Answer:
Step-by-step explanation:
Solve the inequality. |X+19|<7
Answer:
x<-12
Step-by-step explanation: hope this helps!
Determine the degree of the polynomial:
7m^6n^5
9514 1404 393
Answer:
11
Step-by-step explanation:
The degree of the given monomial is the sum of the exponents of the variables.
m has degree 6
n has degree 5
The degree of the monomial is 6+5 = 11.
Help please :)......
Answer:
x | y
0 | 2
2 | 10
4 | 18
Step-by-step explanation:
the function would be y=4x+2
just plug each x value in to get each y value
which equation has the steepest graph ?
Answer:
Step-by-step explanation:
A.
[tex] \green{\huge{\red{\boxed{\green{\mathfrak{QUESTION}}}}}} [/tex]
which equation has the steepest graph ?
[tex] \red{ \bold{ \textit{STANDARD \: EQUATION}}}[/tex]
[tex]y = mx + c[/tex]
[tex]WHERE \\ m = SLOPE \\ c = Y - INTERCEPT[/tex]
[tex] \huge\green{\boxed{\huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}}}[/tex]
[tex] \blue{A.T.Q}[/tex]
PART A:-
[tex]y = mx + c \sim y= -14x+1 [/tex]
[tex] \orange{SO}[/tex]
m= (-14)
which is equal to the slope of the equation .
PART B:-
[tex]y = mx + c \sim y= ¾x-9 [/tex]
[tex] \orange{SO}[/tex]
m= (¾)
PART C:-
[tex]y = mx + c \sim y= 10x-5[/tex]
[tex] \orange{SO}[/tex]
m= (10)
PART D:-
[tex]y = mx + c \sim y= 2x+8[/tex]
[tex] \orange{SO}[/tex]
m= (2)
SO MAXIMUM SLOPE IS :-( -14 )Negative shows Slope is in negative direction.
[tex] \red \star{Thanks \: And \: Brainlist} \blue\star \\ \green\star If \: U \: Liked \: My \: Answer \purple \star[/tex]
For which pair of functions is the vertex of k(x) 6 units below the vertex of
f(x)?
A. Ax) = x2 and k(x) = x2 + 6
B. f(x) = x2 and k(x) = (x+6)2
C. Ax) = x and k(x) = (x – 6)2
D. f(x) = x2 and k(x) = x2 - 6
Using translation concepts, the vertex of k(x) is 6 units below the vertex of f(x) = x² for:
D. f(x) = x² and k(x) = x² - 6.
What is a translation?A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction in it's definition.
We want to shift the vertex 6 units down, hence the transformation is y -> y - 6, so the correct pair is:
D. f(x) = x² and k(x) = x² - 6.
More can be learned about translation concepts at https://brainly.com/question/4521517
#SPJ1
Find the values of x and y
Answer:
d
Step-by-step explanation:
Answer:
x=5, y=52
Step-by-step explanation:
Hi there!
1) Determine y
Because length AB is equal to length BC (making this an isosceles triangle), angle y is equal to 52 degrees.
y = 52
2) Determine x
The sum of the interior angles of a triangle will always be 180 degrees. Knowing this, we can construct the following equation and solve for x:
[tex]180=52+52+(14x+6)[/tex]
Open up the parentheses
[tex]180=52+52+14x+6\\180=104+14x+6\\180=110+14x[/tex]
Subtract 110 from both sides to isolate 14x
[tex]180-110=110+14x-110\\70=14x[/tex]
Divide both sides by 14 to isolate x
[tex]\frac{70}{14} =\frac{14x}{14} \\5=x[/tex]
Therefore, the value of x is 5.
I hope this helps!
The waiting time for a fire department to get called to a house fire is exponentially distributed with an average wait time of 14 minutes. Given that it has already taken 11 minutes, what is the probability that the wait time will be more than an additional 16 minutes?
Answer:
0.319 = 31.9% probability that the wait time will be more than an additional 16 minutes
Step-by-step explanation:
To solve this question, we need to understand the exponential distribution and conditional probability.
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: It has already taken 11 minutes.
Event B: It will take 16 more minutes.
Exponentially distributed with an average wait time of 14 minutes.
This means that [tex]m = 14, \mu = \frac{1}{14}[/tex]
Probability of the waiting time being of at least 11 minutes:
[tex]P(A) = P(X > 11) = e^{-\frac{11}{14}} = 0.4558[/tex]
Probability of the waiting time being of at least 11 minutes, and more than an additional 16 minutes:
More than 11 + 16 = 27 minutes. So
[tex]P(A \cap B) = P(X > 27) = e^{-\frac{27}{14}} = 0.1454[/tex]
What is the probability that the wait time will be more than an additional 16 minutes?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.1454}{0.4558} = 0.319[/tex]
0.319 = 31.9% probability that the wait time will be more than an additional 16 minutes
3z+8=12+3x-2
I really need the answer to this asap
Answer:
3z+3x=2
Step-by-step explanation:
3z+8=12+3x-2
collecting like terms
3z-3x=12-2-8
3z-3x=2
3z=2+3x
divide through by three
z= ⅔+x
what is the slope of a line parallel to the line whose equation is 2x+5y=10
Answer:
1. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -11. The slope of a line that is perpendicular to a line whose equation
is 5y = 10 + 2x is
2.
The line y = 2x - 1 is neither parallel nor perpendicular to the line
y = -2x + 3
The line y = -2x + 5 is parallel to the line y = -2x + 3
The line y = x + 7 is perpendicular to the line
y = -2x + 3
3. The equation of the line that passes through the point (5 , -4) and
is parallel to the line whose equation is 2x + 5y = 10 is
y = x - 2
Step-by-step explanation:
Let us revise some rules
The slope-intercept form of the linear equation is y = m x + b, where m is the slope of the line and b is the y-intercept
The slopes of the parallel lines are equal
The product of the slopes of the perpendicular lines is -1
A random sample of size 36 is to be taken from a population that is normally distributed with mean 72 and standard deviation 6. The sample mean of the observations in our sample is to be computed. The sampling distribution of the sample mean is
Answer:
The sampling distribution of the sample mean is approximately normal with mean 72 and standard deviation 1.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Normally distributed with mean 72 and standard deviation 6.
This means that [tex]\mu = 72, \sigma = 6[/tex]
A random sample of size 36
This means that [tex]n = 36, s = \frac{6}{\sqrt{36}} = 1[/tex]
The sampling distribution of the sample mean is
By the Central Limit Theorem, it is approximately normal with mean 72 and standard deviation 1.
Marissa constructed a figure with these views.
HELP ASAP EXTRA POINTS
Answer:
a triangular pyramid
Last year there were two hundred and forty seven thousand, three hundred and seventy two weddings in the UK.
Write this as a number
Answer:
247372
Step-by-step explanation:
two hundreds forty seven thousand, three hundred and seventy two
The number of weddings in the UK in numerical form will be 247,372.
What is Algebra?Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.
The acronym PEMDAS stands for Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This approach is used to answer the problem correctly and completely.
Last year there were two hundred and forty-seven thousand, three hundred and seventy-two weddings in the UK.
Convert the statement into a number. Then we have
⇒ 247,372
The number of weddings in the UK in numerical form will be 247,372.
More about the Algebra link is given below.
https://brainly.com/question/953809
#SPJ2
Tara makes 30 cups of donut topping by mixing sugar and cinnamon. The ratio of sugar to cinnamon is 3:2
How much sugar did Tara use in the donut topping?
Answer:
18
Step-by-step explanation:
3:2 means 3/2 or 3÷2
but its better to leave it as
3/2
A shipment of 50 precision parts including 4 that are defective is sent to an assembly plant. The quality control division selects 10 at random for testing and rejects the entire shipment if 1 or more are found defective. What is the probability this shipment passes inspection?
Answer:
0.3968 = 39.68% probability this shipment passes inspection.
Step-by-step explanation:
The parts are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
50 parts means that [tex]N = 50[/tex]
4 defective means that [tex]k = 4[/tex]
10 are chosen, which means that [tex]n = 10[/tex]
What is the probability this shipment passes inspection?
Probability that none is defective, so:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,50,10,4) = \frac{C_{4,0}*C_{46,10}}{C_{50,10}} = 0.3968[/tex]
0.3968 = 39.68% probability this shipment passes inspection.
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis: y=x6, y=1 about y=6.
Answer:
mehoimehoihoi
Step-by-step explanation:
An economic instructor at UCF is interested in the relationship between hours spent studying and total points earned in a course. Data collected on 11 students who took the course last semester follow:
# of observation(s) n = 30
# of independent variable(s) = 1
SSR = 1,297 SSE= 920
Required:
Find the F test statistic.
Answer:
[tex]F = 39.47[/tex]
Step-by-step explanation:
Given
[tex]n = 30[/tex] --- observations
[tex]p = 1[/tex] -- variables
[tex]SSR = 1,297[/tex]
[tex]SSE= 920[/tex]
Required
The F statistic
This is calculated using:
[tex]F = \frac{SSR}{p} \div \frac{SSE}{n - p -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{30 - 1 -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{28}[/tex]
[tex]F = 1297 \div \frac{920}{28}[/tex]
Rewrite as:
[tex]F = 1297 * \frac{28}{920}[/tex]
[tex]F = \frac{1297 *28}{920}[/tex]
[tex]F = \frac{36316}{920}[/tex]
[tex]F = 39.47[/tex]
The product of 2 consecutive even integers is 16 less than 8 times their sum
Answer:
there are two solutions:
x=0
and
x=14
Step-by-step explanation:
lts suppose the numbers are x and x+2, so:
[tex]x(x+2)=8(x+(x+2))-16\\x(x+2)=8(2x+2)-16=16x+16-16=16x\\x^2+2x=16x\\x^2-14x=0\\x(x-14)=0\\x=0,~x=14[/tex]
Give two examples of addition of two mixed numbers with different denominators
SHOW ALL STEPS
Answer:
First Example: 3 1/2 + 4 3/4, Second Example: 6 3/8 + 7 9/15
Extra Example: 8 4/20 + 3 5/10
Step-by-step explanation:
First Example:
1/2 + 3/4
1/2 is equal to 2/4 so it is now compatible to be added to 3/4.
2/4 + 3/4
= 5/4
Now for the mixed numbers since its 3 and 4, 3 + 4 = 7.
Final answer is 7 5/4.
Second Example:
3/8 + 9/15
9/15 can be reduced to 3/5
Now the equation is 3/8 + 3/5
= 15/40 + 24/40 is an equivalent equation
15/40 + 24/40
= 39/40
Now for the mixed numbers since its 6 and 7, 6 + 7 = 13
Final answer is 13 39/40.
I am going to include one last example just in case you need one:
Third Example:
4/20 + 5/10
We can reduce these to
1/5 + 1/2
= 2/10 + 5/10 is the equivalent equation
2/10 + 5/10
= 7/10
Now for the mixed numbers since its 8 and 3, 8 + 3 = 11.
Final answer is 11 7/10.
I Hope this helps!
Find the measure of each angle whose degree measure is represented in terms of x in the given
triangle.
Please help :)
Answer:
Step-by-step explanation:
Answer:
That's barely readable! Anyway the solution is:
7x + 7x +2 +5x +7 = 180 degrees
19x + 9 = 180 degrees
19x = 171 degrees
x = 9
So the angles are:
7x = 63 degrees
7x + 2 = 65
5x + 7 = 52
Double check:
Since ALL 3 triangle sides add up to 180:
63 + 65 + 52 = 180 degrees
Step-by-step explanation:
Find all solutions of the equation in the interval [0, 2pi); sqrt(3) * csc(theta) - 2 = 0
Answer:
Step-by-step explanation:
Solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is [tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
What is trigonometric ratio?" Trigonometric ratios are defined as relation of the ratio of the sides of the triangle to the acute angle of the given triangle enclosed in it."
Formula used
[tex]cosec\theta = \frac{1}{sin\theta}[/tex]
According to the question,
Given trigonometric ratio equation,
[tex]\sqrt{3} (cosec\theta) -2=0[/tex]
Replace trigonometric ratio [tex]cosec\theta[/tex] by [tex]sin\theta[/tex] in the above equation we get,
[tex]\sqrt{3} (\frac{1}{sin\theta} ) -2=0\\\\\implies \sqrt{3} (\frac{1}{sin\theta} ) = 2\\\\\implies sin\theta=\frac{\sqrt{3} }{2}[/tex]
As per given condition of the interval [ 0, 2π) we have,
[tex]\theta = sin^{-1} \frac{\sqrt{3} }{2} \\\\\ implies \theta = \frac{\pi }{3} or \frac{2\pi }{3}[/tex]
Hence, solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is
[tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
Learn more about trigonometric ratio here
https://brainly.com/question/1201366
#SPJ3
Sumas y restas w+y=9 3w-y=11
Answer:
w = 5
y = 4
Step-by-step explanation:
w+y=9
3w-y=11
4w = 20
w = 5
y = 4
Consider the probability that no less than 37 out of 295 cell phone calls will be disconnected. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 36.5
b. Area to the right of 37.5
c. Area to the left of 36.5
d. Area to the left of 37.5
e. Area between 36.5 and 37.5
==========================================================
Explanation:
The phrasing "no less than" means the same as "at least".
Saying "at least 37" means 37 is the lowest we can go.
If x is the number of disconnected calls, then [tex]x \ge 37[/tex] and we want to find the probability of this happening (the max being 295).
We could use the binomial distribution to find the answer, but that would require adding 295-37+1 = 259 different values which could get tedious. So we could use the normal approximation to make things relatively straight forward.
Assuming this binomial meets the requirements of the normal approximation, then we'd look under the normal curve for the area to the right of 36.5; which is why the answer is choice A.
Why 36.5 and not 37? This has to do with the continuity correction factor when translating from a discrete distribution (binomial) to a continuous one (normal).
If we used 37, then we'd be missing out on the edge case. So we go a bit beyond 37 to capture 36.5 instead. It's like a fail safe to ensure we do account for that endpoint of 37. It's like adding a buffer or padding.
------------
Side notes:
Choice B would be the answer if we wanted to excluded 37 from the group, ie if we wanted to calculate [tex]P(x > 37)[/tex] instead of [tex]P(x \ge 37)[/tex]. So we're moving in the opposite direction of choice A to avoid that edge case. We go with "right" instead of "left" since this is what the inequality sign says.1,620 to the nearest ten ? Please don't answer if you know your wrong !
Answer:
I will say 2,000 yes so that is what I am putting
Necesito ayuda con esto
Answer:
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Step-by-step explanation:
Considerando que se tratan de dos matrices de igual dimensión y cuyos elementos son números reales, conocemos que la adición entre dos matrices consiste en las sumas de los elementos de igual posición, esto es, los elementos que están localizados en las mismas filas y columnas, entonces, la suma es:
[tex]\vec A = \left[\begin{array}{cc}1&2\\-1&0\end{array} \right][/tex], [tex]\vec B = \left[\begin{array}{cc}-2&9\\3&5\end{array}\right][/tex]
[tex]\vec U = \vec A + \vec B = \left[\begin{array}{cc}1 + (-2)&2+9\\-1 + 3&0 + 5\end{array}\right][/tex]
[tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex]
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Sticky buns sell for $1.25 each,or $10.89 per dozen. how much does each bun cost if purchased by the dozen? How much do you save on 12 sticky buns?
Answer:
If you buy per dozen, each buns costs about 91 cents.
You will save $4.11 if you buy per dozen.
Step-by-step explanation:
1.25 * 12= $15
10.89/12= .9075 = .91 cents
15-10.89= $4.11
Which of the following is equivalent to (2a + a)(3b + 1)?
Tip: Simplify the expression on the left first, and then use the distributive property.
2a + 3ab + a
3a + 3b + 1
3a(3b + 3)
9ab + 3a
Answer:
9ab+3a
Step-by-step explanation:
(2a+a)(3b+1)=(3a)(3b+1)
3a(3b+1)
=(3a×3b)+3a×1
=9ab+3a
A strawberry farmer in Poteet knows that 1/8 of his strawberries are typically not fit to sell at the market (either because they went bad or are too unusually shaped). The farmer takes a random sample of 156 strawberries to inspect for the upcoming farmer's market and finds that 24 are unfit to sell. If he were to go back and pick 1000 more strawberries to inspect for the market, how would the standard deviation of the sample proportion be affected
Answer:
It would be smaller.
Step-by-step explanation:
Given that :
The number of the strawberries that are unfit for sell, x = 24
The total number of the strawberries to inspect, n = 156
Total number of the strawberries to be picked = 1000 strawberries
Therefore,
[tex]$\widehat p =\frac{x}{n}$[/tex]
[tex]$=\frac{24}{156}$[/tex]
= 0.1538
[tex]$\widehat p =\frac{x}{n}$[/tex]
[tex]$=\frac{24}{1000}$[/tex]
= 0.024
Therefore, the standard deviation of the sample proportion would be smaller.
Help please!!!!!!!???!!!!
Answer:
The equation is
y=0.5x+2
PLEASE HELP THX<3
Solve for w.
Answer:
- [tex]\frac{26}{15}[/tex]
Step-by-step explanation:
[tex]\frac{1}{5}[/tex] = - [tex]\frac{1}{2}[/tex]w - [tex]\frac{2}{3}[/tex]
multiply equation by a common denominator. Let's use 30.
you get :
6 = -15w - 20
26 = -15w
w = - [tex]\frac{26}{15}[/tex]
Which best describes the function represented by the
table?
Х
-2
2
4
6
Y у
-5
5
10
15
O direct variation; k = 33 를
O direct variation; k = 5
- 를
O inverse variation; k = 10
direct variation; k = 1
10
Answer:
Direct variation
[tex]k = 2.5[/tex]
Step-by-step explanation:
Given
The attached table
Required
The type of variation
First, we check for direct variation using:
[tex]k = \frac{y}{x}[/tex]
Pick corresponding points on the table
[tex](x,y) = (-2,-5)[/tex]
So:
[tex]k = \frac{-5}{-2} = 2.5[/tex]
[tex](x,y) = (4,10)[/tex]
So:
[tex]k = \frac{10}{4} = 2.5[/tex]
[tex](x,y) = (6,15)[/tex]
So:
[tex]k = \frac{15}{6} = 2.5[/tex]
Hence, the table shows direct variation with [tex]k = 2.5[/tex]