Answer:
a. difference of means
Step-by-step explanation:
Given that :
Mean , x = 9.4
Standard deviation, [tex]s.d_1[/tex] = 2.5
Number, [tex]n_1[/tex] = 12
Mean, y = 6.5
standard deviation, [tex]s.d_2[/tex] = 2.4
Number, [tex]n_2[/tex] = 12
The null hypothesis is : [tex]$H_0: \mu_1=\mu_2$[/tex]
The alternate hypothesis is : [tex]$H_1: \mu_1>\mu_2$[/tex]
Level of significance, [tex]\alpha[/tex] = 0.1
From the [tex]\text{standard normal table, right tailed,}[/tex] [tex]$t_{1/2}$[/tex] = 1.363
Since out test is right tailed.
Reject [tex]H_0[/tex], if [tex]$T_0>1.363$[/tex]
We use the test statics,
[tex]$t_0=\frac{(x-y)}{\sqrt{\frac{s.d_1}{n_1}+\frac{s.d_2}{n_2}}}$[/tex]
[tex]$t_0=\frac{(9.4-6.5)}{\sqrt{\frac{6.25}{12}+\frac{5.76}{12}}}$[/tex]
[tex]$t_0=2.899$[/tex]
[tex]$|t_0|=2.899$[/tex]
[tex]\text{Critical value}[/tex]
The value of [tex]$|t_{1/2}|$[/tex] with minimum [tex]$\left(n_1-1,n_2-1)$[/tex] that is 11 df is 1.363
We go [tex]$|t_0|=2.899$[/tex] and [tex]$|t_{1/2}|$[/tex] = 1.363
Decision making:
Since the value of [tex]|t_0|>|t_{1/2}|$[/tex] and we reject the [tex]H_0[/tex]
The p-value : right tail [tex]H_a:(p>2.8988)[/tex]
= 0.00724
Therefore the value of [tex]$p_{0.1} > 0.00724$[/tex], and so we reject the [tex]H_0[/tex]
Thus we are testing 'the difference of means" in this problem.
3/8 + 1/4 + 1/2 - 2/3 =
Answer:
[tex]\frac{11}{24}[/tex]
Step-by-step explanation:
3/8 + 1/4 + 1/2 - 2/3
- > 1/4 = 2/8
3/8 + 2/8 + 1/2 - 2/3
5/8 + 1/2 - 2/3
- > 1/2 = 4/8
5/8 + 4/8 - 2/3
9/8 - 2/3
- > LCM of 8,3: 24
- > 9/8 = 27/24
- > 2/3 = 16/24
27/24 - 16/24
11/24
Hope this helps you.
What are the solutions of the quadratic equation 49x2 = 9?
A. x = 1/9 and x = -1/9
B. x = 3/7 and x = -3/7
C. x = 3/4 and x = -3/4
D. x = 9/49 and x = -9/49
Brainliest if you explain how. got stumped on this one
Answer:
B
Step-by-step explanation:
49x^2=9
solve for x
x^2= 9/49
x=± [tex]\sqrt{9/49\\}[/tex]
which is x = ±3/7 (B)
Answer: b x=1/9 and x=-1/9
Step-by-step explanation:
F(x) =-2x-4 find x if f(x)=14
Answer:
14=-2x-4
18=-2x
x=-9
Hope This Helps!!!
giving brainiest Elinor solved this problem. Is her answer correct?
8.93 times 0.15 = 4465. 4465 + 8930 = 13.395
No, Elinor should have placed the decimal point between the 1 and the 3.
No, she should have placed the decimal point between the 3 and the 9.
No, she did not align the place values in the partial products correctly.
Yes. Elinor did not make an error. giving Branniest
Answer:
its a
Step-by-step explanation:
trust did test
Which expression gives the best estimate of 30 percent of 61?
The answers are below:
Hurry, please!
Answer:
it would be 1/4(60)
Step-by-step explanation:
30 percent of 61 is 18.3 and 1/4 of 60 is 15 which is closest to 18.3
There are seven people online and each person uses either a blue, black, or red pen to write while working. How many possible combinations can be made?
A. 49
B. 28
C. 21
D. 10
A S A P!! I DONT WANT MY DAD YELLING AT ME FOR THIS ;^;
Answer:
21 is the answer for this question may be
Which expression is equivalent to the difference shown?
Answer:
Option A. -1/20x
Step-by-step explanation:
[tex] \frac{5x + 1}{5x} - \frac{4x + 1}{4x} [/tex]
[tex] = \frac{20x + 4x - 20x - 5x}{20x^{2} } [/tex]
[tex] = \frac{ - x}{20x^{2} } [/tex]
[tex] - \frac{1}{20x} [/tex]
Answered by GAUTHMATH
Please help on my hw, I'm not feeling good, and can't concentrate
Answer:
Solution given:
f(x)=x²
g(x)=x+5
h(x)=4x-6
now
23:
(fog)(x)=f(g(x))=f(x+5)=(x+5)²=x²+10x+25
24:
(gof)(x)=g(f(x))=g(x²)=x²+5
25:
(foh)(x)=f(h(x))=f(4x-6)=(4x-6)²=16x²-48x+36
26:
(hof)(x)=h(f(x))=h(x²)=4x²-6
27;
(goh)(x)=g(h(x))=g(4x-6)=4x-6+5=4x-1
28:
(hog)(x)=h(g(x))=h(x+5)=4(x+5)-6=4x+20-6=4x-14
a Given: △CDE, DK ⊥ CE ,CD=DE Area of △CDE = 29cm2 m∠CDE=31° Find: DK
Answer:
DK = 10.23 units (approx)
Step-by-step explanation:
(DK * (CK + KE))/2 = 29
DK * CK = 29
180 - 31 = 149
149/2 = 74.5 --> degree of other angles
tan 74.5 = DK/CK
CK * tan 74.5 = DK
CK * CK * tan 74.5 = 29
CK = 2.83591462
2.83591462 * tan 74.5 = DK
DK = 10.22597776
So DK is approximately 10.23 units.
Hope this helps!
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
For what values of the variable, do the following fractions exist: y^2-1/y+y/y-3
For what values of the variable, do the following fractions exist: b+4/b^2+7
For what values of the variable, do the following fractions exist: a/a(a-1)-1
PLEASE HELP NEED ANSWER ASAPPPP!!!! WILL GIVE BRAINLIEST TO FIRST CORRECT ANSWERRRR!!!
Answer:
Remember that the division by zero is not defined, this is the criteria that we will use in this case.
1) [tex]\frac{y^2 - 1}{y} + \frac{y}{y - 3}[/tex]
So the fractions are defined such that the denominator is never zero.
For the first fraction, the denominator is zero when y = 0
and for the second fraction, the denominator is zero when y = 3
Then the fractions exist for all real values except for y = 0 or y = 3
we can write this as:
R / {0} U { 3}
(the set of all real numbers except the elements 0 and 3)
2) [tex]\frac{b + 4}{b^2 + 7}[/tex]
Let's see the values of b such that the denominator is zero:
b^2 + 7 = 0
b^2 = -7
b = √-7
This is a complex value, assuming that b can only be a real number, there is no value of b such that the denominator is zero, then the fraction is defined for every real number.
The allowed values are R, the set of all real numbers.
3) [tex]\frac{a}{a*(a - 1) - 1}[/tex]
Again, we need to find the value of a such that the denominator is zero.
a*(a - 1) - 1 = a^2 - a - 1
So we need to solve:
a^2 - a - 1 = 0
We can use the Bhaskara's formula, the two values of a are given by:
[tex]a = \frac{-(-1) \pm \sqrt{(-1)^2 + 4*1*(-1)} }{2*1} = \frac{1 \pm \sqrt{5} }{2}[/tex]
Then the two values of a that are not allowed are:
a = (1 + √5)/2
a = (1 - √5)/2
Then the allowed values of a are:
R / {(1 + √5)/2} U {(1 - √5)/2}
For the function, tell whether the graph opens up or opens down, identify the vertex, and tell whether the graph is wider, narrower, or the same width as the graph of y = |x|.
y = 2|x – 1| - 3
opens up, (1, 3), wider
opens up, (1, 3), narrower
opens up, (-1, -3), wider
opens up, (1, -3), narrower
Answer:
The answer is D, the last one.
9514 1404 393
Answer:
(d) opens up, (1, -3), narrower
Step-by-step explanation:
The factor of +2 multiplying the function tells you the graph is expanded vertically by a factor of 2. The parent function opens upward, and the positive sign on this expansion factor does not change that. The expansion means that y-values will be farther from the vertex for the same x-value distance from the vertex. This give the appearance of a narrower graph.
As always, the transformation ...
f(x -h) +k
moves the vertex from (0, 0) to (h, k). Here, you have (h, k) = (1, -3), so that is the location of the vertex of the transformed function.
Use the relationship among the three angles of any triangle to solve. Two angles of a triangle have the same
measure and the third angle is 27° greater than the measure of the other two. Find the measure of each angle.
Please help :)
Answer:
51°,51°,78°
Step-by-step explanation:
The sum of angles in a triangle add up to 180°
The office needs 6 new devices worth $7200. The order consists of new computers (C) which cost $1425 each and printers (P) which cost $750 each. How many of the new devices are computers and how many are printers?
Approximate 5.7255 to the nearest thousand
round 5.7255 to thousands place
place after thousands place (5) rounds up the 5 before it
therefore 5.726 ur ans
MARK above ANS as branliest
How do you complete the other two?
I know how to complete the first one but 3D Pythag confuses me so much
For now, I'll focus on the figure in the bottom left.
Mark the point E at the base of the dashed line. So point E is on segment AB.
If you apply the pythagorean theorem for triangle ABC, you'll find that the hypotenuse is
a^2+b^2 = c^2
c = sqrt(a^2+b^2)
c = sqrt((8.4)^2+(8.4)^2)
c = 11.879393923934
which is approximate. Squaring both sides gets us to
c^2 = 141.12
So we know that AB = 11.879393923934 approximately which leads to (AB)^2 = 141.12
------------------------------------
Now focus on triangle CEB. This is a right triangle with legs CE and EB, and hypotenuse CB.
EB is half that of AB, so EB is roughly AB/2 = (11.879393923934)/2 = 5.939696961967 units long. This squares to 35.28
In short, (EB)^2 = 35.28 exactly. Also, (CB)^2 = (8.4)^2 = 70.56
Applying another round of pythagorean theorem gets us
a^2+b^2 = c^2
b = sqrt(c^2 - a^2)
CE = sqrt( (CB)^2 - (EB)^2 )
CE = sqrt( 70.56 - 35.28 )
CE = 5.939696961967
It turns out that CE and EB are the same length, ie triangle CEB is isosceles. This is because triangle ABC isosceles as well.
Notice how CB = CE*sqrt(2) and how CB = EB*sqrt(2)
------------------------------------
Now let's focus on triangle CED
We just found that CE = 5.939696961967 is one of the legs. We know that CD = 8.4 based on what the diagram says.
We'll use the pythagorean theorem once more
c = sqrt(a^2 + b^2)
ED = sqrt( (CE)^2 + (CD)^2 )
ED = sqrt( 35.28 + 70.56 )
ED = 10.2878569196893
This rounds to 10.3 when rounding to one decimal place (aka nearest tenth).
Answer: 10.3==============================================================
Now I'm moving onto the figure in the bottom right corner.
Draw a segment connecting B to D. Focus on triangle BCD.
We have the two legs BC = 3.7 and CD = 3.7, and we need to find the length of the hypotenuse BD.
Like before, we'll turn to the pythagorean theorem.
a^2 + b^2 = c^2
c = sqrt( a^2 + b^2 )
BD = sqrt( (BC)^2 + (CD)^2 )
BD = sqrt( (3.7)^2 + (3.7)^2 )
BD = 5.23259018078046
Which is approximate. If we squared both sides, then we would get (BD)^2 = 27.38 which will be useful in the next round of pythagorean theorem as discussed below. This time however, we'll focus on triangle BDE
a^2 + b^2 = c^2
b = sqrt( c^2 - a^2 )
ED = sqrt( (EB)^2 - (BD)^2 )
x = sqrt( (5.9)^2 - (5.23259018078046)^2 )
x = sqrt( 34.81 - 27.38 )
x = sqrt( 7.43 )
x = 2.7258026340878
x = 2.7
--------------------------
As an alternative, we could use the 3D version of the pythagorean theorem (similar to what you did in the first problem in the upper left corner)
The 3D version of the pythagorean theorem is
a^2 + b^2 + c^2 = d^2
where a,b,c are the sides of the 3D block and d is the length of the diagonal. In this case, a = 3.7, b = 3.7, c = x, d = 5.9
So we get the following
a^2 + b^2 + c^2 = d^2
c = sqrt( d^2 - a^2 - b^2 )
x = sqrt( (5.9)^2 - (3.7)^2 - (3.7)^2 )
x = 2.7258026340878
x = 2.7
Either way, we get the same result as before. While this method is shorter, I think it's not as convincing to see why it works compared to breaking it down as done in the previous section.
Answer: 2.7Answer:
Qu 2 = 10.3 cm
Qu 3. = 2.7cm
Step-by-step explanation:
Qu 2. Shape corner of a cube
We naturally look at sides for slant, but with corner f cubes we also need the base of x and same answer is found as it is the same multiple of 8.4^2+8/4^2 for hypotenuse.
8.4 ^2 + 8.4^2 = sq rt 141.42 = 11.8920141 = 11.9cm
BD = AB = 11.9 cm Base of cube.
To find height x we split into right angles
formula slant (base/2 )^2 x slope^2 = 11.8920141^2 - 5.94600705^2 = sq rt 106.065
= 10.2987863
height therefore is x = 10.3 cm
EB = 5.9cm
BC = 3.7cm
CE^2 = 5.9^2 - 3.7^2 = sqrt 21.12 = 4.59565012 = 4.6cm
2nd triangle ED = EC- CD
= 4.59565012^2- 3.7^2 = sq rt 7.43000003 =2.72580264
ED = 2.7cm
x = 2.7cm
PLEEEASEEEE HEEELPPP!!!
Answer: About 72%
Step-by-step explanation:
It's a conditional probability.
(Number of graduates on financial aid)/(Number of graduates)
[tex]\frac{1879}{2610} =0.7199[/tex]
0.7199 = 71.99% ≈ 72%
Name the following segment or point.
Given:
L, M, N are midpoints
orthocenter of triangle ABC
Answer:
P
Step-by-step explanation:
It's where the altitudes meet
Please help me i will give you brainlest
Answer:
19. - 4/11
21. 14
Step-by-step explanation:
Im sorry but i can't solve 20
Algebraically show that each of the given combinations are equivalent to the given functions. f(x) – g() is
equivalent to m(x) given:
f(0)
= - 3x + 5; g(x)
- 5x – 7; m(x) = 2x + 12
f(x) – g(x) = (
=
Is f(x) – g(x) equivalent to m(x)? yes
Answer:
[tex]f(x) - g(x) = 2x + 12[/tex]
[tex]m(x) = f(x) - g(x)[/tex] --- True
Step-by-step explanation:
Given
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
[tex]m(x) = 2x + 12[/tex]
Solving (a): [tex]f(x) - g(x)[/tex]
From the given parameters, we have:
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
So:
[tex]f(x) - g(x)=-3x+5 + 5x + 7[/tex]
Collect like terms
[tex]f(x) - g(x) = 2x + 12[/tex]
Solving (b) m(x) = f(x) = g(x)?
In (a), we have:
[tex]f(x) - g(x) = 2x + 12[/tex]
And
[tex]m(x) = 2x + 12[/tex] --- given
By comparison:
[tex]m(x) = f(x) - g(x)[/tex]
what is the product of ten and the sum of two and a number is five times the number
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black, or green. Half of the numbers 1 - 36 are colored red and half are black and the numbers 0 and 00 are green. Each number occurs only once on the wheel. What is the probability of landing on an even number and a number greater than 17? (A number is even if it is divisible by 2. 0 and 00 are considered even as well.)
Answer:
the wording (punctuation) of the question can lead to different interpretations....
I assume that the question was >17 & even which is "5/19",
BUT... it can also be read as two questions
first >17 which is "10/19"
and second an even number which is "9/19"
BUT !!! I think that the question answer is 5/19
Step-by-step explanation:
Even Number = 18/38 = 9/19
greater 17 = 20/38 = 10/19
Even & greater 17 = 10/38 = 5/19
The negative effects of a recession would be reduced by which fiscal policy decision?
A. incurring a budget deficit which is used to retire debt held by the public
B. incurring a budget surplus and allowing that surplus to accumulate as idle Treasury balances
C. incurring a budget surplus, which is used to retire debt held by commercial banks
D. incurring a budget deficit by borrowing from the public and increasing expenditures
Incurring a budget surplus and allowing that surplus to accumulate as idle Treasury balances. Then the correct option is B.
What is Recession?A span of transitory negative growth marked by a drop in Income in four quarters.
The negative effects of a recession would be reduced by the fiscal policy decision will be
Incurring a budget surplus and allowing that surplus to accumulate as idle Treasury balances
Then the correct option is B.
More about the Recession link is given below.
https://brainly.com/question/18075358
#SPJ1
Will give brainliest answer, there has to be two answers to give one of you the brainliest
Answer:
C
Step-by-step explanation:
[tex] ({8}^{ { - 9})^{ \frac{ - x}{9} } } [/tex]
when putting a power to another power, then these two powers are multiplied.
so, -9 × (-x/9) = (-9 × -x) / 9 = 9x/9 = x
so, this reduces to the original
[tex] {8}^{x} [/tex]
and therefore C is the right answer.
please help! i need this ASAP!
Answer:
C. y=7/9x+17/9
Step-by-step explanation:
Take the slope. slope= m = y2-y1/x2-x1
=5-(-2)/4-(-5)
=7/9
Then put it into point-slope form.
y-y1=m(x-x1)
=y-5=7/9(x-4)
Simplify.
y=7/9x-28/9+5
y=7/9x+17/9
Answer:
C
Step-by-step explanation:
First find the slope (change in y/ change in x) which is positive 7/9.
Then use y=mx+b and plug in the slope, and one of the given points to solve for b.
5= 7/9*4+b
5=28/9+b
5-28/9=b
45/9-28/9=b
17/9=b
Then with the slope and y intercept(b) you get the equation shown in answer c.
Hope that helps!
Helpi
Identify the domain of the function shown in the graph.
Answer:
D = all reals (or -7 to 7)
Step-by-step explanation:
If the line continues on for infinity, then the domain is all reals, or negative infinity to positive infinity. If the line ends on the graph that we can see, though, the domain would be [-7 , 7]
How many cups of flour are required to make 9 dozen cookies? ( write your answer as a mixed number) Demonstrate your method of choice
Answer:
45/16
Step-by-step explanation:
[tex]1 \frac{1}{4} = 4[/tex]
[tex]x = 9 [/tex]
[tex]x = 1 \frac{1}{4} \times 9 \div 4[/tex]
[tex]x = \frac{5}{4} \times 9 \div 4[/tex]
[tex]x = \frac{45}{16} [/tex]
A humanities professor assigns letter grades on a test according to the following scheme. A: Top 13% of scores B: Scores below the top 13% and above the bottom 60% C: Scores below the top 40% and above the bottom 23% D: Scores below the top 77% and above the bottom 8% F: Bottom 8% of scores Scores on the test are normally distributed with a mean of 70 and a standard deviation of 9.6. Find the minimum score required for an A grade. Round your answer to the nearest whole number, if necessary
Answer:
81
Step-by-step explanation:
Given data:
mean μ = 70.
standard deviation σ, 9.6.
P(Z < 1.123) = 0.13
z = 1.13
Use the z-score formula,
x = z×σ +μ
Substitute the values in the above equation.
x = 1.13 9.6 + 70 = 81
The minimum score required for an A grade is = 81
Use the graph to find the y-intercept and axis of symmetry
Answer: (a) and (d)
Step-by-step explanation:
From the graph, vertex is at
Graph is same about the point [tex]x=2[/tex] . Therefore, axis of symmetry is the line [tex]x=2[/tex]
Y intercept is the place where curve intersect the Y-axis that is [tex](0,2)[/tex]
Option (a) and (d) are correct.
CHECK MY ANSWERS PLEASE
____
The sequence is geometric:
3, 13, 23, 33,...
True
False***
_____________________
The sequence is geometric:
5, -25, 125, -625,...
True***
False
Step-by-step explanation:
For a geometric sequence,
[tex]\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}[/tex]
1. The sequence is :
3, 13, 23, 33,...
[tex]\dfrac{13}{3}\ne \dfrac{23}{13}[/tex]
It is not geometric. It is false
2. The sequence is :
5, -25, 125, -625
[tex]\dfrac{-25}{5}=\dfrac{125}{-25}\\\\-5=-5[/tex]
So, the sequence is geometric as the common ratio is same. It is true.