the centripetal acceleration is
a = w² r
indicate that the force is the mass of the body times the acceleration
F = m 0.58g = m 0.58 9.8
F = 5.684 m
we substitute
5.684 m = m w² r
w = [tex]\sqrt{5.684/r}[/tex]
To finish the calculation we must suppose a cylinder radius, suppose it has r = 5 m
w = [tex]\sqrt{ 5.684/5}[/tex]
w = 1,066 rad / s
The primary coil in a transformer has 250 turns; the secondary coil has 500. Which is correct?
a. This is a step-down transformer.
b. The voltage in the secondary coil will be higher than in the primary.
c. The power in the secondary coil is greater.
d. The power in the primary coil is greater.
Explanation:
option b is the correct one
Images formed by a convex mirror are always
Answer:
Images formed by a convex mirror are always virtual
Explanation:
A virtual image is always created by a convex mirror, and it is always situated behind the mirror. The picture is vertical and situated at the focus point when the item is far away from the mirror. As the thing approaches the mirror, the image follows suit and increases until it reaches the same height as the object.
OAmalOHopeO
A cable is lifting a construction worker and a crate, as the drawing shows. The weights of the worker and crate are 965 and 1510 N, respectively. The acceleration of the cable is 0.620 m s 2 , upward. What is the tension in the cable (a) below the worker and ( b) above the worker
Answer:
Explanation:
a)
Below the worker , the tension in cable is pulling the crate . Let the tension be T₁ .
weight of crate is acting downwards .
Total weight 1510 N.
Net force acting on both = T₁ - 1510
Applying second law of Newton ,
T₁ - 1510 = 1510 / 9.8 x 0.62 [ 1510 / 9.8 = mass of crate ]
T₁ - 1510 = 95.5
T₁ = 1605.5 N.
b )
Above the worker , the tension in cable is pulling both the worker and the crate . Let the tension be T₂ .
weight of both worker and crate is acting downwards .
Total weight = 965 + 1510 = 2475 N.
Net force acting on both = T₂ - 2475
Applying second law of Newton ,
T₂ - 2475 = 2475 / 9.8 x 0.62 [ 2475 / 9.8 = mass of both worker and crate ]
T₂ - 2475 = 156.6
T₂ = 2631.6 N.
A ball has a mass of 4.65kg and approximates a ping pong ball of mass 0.060kg that is at rest by striking it in an elastic collision. The initial velocity of the bowling ball is 5.00m/s, determine the final velocities of both masses after the collision.
Answer:
Look at work
Explanation:
Elastic Collision: Ki=Kf
M1=4.65kg
M2: 0.060kg
v1=5m/s
v2=0m/s
4.65*5+0.060*0=4.65*v1'+0.060*v2'
23.25+0=4.65v1'+0.060v2'
Also since it is an elastic collision we can use
v1+v1'=v2+v2'
4.65+v1'=v2'
4.65+v1'=v2'
Substitute into the earlier equation
23.25=4.65v1'+0.060(4.65+v1')
Expand
23.25=4.65v1'+0.279+0.06v1'
Solve for v1'
22.971=4.71v1'
v1'=4.88m/s
v2'=4.65+4.88=9.53m/s
If an object travels on a circular path is an acceleration? What is changing to cause an acceleration?
The cannon on a battleship can fire a shell a maximum distance of 33.0 km.
(a) Calculate the initial velocity of the shell.
Answer:
v = 804.23 m/s
Explanation:
Given that,
The maximum distance covered by a cannon, d = 33 km = 33000 m
We need to find the initial velocity of the shell. Let it is v. It can be calculated using the conservation of energy such that,
[tex]v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 33000} \\\\v=804.23\ m/s[/tex]
So, the initial velocity of the shell is 804.23 m/s.
How are Newton’s 1 and 2 law related?
A 2.90 m segment of wire supplying current to the motor of a submerged submarine carries 1400 A and feels a 2.00 N repulsive force from a parallel wire 4.50 cm away. What is the direction and magnitude (in A) of the current in the other wire? magnitude A direction
Answer:
[tex]I_2=30.9A[/tex]
Explanation:
From the question we are told that:
Wire segment [tex]l_s=2.9m[/tex]
Initial Current [tex]I_1=1400A[/tex]
Force [tex]F=2.00N[/tex]
Distance of Wire [tex]d=4.50cm=>0.0450m[/tex]
Generally the equation for Force is mathematically given by
[tex]F=\frac{\mu_0 * I_1*I_2*l_s}{2 \pi *r}[/tex]
[tex]F=\frac{4 \pi*10^{-7} *1400 I*I_2*2.9}{2 \pi *0.0450}[/tex]
[tex]I_2=\frac{22.5*10^-2}{2*10^{-7}*1400*2.6}[/tex]
[tex]I_2=30.9A[/tex]
Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
A black T-shirt is warmer in the summertime than a white T-shirt because the black T-shirt
A. Is reflecting all wavelengths of light.
B. Absorbs violet light, the highest energy wavelength.
C. Is absorbing all wavelengths of light. D. Doesn’t absorb red, the longest wavelength.
Answer:
c
Explanation:
darker colors absorb app light
Answer:
C. Is absorbing all wavelengths of light.
Explanation:
Black isn't a color, but rather the absence of color. We see a T-shirt as black because it isn't reflecting any light toward our eyes. A black T-shirt absorbs all of the wavelengths of light, causing it to absorb more energy and become warmer than white, which reflects light.
Warm air rises because faster moving molecules tend to move to regions of less
A) density.
B) pressure.
C) both of these
D) none of the above
Answer:
76rsfy7zfyuutfzufyztudzutdT7dFy9y8fr6s
Explanation:
rshyyjfshfsgfshfsyhrsyhuydtufhr6ra6yris7toe7r9w7rr6w996ryrowosotusuogsuoufsutot
describe the cause of earth's magnetism ?
crushing chalk into powder is and irreversible change. is this example a physical or chemical change?Why?
Answer:
It is a example of physical change
Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of 2 m/s, exactly how fast (in m2/s) is the area of the spill increasing when the radius is 39 m?
Explanation:
The area of a circle of radius r is given by
[tex]A = \pi r^2[/tex]
Taking the derivative of A with respect to time t, we get
[tex]\dfrac{dA}{dt} = 2\pi r \dfrac{dr}{dt}[/tex]
We also know that
[tex]\dfrac{dr}{dt} = 2\:\text{m/s}\:\text{at}\:r = 39\:\text{m}[/tex]
[tex]\dfrac{dA}{dt} = 2\pi (39\:\text{m})(2\:\text{m/s})= 490\:\text{m}^2\text{/s}[/tex]
А pressure gauge with a measurement range of 0-10 bar has a quoted inaccuracy of £1.0% f.s. (+1% of full-scale reading). (a) What is the maximum measurement error expected for this instrument? (b) What is the likely measurement error expressed as a percentage of the or reading if this pressure gauge is measuring a pressure of 1 bar?
Answer:
I am not able to answer this question please don't mind...Explanation:
please marks me as brainliests...A moderate wind accelerates a pebble over a horizontal xy plane with a constant acceleration a with arrow = (4.60 m/s2)i hat + (7.00 m/s2)j. At time t = 0, the velocity is (4.3 m/s)i hat. What are magnitude and angle of its velocity when it has been displaced by 11.0 m parallel to the x axis?
Explanation:
Given
Acceleration of the pebble is
At t=0, velocity is
considering horizontal motion
[tex]\Rightarrow x=ut+0.5at^2 \\\Rightarrow 11=4.3t+0.5(4.6)t^2\\\Rightarrow 2.3t^2+4.3t-11=0\\\Rightarrow (t-1.4435)(t+3.3131)=0\\\Rightarrow t=1.44\ s\quad [\text{Neglecting negative time}]\\[/tex]
Velocity acquired during this time
[tex]\Rightarrow v_x=4.3+4.6\times 1.44\\\Rightarrow v_x=4.3+6.624\\\Rightarrow v_x=10.92\ s[/tex]
Consider vertical motion
[tex]\Rightarrow v_y=0+7(1.44)\\\Rightarrow v_y=10.08\ m/s[/tex]
Net velocity is
[tex]\Rightarrow v=\sqrt{10.92^2+10.08^2}\\\Rightarrow v=\sqrt{220.85}\\\Rightarrow v=14.86\ m/s[/tex]
Angle made is
[tex]\Rightarrow \tan \theta =\dfrac{10.08}{10.92}\\\\\Rightarrow \tan \theta =0.92307\\\\\Rightarrow \theta =42.7^{\circ}[/tex]