The solution is, the answers to f(g(5)), g(f(78)), and h(g(f(2))) are 8, 60, and 83 respectively.
What is function?Function, in mathematics, an expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable.
here, we have,
Given the expressions, f(x)=√x+5, g(x)=3x-7, and h(x)=5x, the answer to f(g(5)) is 8.
This is because when g(5) is substituted into f(x) we get f(g(5))=f(3x-7)=√(3x-7)+5. When 5 is substituted for x, this simplifies to f(g(5))=√(-2)+5 which equals 8.
The answer to g(f(78)) is 60. This is because when 78 is substituted into f(x) we get f(78)=√78+5 which simplifies to f(78)=9. When 9 is substituted into g(x) we get g(f(78))=3x-7 which simplifies to g(f(78))=3(9)-7 which equals 60.
Finally, the answer to h(g(f(2))) is 83. This is because when 2 is substituted into f(x) we get f(2)=√2+5 which simplifies to f(2)=3. When 3 is substituted into g(x) we get g(f(2))=3x-7 which simplifies to g(f(2))=3(3)-7 which equals 8. When 8 is substituted into h(x) we get h(g(f(2)))=5x which simplifies to h(g(f(2)))=5(8) which equals 83.
In summary, the answers to f(g(5)), g(f(78)), and h(g(f(2))) are 8, 60, and 83 respectively.
To learn more about evaluate and solving functions:
brainly.com/question/2284360
#SPJ9
I will give brainliest and ratings if you get this correct
[tex]D(x)=\frac{f(x)}{g(x)}[/tex]
[tex]D'(x)=\frac{f'(x)g(x)-g'(x)f(x)}{(g(x))^{2} }[/tex]
What is quotient formula of differentiation?Quotient rule in calculus is method finding the derivative of the differentiable functions which are in the division form
There are different methods to prove the quotient rule formula, given as,
Using derivative and limit propertiesUsing implicit differentiationUsing chain ruleHere, we are using implicit differentiation method to solve this quotient rule,
Let us take a differentiable function ,
[tex]D(x)=\frac{f(x)}{g(x)}[/tex]--------(1)
So, [tex]f(x)={D(x)}*{g(x)}[/tex]
Using the product rule we get,
[tex]f'(x)= D'(x).g(x)+g'(x).D(x)[/tex] solving for [tex]D'(x)[/tex] we get,
[tex]\frac{f'(x)-g'(x).D(x)}{g(x)} = D'(x)[/tex]------(2)
substitute for D(x) sub (1) in (2)
[tex]D'(x) =\frac{f'(x)-g'(x).\frac{f(x)}{g(x)} }{g(x)}[/tex]
⇒[tex]D'(x) =\frac{f'(x)g(x)-g'(x){f(x)} }{(g(x))^{2} }[/tex]
Hence,[tex]D'(x)=\frac{f'(x)g(x)-g'(x)f(x)}{(g(x))^{2} }[/tex] proved.
Learn more about quotient rule here:
https://brainly.com/question/29255160
#SPJ1
of 2: Determine the domain and range of the graph below
The range of the graph is,
⇒ Range = { y | - 1 < y < 3 }
The domain of the graph is,
⇒ Domain = { x | - 4 < x < 2 }
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
The graph is shown in figure.
Now, We know that;
The range of the graph is the value of y where the function of graph is defined.
Hence, The range of the graph is,
⇒ Range = { y | - 1 < y < 3 }
And, The domain of the function is defined the value of y where the function of graph is defined.
Hence, The domain of graph is,
⇒ Domain = { x | - 4 < x < 2 }
Learn more about the Domain and Range visit:
https://brainly.com/question/2264373
#SPJ9
An aquarium 6 m long, 1 m wide, and 1 m deep is full of water. Find the work needed to pump half of the water out of the aquarium. (Use 9.8 m/s2 for g and the fact that the density of water is 1000 kg/m3.)
Show how to approximate the required work by a Riemann sum. (Enter xi* as xi.)
n
lim ∑ (____)
i=1
Express the work as an integral ?
Evaluate the integral ?
The work required to pump out half of the water from the aquarium is approximately 2000 J.
The volume of the aquarium is V = (6 m) x (1 m) x (1 m) = 6 cubic meters. Since the density of water is 1000 kg/m3, the mass of the water in the aquarium is m = ρV = 1000 kg/m3 x 6 m3 = 6000 kg.
To pump out half of the water, we need to remove 1/2 x 6000 kg = 3000 kg of water. Since work is force times distance, we need to calculate the force required to lift this mass of water a distance of 1 m (the height of the aquarium).
The force required is F = mg = (3000 kg) x (9.8 m/s2) = 29,400 N. The work done is W = Fd = (29,400 N) x (1 m) = 29,400 J.
To approximate the required work by a Riemann sum, we can divide the height of the aquarium into n subintervals of width Δx, and choose a sample point xi* in each subinterval.
The force required to lift the water in each subinterval is approximately constant, so the work required to lift the water in each subinterval is approximately F(xi*)Δx. The total work required is therefore approximately given by the Riemann sum:
nlim ∑ F(xi*)Δxi= nlim ∑ (1000 x 6 x Δxi x xi*)i=1
Taking the limit as n goes to infinity, this Riemann sum becomes the integral:
∫0^1 1000 x 6 x x dx
Evaluating this integral gives:
∫0^1 6000 x^2 dx = [2000 x^3]0^1 = 2000 J
Therefore, the work required to pump out half of the water from the aquarium is approximately 2000 J. This approximation becomes more accurate as the number of subintervals n becomes larger.
For more questions like Aquarium click the link below:
https://brainly.com/question/6567948
#SPJ4
donuts at "hole-in-one" donut shop cost $1.20 each. how many donuts can jade purchase if she has $6.00 in her wallet?
Answer:
5
Step-by-step explanation:
6/1.2=5
are the following statements true or false? [true or false]1. if the augmented matrix has a pivot position in every row, then the system is inconsistent. [true or false]2. a vector is a linear combination of the columns of a matrix if and only if the equation has at least one solution. [true or false] 3. if the columns of an matrix span , then the equation is consistent for each in [true or false]4. any linear combination of vectors can always be written in the form for a suitable matrix and vector . [true or false]5. if the system is inconsistent, then is not in the column space of . [true or false]6. the equation is referred to as a vector equation. [true or false]7. if is an matrix and if the equation is inconsistent for some in , then the rref of cannot have a pivot position in every row. [true or false]
From the following statements: statement 1 and statement 6th is false, rest are true about matrix and vector.
1. if the augmented matrix has a pivot position in every row, then the system is inconsistent, this statement is false.
2. a vector is a linear combination of the columns of a matrix if and only if the equation has at least one solution, this statement is true.
3. if the columns of an matrix span , then the equation is consistent for each in b in R^m, this statement is true.
4. any linear combination of vectors can always be written in the form Ax for suitable matrix A and vector x, this statement is true.
5. if the system Ax = b is inconsistent, then b is not in the column space of A, this statement is true.
6. The equation Ax = b is referred to as a vector equation, this statement is false.
7. if A is an matrix and if the equation Ax = b is inconsistent for some in , then the RRef of A cannot have a pivot position in every row, this statement is true.
To know more about matrix
https://brainly.com/question/14521601
#SPJ4
You roll a die and pick a card. How many outcomes are possible?
567
8
The number of possible outcomes when you roll the die would be 6
How to solve for the possible outcome in a dieA die is known to have only 6 faces. The 6 faces are numbered from number 1 to number 6
Such that the sample space that we would have would be given as
SS = {1, 2, 3, 4, 5, 6}
Hence the number of outcomes that we would be able to have from one die would be given as 6
Read more on probability here:https://brainly.com/question/24756209
#SPJ1
Write the percent as a fraction in simplest form and as a decimal. 2315%
Answer:
23:15 as a decimal and 23 3/20
Step-by-step explanation:
Just divide by 100 to get decimal. For the fraction divide by 100 and simplify
The director of a hospital pharmacy chooses at random 100 people age 60 or older from each of three surrounding counties to ask their opinions of a new prescription drug program.
The kind of sample described in the given information is a stratified random sample.
What is stratified random sample ?
A stratified random sample is a type of probability sampling method used to obtain a representative sample of a population by dividing the population into smaller, more homogeneous groups called strata, and then selecting a random sample from each stratum.
This method is used when the population has certain characteristics or subgroups that are of interest to the researcher, and the goal is to ensure that the sample accurately represents each subgroup in proportion to its size in the population.
The process of selecting a stratified random sample involves dividing the population into strata based on some relevant characteristic, such as age, gender, education level, income, or geographic location. Then, a random sample is selected from each stratum, using a simple random sampling method. The sample size from each stratum is proportional to the size of that stratum in the population.
The advantage of a stratified random sample is that it can provide a more accurate representation of the population than other types of sampling methods, as it ensures that each subgroup is adequately represented in the sample.
According to given information :
The population of interest is people age 60 or older from the three surrounding counties. To obtain a representative sample of the population, the director of the hospital pharmacy has divided the population into three strata (i.e., the three surrounding counties) and selected a random sample of 100 people age 60 or older from each stratum. This ensures that the sample includes a proportionate number of participants from each county, which should help to reduce the potential for sampling bias that might result from selecting participants from only one county.
Therefore, this is an example of a stratified random sample.
To know more about area visit:
https://brainly.com/question/20692763
#SPJ1
Please help with this math question!
Answer:
so
2×4.57 = (3V/2pi)^1/3
Volume is approximately = 1600
How many liters of pure water should be mixed with a 11-L solution of 60% acid to produce a mixture that is 90% water?
Answer:
55 L of water
Step-by-step explanation:
11-L of 60% acid contains 0.6 × 11 L = 6.6 L acid
Let x = amount of pure water.
Let y = total amount produced of 90% water solution.
A 90% water solution is a 10% acid solution.
Amounts of solutions:
x + 11 = y
Amounts of acid:
6.6 = 0.1y
y = 66
x + 11 = 66
x = 55
Answer: 55 L of water
55 L water has 0 acid.
11 L 60% acid solution has 6.6 L acid.
66 L of 10% acid solution has 6.6 L acid
The distribution of the number of transactions per day at a certain automated teller machine (ATM ) is approximately normal with a mean of 80 transactions and a standard deviation of 10 transactions. Which of the following represents the parameters of the distribution?
The mean (μ) and standard deviation (σ) represent the parameters of a normal distribution, so in this case, the parameters of the distribution are: μ = 80 transactions and σ = 10 transactions
A normal distribution, also known as a Gaussian distribution, is a continuous probability distribution that has a bell-shaped curve. This type of distribution is often used to model real-world phenomena that are expected to be distributed in a symmetrical fashion around a central value.
The central value of a normal distribution is the mean (μ), which represents the average of all the observations in the distribution. The spread or dispersion of the distribution is measured by the standard deviation (σ), which indicates how much the observations deviate from the mean.
In the given problem, the distribution of the number of transactions per day at an ATM is assumed to be normal with a mean of 80 transactions and a standard deviation of 10 transactions.
You can read more about standard deviation at https://brainly.com/question/475676#:
#SPJ4
Arrange the following fractions in order
from least to greatest.
7 15 3 11 13
5 4 2 4 3
The order of the fraction from least of greatest are
3/11 7/154/3 4/213/5How to order the fractionsThe fractions in order from least to greatest.
7/15 3/11 13/5 4/2 4/3
converting to decimals
7/15 = 0.4667
3/11 = 0.2727
13/5 = 2.6
4/2 = 2
4/3 = 1.3333
The order is written as follows
3/11 = 0.2727
7/15 = 0.4667
4/3 = 1.3333
4/2 = 2
13/5 = 2.6
Learn more about fractions at:
https://brainly.com/question/17220365
#SPJ1
If there is a ratio of 150 students to 18 teachers what would be the maximum number of students the school can add if it wants to maintain a ratio of student to teachers 20:1?
The maximum number of students the school can add if it wants to maintain a ratio of student to teachers 20 : 1 is 210.
What does a Ratio define?Ratio defines the relationship between two quantities where it tells how much one quantity is contained in the other.
The ratio of a and b is denoted as a : b.
Given that,
Ratio of student to teachers now = 150 : 18
Ratio of student to teachers to maintain = 20 : 1
For 1 teacher , number of students needed = 20
For 18 teachers, number of students needed = 20 × 18 = 360
Present number of students for 18 teachers = 150
Maximum number of students who can be added = 360 - 150 = 210
Hence school can add a maximum of 210 students in order to maintain a ratio of student to teachers 20:1.
Learn more about Ratio here :
https://brainly.com/question/1161046
#SPJ9
write as an expression as a square of a monomial 0.16x^2y^2
The square of the monomial 0.16x^2y^2 can be expressed as:
(0.16x^2y^2)^2 = 0.16^2 * x^2 * y^2 * x^2 * y^2 = 0.0256x^4y^4
hope it helps
Write an equation for the nth term of the arithmetic sequence 4,7,10,13
The solution is, the nth term of the arithmetic sequence 4,7,10,13 is 1 + 3n.
What is Arithmetic progression?An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
For instance, the sequence 5, 7, 9, 11, 13, 15.. . is an arithmetic progression with a common difference of 2.
The nth term of AP : a_n = a + (n – 1) × d
here, we have,
the arithmetic sequence 4,7,10,13
so. we get,
1st term = 4 = a
common difference = 3 = d
i.e. the nth term of the arithmetic sequence is, a_n = 4+(n-1)3
=1+3n
Hence, The solution is, the nth term of the arithmetic sequence 4,7,10,13 is 1 + 3n.
To lean more on Arithmetic progression click:
brainly.com/question/28898589
#SPJ9
The table represents a quadratic function f(x). x f(x) −10 24 −9 17 −8 12 −7 9 −6 8 −5 9 −4 12 If the equation of the function f(x) is written in standard form f(x) = ax2 + bx + c, what is the value of b?
Answer:
the value of b is 12.
Step-by-step explanation:
To find the value of b, we can use the vertex form of a quadratic function, which is f(x) = a(x - h)^2 + k, where (h, k) is the vertex of the parabola.
Since we know the vertex of this parabola from the table, we can use that information to write the equation in vertex form: f(x) = a(x + 6)^2 + 8
Expanding this, we get f(x) = a(x^2 + 12x + 36) + 8
Comparing this with the standard form, we see that a = 1, b = 12, and c = 8.
Therefore, the value of b is 12.
What is 1+57327392393629323
Answer:
57327392393629324
Step-by-step explanation:
This problem relates to the QDA model, in which the observations within each class are drawn from a normal distribution with a class- specific mean vector and a class specific covariance matrix. We con- sider the simple case where p = 1; i.e. there is only one feature. Suppose that we have K classes, and that if an observation belongs to the kth class then X comes from a one-dimensional normal dis- tribution, X ~ N(uk, o?). Recall that the density function for the one-dimensional normal distribution is given in (4.16). Prove that in this case, the Bayes classifier is not linear. Argue that it is in fact quadratic. Hint: For this problem, you should follow the arguments laid out in Section 4.4.1, but without making the assumption that oỉ = ... o^2k =
In the case of a one-dimensional normal distribution with K classes, the Bayes classifier is not linear but is in fact quadratic.
We begin by noting that the Bayes classifier for the one-dimensional normal distribution is given by:
[tex]h(x) = argmaxk P(Ck|x) = argmaxk P(x|Ck)P(Ck)[/tex]
We can rewrite this as:
[tex]h(x) = argmaxk (1/√2πσk) exp(-1/2σ2k(x-uk)2) P(Ck)[/tex]
We can see that this is a quadratic equation in the form: ax2 + bx + c = 0. We can illustrate this by substituting the values for a, b, and c:
[tex]a = -1/2σ2k[/tex]
b = 0
[tex]c = ln(P(Ck)) - 1/2σ2k u2k[/tex]
We can see that this equation is not linear and is instead quadratic. Therefore, we can conclude that in the case of a one-dimensional normal distribution with K classes, the Bayes classifier is not linear but is in fact quadratic.
Learn more about normal distribution here:
https://brainly.com/question/29509087
#SPJ4
If
2tan x/1-tan² x= 1, then x can equal:.
A. x =
B. x=
C. x=
K|0
D. x=
8
+ NIT
77
37
+ 27
+ NIT
-57 +1
NIT
SUBMIT
The value of x is x= π/8
What is Trigonometry?The area of mathematics that deals with particular angles' functions and how to use those functions in calculations. There are six popular trigonometric functions for an angle. Sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant are their respective names and acronyms (csc).
Given:
2tan x/1-tan² x= 1
We know that tan π/4= 1
So, 2tan x/1-tan² x= tan π/4
Also, we know that tan 2x= 2tan x/1-tan² x
Again, 2tan x/1-tan² x= tan π/4
tan 2x= tan π/4
Now comparing we get
2x= π/4
x= π/8
Learn more about Trigonometry here:
https://brainly.com/question/4071436
#SPJ9
How do you solve this?
▶️Watch help video
It's on you ss "▶️Watch help video"
Consider randomly selecting a student at a large university, and let A be the event that the selected student has a Visa card and B be the analogous event for MasterCard. Suppose that P(A) = 0.7 and P(B) = 0.4.
A. Could it be the case that P(A ∩ B) = 0.5? Pick one:
i. Yes, this is possible. Since B is contained in the event A ∩ B, it must be the case that P(B) ≤ P(A ∩ B) and 0.5 > 0.4 does not violate this requirement.
ii. Yes, this is possible. Since A ∩ B is contained in the event B, it must be the case that P(B) ≤ P(A ∩ B) and 0.5 > 0.4 does not violate this requirement.
iii. No, this is not possible. Since B is equal to A ∩ B, it must be the case that P(A ∩ B) = P(B). However 0.5 > 0.4 violates this requirement.
iiii. No, this is not possible. Since B is contained in the event A ∩ B, it must be the case that P(A ∩ B) ≤ P(B). However 0.5 > 0.4 violates this requirement.
v. No, this is not possible. Since A ∩ B is contained in the event B, it must be the case that P(A ∩ B) ≤ P(B). However 0.5 > 0.4 violates this requirement.
B. From now on, suppose that P(A ∩ B) = 0.3. What is the probability that the selected student has at least one of these two types of cards?
C. What is the probability that the selected student has neither type of card?
D. In terms of A and B, the event that the selected student has a Visa card but not a MasterCard is A ∩ B' . Calculate the probability of this event.
E. Calculate the probability that the selected student has exactly one of the two types of cards.
A. (iv) No the case that P(A ∩ B) = 0.5 is not possible. Since B is contained in the event A ∩ B, it must be the case that P(A ∩ B) ≤ P(B). However, 0.5 > 0.4 violates this requirement. (iv)
B. To find the probability that the selected student has at least one of these two types of cards, we can use the formula:
P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
Substituting the values, we get:
P(A ∪ B) = 0.7 + 0.4 - 0.3 = 0.8
Therefore, the probability that the selected student has at least one of these two types of cards is 0.8.
C. The probability that the selected student has neither type of card can be calculated as the complement of the event that the student has at least one of these two types of cards. Therefore,
P(neither A nor B) = 1 - P(A ∪ B) = 1 - 0.8 = 0.2
D. The event that the selected student has a Visa card but not a MasterCard can be written as A ∩ B'. We can calculate its probability as:
P(A ∩ B') = P(A) - P(A ∩ B) = 0.7 - 0.3 = 0.4
E. To calculate the probability that the selected student has exactly one of the two types of cards, we can use the formula:
P(exactly one of A or B) = P(A ∪ B) - P(A ∩ B)
Substituting the values, we get:
P(exactly one of A or B) = 0.8 - 0.3 = 0.5
Therefore, the probability that the selected student has exactly one of the two types of cards is 0.5.
For more questions like Probability click the link below:
https://brainly.com/question/30034780
#SPJ4
The charge is distributed uniformly throughout the volume of an infinitely long solid cylinder of radius R. (a) Show that, at a distance r from the cylinder axis,
E= rhor/ 2ϵ 0 where rho is the volume charge density. (b) Write an expression for E when r>R.
(a) A distance r from the cylinder axis is pr/2∈₀ and (b) expression for E when r > R is πR²lρ/2πϵ₀
(a) Consider a Gaussian surface in the form of a cylinder with radius r and length A, coaxial with the charged cylinder. An “end view” of the Gaussian surface is shown as a dashed circle. The charge enclosed by it is
q = ρV = πr²lp
V = volume of cylinder
If ρ is positive, the electric field lines are radially outward, normal to the Gaussian surface, and distributed uniformly along with it. Thus, the total flux through the Gaussian cylinder is Φ = E(2πrl). Now, Gauss’ law leads to :
2π∈₀rlE = πr²lp
E = pr/2∈₀
(b) ) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field [tex]E_{ext}[/tex] then the flux is Φ=2πϵ₀[tex]E_{ext}[/tex]
The charge enclosed is the total charge in a section of the charged cylinder with length A. That is, q=πR²lρ. In this case, Gauss’ law yields :
2πϵ₀[tex]E_{ext}[/tex] = πR²lρ
[tex]E_{ext}[/tex] = πR²lρ/2πϵ₀
To know more about volume
https://brainly.com/question/21505374
#SPJ4
Please answer fully and find y in the given triangle
The value of y is 45.
What are similar triangles?Those triangles look the same but are different in size.
And in similar triangles,
the corresponding sides are in proportion to each other and the corresponding angles are equal to each other.
Given:
The shape of the triangle is given in the image.
Assuming the shape is ABC.
And the segment that is parallel to the base side of the triangle is DE.
BC II DE.
So, the triangle ΔADE is similar to ΔABC.
So, the corresponding sides have a constant proportion.
So, y/15 = (20 + 10)/10
y = 15 x 3
y = 45.
Therefore, y = 45.
To learn more about similar triangles;
https://brainly.com/question/14926756
#SPJ1
couple has 4 children. find each probability. 1) all boys. 2) all girls. 3) exactly 3 boys. 4) at least 1 boy. 5) at most 3 girls.
1) All boys: Probability = 1/16 , 2) All girls: Probability = 1/16, 3) Exactly 3 boys: Probability = 5/16, 4) At least 1 boy: Probability = 15/16, 5) At most 3 girls: Probability = 15/16.
1) All boys: There are 16 possible combinations of 4 children, with each gender combination having an equal probability of 1/16. Therefore, the probability of all boys is 1/16.
2) All girls: Similarly, the probability of all girls is also 1/16.
3) Exactly 3 boys: To find the probability of exactly 3 boys, we need to consider all the cases with 3 boys and 1 girl. There are 4 possible combinations of 3 boys and 1 girl, so the probability of exactly 3 boys is 4/16, or 5/16.
4) At least 1 boy: To find the probability of at least 1 boy, we need to consider all the cases with 1, 2, 3, or 4 boys. There are 15 possible combinations with at least 1 boy (1 boy, 2 boys, 3 boys, and 4 boys), so the probability of at least 1 boy is 15/16.
5) At most 3 girls: To find the probability of at most 3 girls, we need to consider all the cases with 0, 1, 2, or 3 girls. There are 15 possible combinations with at most 3 girls (0 girls, 1 girl, 2 girls, and 3 girls), so the probability of at most 3 girls is 15/16.
Learn more about Probability here
https://brainly.com/question/11234923
#SPJ4
The distance from the origin to the point (−15, 36)
[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{ origin }{(\stackrel{x_1}{0}~,~\stackrel{y_1}{0})}\qquad (\stackrel{x_2}{-15}~,~\stackrel{y_2}{36})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{(~~-15 - 0~~)^2 + (~~36 - 0~~)^2} \implies \implies d=\sqrt{( -15 )^2 + ( 36 )^2} \\\\\\ d=\sqrt{ 225 + 1296 } \implies d=\sqrt{ 1521 }\implies d=39[/tex]
Instructions: Solve the following real world problem.
You and your sister are selling cookies to help raise money for
your field trip. You start out with $24 and sells each bag of
cookies, c, for $3. Your sister doesn't start out with any money but
sells her bags of cookies for $5 each. How many bags of cookies
must they sell in order for them to raise the same amount of
money?
Equating the mathematical expressions, we can determine that the siblings need to sell 12 bags of cookies for them to raise the same amount of money.
What are mathematical expressions?Mathematical expressions are the combination of variables, constants, numbers, and values using mathematical operands like addition and subtraction.
Mathematical expressions are also described as algebraic expressions.
The initial amount that you have = $24
Your selling price per bag of cookies, c, = $3
The total amount you will make is given by Expression 1: 24 + 3c
Your sister's selling price per bag of cookies, c, = $5
The total amount your sister will generate is given by Expression 2: 5c
To determine the number of bags of cookies you must sell to raise the same amount of money between the two siblings, we equate the two expressions as follows:
24 + 3c = 5c
24 = 2c
12 = c
Check:
5c = 60 (5 x 12)
24 _ 3c = 60 (24 + 36)
Learn more about mathematical expressions at https://brainly.com/question/4344214.
#SPJ1
A model is being built of a car. The car is 12 feet long and 6 feet wide if the length of the model is 4 inches how wide should the model be.
please hurry
The model would be 2 inches wide.
What is a scale factor?The ratio of the scale of an original thing to a new object that is a representation of it but of a different size is known as a scale factor (bigger or smaller).
Given:
A model is being built of a car.
The car is 12 feet long and 6 feet wide.
The length of the model is 4 inches.
The scale factor x is,
= 4/12
= 1/3
The width of the model is,
= 6 x 1/3
= 2 inches.
Therefore, the width is 2 inches.
To learn more about the scale factor;
https://brainly.com/question/29464385
#SPJ1
Find the equation of a line perpendicular to y = x + 1 that passes through the
point (8,-3).
The Equation of line perpendicular to line y = x + 1 and passes through (8,-3) is y= -x+ 5.
What is Slope?A line's b is determined by how its y coordinate changes in relation to how its x coordinate changes. y and x are the net changes in the y and x coordinates, respectively. Therefore, it is possible to write the change in y coordinate with respect to the change in x coordinate as,
m = Δy/Δx where, m is the slope
Given:
Equation: y= x+ 11
Now, the slope of perpendicular have the slope equal to negative reciprocal so that the product of slope of perpendicular line is -1.
Then, the slope of perpendicular line is, m= -1.
As, line passes through (8, -3) then the slope intercept form
y= mx+ b
-3 = (-1)(8)+ b
-3 = -8 +b
b= 5
Thus, the Equation of line is y= -x+ 5.
Learn more about Slope here:
https://brainly.com/question/29419205
#SPJ9
select the expression that is equivalent to (x + 6)^2
Answer:
The answer to the expression, (x + 6)^2 is [tex]x^2+12x+36[/tex].
Step-by-step explanation:
How can we solve this?We can solve this problem by breaking (x + 6)^2 into (x + 6) (x + 6). Now, we can use FOIL to figure out the expression that is equivalent to the problem.
(x + 6) (x + 6)
First, we multiply the Xs together.
[tex]x*x=x^2[/tex]
Next, is the Outer values.
[tex]x*6=6x[/tex]
Third, we multiply the Inner values.
[tex]6*x=6x[/tex]
Finally, we can multiply the Last values.
[tex]6*6=36[/tex]
Now, we can put it all together.
[tex]x^2+6x+6x+36[/tex]
We still have one more step left. Add like terms.
[tex]x^2+12x+36[/tex]
The answer is [tex]x^2+12x+36[/tex].
City Cabs charges a $2.50 pickup fee and $1.75 per mile traveled. Diego's fare for a cross-town cab ride is $25.25. How far did he travel in the cab?
Diego paid $25.25 to travel 13 miles.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables using mathematical operations. An equation can be linear, quadratic, cubic and so on, depending on the degree of the variable.
The slope intercept form of the linear equation is:
y = mx + b
where m is the slope and b is the initial value.
Let y represent the total cost for travelling x miles.
City Cabs charges a $2.50 pickup fee and $1.75 per mile traveled. Hence:
y = 1.75x + 2.5
If the cab ride is $25.25:
25.25 = 1.75x + 2.5
x = 13 miles
He travelled 13 miles.
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1