Answer:
12
Step-by-step explanation:
(18 + x)/24 = 25/20
18 + x = (25 x 24)/20
18 + x = (5 x 6)/1
18 + x = 30
x = 30 - 18
x = 12
Just having a rough time with this please help. Thank you
Answer:
The formatting is a bit off but assuming that -x + 2y = 6 and -3x + y = -2 are the two separate equations, the solution to your system of equations is (2,4) or x = 2, y = 4.
Step-by-step explanation:
Here is how you could solve this system of equations using the elimination method:
1. The first step is to find a variable you can eliminate, such as y.
-x+2y=6
-3x+y=-2
(multiply the second equation by -2)
−x+2y=6
6x-2y=4
This is your new set
2. Next, "add" your set together by lining it up and combining like terms.
-x+2y=6
+. 6x-2y=4
——————
5x = 10
3. Solve for x by dividing by 5
5x=10
10÷5=2
x=2
4. Now that you have your x, find y by substituting 2 for x in any of your original set's equations. We'll do the first equation, −x+2y=6.
−x+2y=6
-2+2y=6 ---> add 2 on both sides to remove -2
2y=8 ---> divide by 2 on both sides to remove the 2 from y
y=4
5. Set your answers up as an ordered pair like this ( ___ , ___ )
x=2 , y=4
(2, 4)
Hope this helps!
When Tom plays darts, he hits the
target 65% of the time. Find the
probability that he hits the target at
least four out of next six attempts.
A. 57.17%
B. 64.71%
C.42.83%
D. 35.29%
Option A is correct, 57.17% is the probability that he hits the target at least four out of next six attempts.
Let's calculate the probability of hitting the target exactly four times out of six attempts:
P(4 hits) = C(6, 4) × (0.65)⁴ × (1 - 0.65)⁶⁻⁴
The probability of hitting the target exactly five times out of six attempts:
P(5 hits) = C(6, 5) × (0.65)⁵ × (1 - 0.65)⁶⁻⁵
Now calculate the probability of hitting the target all six times:
P(6 hits) = (0.65)⁶
Now, we can find the probability that Tom hits the target at least four times by summing up the individual probabilities:
P(at least 4 hits) = P(4 hits) + P(5 hits) + P(6 hits)
P(at least 4 hits) = C(6, 4) × (0.65)⁴ × (1 - 0.65)⁶⁻⁴ + C(6, 5) × (0.65)⁵ × (1 - 0.65)⁶⁻⁵ + (0.65)⁶
=57.17%
Hence, 57.17% is the probability that he hits the target at least four out of next six attempts.
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ1
I pls need the answer
The equation of the line in the graph is
y = -3/2 x + 5.How to write the equation of the line in the graphFrom the graph the line passed through points (4,-1) and (0,5)
using the slope-intercept form of a line, which is y = mx + b,
where
m is the slope and
b is the y-intercept.
the slope of the line
m = (5 - (-1)) / (0 - 4) = 6 / -4 = -3/2
form the points the y intercept is 5
Therefore, the equation of the line is y = -3/2 x + 5.
Learn more about equation of line at
https://brainly.com/question/18831322
#SPJ1
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ = π 2 . (Select all that apply.) r = 3 + 6 cos(θ)
The polar equation r = 3+6cosθ is symmetric to the polar axis with respect to the polar axis.
To test the polar equation r = 3 + 6 cos(θ) for symmetry, we will consider each type of symmetry one by one:
1. Polar axis symmetry: Replace θ with -θ and check if the equation remains the same.
r = 3 + 6 cos(-θ) = 3 + 6 cos(θ) (since cosine is an even function)
Since the equation remains the same, the curve is symmetric with respect to the polar axis.
2. Pole symmetry: Replace r with -r and check if the equation remains the same.
-r = 3 + 6 cos(θ)
This equation is not equivalent to the original equation, so the curve is not symmetric with respect to the pole.
3. Line θ = π/2 symmetry: Replace θ with (π - θ) and check if the equation remains the same.
r = 3 + 6 cos(π - θ) = 3 - 6 cos(θ) (since cos(π - θ) = -cos(θ))
This equation is not equivalent to the original equation, so the curve is not symmetric with respect to the line θ = π/2.
In conclusion, the polar equation r = 3 + 6 cos(θ) is symmetric with respect to the polar axis, but not with respect to the pole or the line θ = π/2.
Learn more about polar equation : https://brainly.com/question/28847870
#SPJ11
Find the complement in degrees) of the supplement of an angle measuring 115º.
Given: An angle of measure 115 degrees We know that: The supplement of an angle is equal to 180 degrees minus the angle, and the complement of an angle is equal to 90 degrees minus the angle
Now, we need to find the complement of the supplement of an angle measuring 115 degrees.So, let's first find the supplement of the given angle:
Supplement of 115 degrees = 180 - 115= 65 degrees
Now, we need to find the complement of the above angle which is:
Complement of 65 degrees = 90 - 65= 25 degrees Therefore, the complement of the supplement of an angle measuring 115º is 25 degrees.
To know more about supplement,visit:
https://brainly.com/question/29471897
#SPJ11
1. if a is an n × n matrix and x is a vector in rn, then the product ax is a linear combination of the columns of matrix a. True or false?
A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. It can be used to represent systems of linear equations, transformations in geometry, and a wide range of other mathematical concepts in a compact and organized form.
When you multiply a matrix A (n × n) by a vector x (in R^n), the resulting product Ax is a linear combination of the columns of matrix A.
Here's a step-by-step explanation:
1. Let A be an n × n matrix with columns C₁, C₂, ..., Cₙ, and x be a vector in R^n with elements [x₁, x₂, ..., xₙ]^T (transpose).
2. When you multiply the matrix A by the vector x, the resulting vector Ax can be represented as:
Ax = A * x = [C₁ C₂ ... Cₙ] * [x₁, x₂, ..., xₙ]^T
3. The multiplication of A and x results in a new vector, where each element is formed by taking the dot product of the corresponding row of A with the vector x:
Ax = [x₁*C₁ + x₂*C₂ + ... + xₙ*Cₙ]
4. In the resulting vector Ax, you can see that each column of matrix A is multiplied by its corresponding scalar from the vector x, forming a linear combination of the columns of matrix A.
To know more about matrix visit:
https://brainly.com/question/29132693
#SPJ11
Use the Ratio Test to determine whether the series is convergent or divergent.
[infinity] n
6n
n = 1
Identify
an.
Evaluate the following limit.
lim n → [infinity]
an + 1
an
the series ∑(n=1 to infinity) [tex]n^{6}[/tex] / n! is convergent by using ratio test.
To apply the Ratio Test, we need to evaluate the limit of the ratio of consecutive terms, lim(n→∞) (a(n+1) / a(n)).
In this case, a(n) = [tex]n^{6}[/tex] / n! and a(n+1) =[tex](n+1)^{6}[/tex] / (n+1)!.
Taking the limit, we have:
lim(n→∞) [[tex](n+1)^{6}[/tex] / (n+1)!] / [[tex]n^{6}[/tex] / n!]
= lim(n→∞) [[tex](n+1)^{6}[/tex] / [tex]n^{6}[/tex]] * [n! / (n+1)!]
= lim(n→∞) [[tex](n+1)^{6}[/tex] / [tex]n^{6}[/tex]] * [1 / (n+1)]
= 1 * 0 = 0.
Since the limit of the ratio of consecutive terms is 0, which is less than 1, the series converges by the Ratio Test.
learn more about Ratio Test here:
https://brainly.com/question/20876952
#SPJ11
express the number as a ratio of integers. 5.880 = 5.880880880
5.880 can be expressed as the ratio of integers 127/25.
To express 5.880 as a ratio of integers, we can write it as follows:
5.880 = 5 + 0.880
To convert the decimal part (0.880) into a fraction, we can write it as a repeating decimal by observing the repeating pattern:
0.880880880...
The repeating part is "880", which has three digits.
Now, we can express 5.880 as a ratio of integers:
5.880 = 5 + 0.880 = 5 + 880/1000
To simplify the fraction, we can divide both the numerator and denominator by their greatest common divisor (GCD), which is 10:
5.880 = 5 + 880/1000 = 5 + (880 ÷ 10)/(1000 ÷ 10) = 5 + 88/100
Finally, we can simplify the fraction further:
5.880 = 5 + 88/100 = 5 + 22/25
Know more about ratio of integers here:
https://brainly.com/question/31384833
#SPJ11
Write And Solve A Story Problem With 6 Divided By 6
To write and solve a story problem with 6 divided by 6, we need to come up with a situation in which 6 is divided equally among 6 parts. For example:
There are 6 pieces of candy to be divided equally among 6 children. Solution: To solve this problem, we can simply divide the total number of candies (6) by the number of children (6):6 ÷ 6 = 1Therefore, each child will receive 1 piece of candy. Another way to solve this problem is to use multiplication. Since division is the inverse of multiplication, we can think of this problem as:6 ÷ 6 = x can be rewritten as 6 = x × 6, where x is the number of candies each child receives. Then we can solve for x by dividing both sides by 6:x = 6 ÷ 6x = 1Therefore, each child will receive 1 piece of candy.
To know more about problem visit:
brainly.com/question/31611375
#SPJ11
Evaluate 7j+5-8k7j+5−8k7, j, plus, 5, minus, 8, k when j=0.5j=0.5j, equals, 0, point, 5 and k=0.25k=0.25k, equals, 0, point, 25.
The evaluated value of the given expression when j = 0.5 and k = 0.25 is 6.5.
The given expression is 7j+5−8k7j+5−8k7, j, plus, 5, minus, 8, k.
We need to evaluate the given expression when j=0.5j=0.5j, equals, 0, point, 5 and k=0.25k=0.25k, equals, 0, point, 25.
Now we substitute the values of j and k in the given expression.
7(0.5)+5−8(0.25)7(0.5)+5−8(0.25)7, times, 0, point, 5, plus, 5, minus, 8, times, 0, point, 25=3.5+5-2=6.5
The value of the expression when j=0.5j=0.5j, equals, 0, point, 5 and k=0.25k=0.25k, equals, 0, point, 25 is 6.5, which is the final answer.
Therefore, the evaluated value of the given expression when j = 0.5 and k = 0.25 is 6.5.
To know more about evaluated value visit:
https://brainly.com/question/29181699
#SPJ11
sketch the region enclosed by the given curves. y = 2 x , y = 8x, y = 1 8 x, x > 0
The sketched region enclosed by the given curves, y = 2/x, y = 8x, and y = x/8 is given below.
To sketch the region enclosed by the given curves, we'll first plot each curve separately and then identify the region between them. The curves are:
y = 2/x
y = 8x
y = x/8
Let's start by plotting these curves one by one:
y = 2/x:
Since x > 0, the curve y = 2/x is a hyperbola with the y-axis as an asymptote and passes through the point (1, 2).
y = 8x:
This is a straight line passing through the origin (0, 0) with a slope of 8. The line goes through the first quadrant.
y = x/8:
This is another straight line with a slope of 1/8. It passes through the origin (0, 0) and also goes through the first quadrant.
Therefore, the final graph is given below.
To learn more about the graph;
https://brainly.com/question/23680294
#SPJ12
The complete question:
Sketch the region enclosed by the given curves.
y = 2/x, y = 8x, y = x/8, x>0
write a formula for the indicated rate of change. s(c, k) = c(32k); dc/dkdc/dk
The formula for the indicated rate of change dc/dk is dc/dk = 32c.
To find the indicated rate of change, we need to calculate dc/dk, which represents the partial derivative of the function s(c, k) = c(32k) with respect to k while treating c as a constant.
To calculate dc/dk, we differentiate the function s(c, k) with respect to k while considering c as a constant:
dc/dk = d/dk (c * (32k))
Applying the product rule of differentiation, we have:
dc/dk = c * d/dk (32k) + (32k) * d/dk (c)
The derivative of 32k with respect to k is 32, as it is a constant multiple of k. The derivative of c with respect to k is zero since c is treated as a constant.
Therefore, dc/dk simplifies to:
dc/dk = c * 32 + 0
dc/dk = 32c
So, the formula for the indicated rate of change dc/dk is dc/dk = 32c.
To know more about partial derivative refer to-
https://brainly.com/question/31397807
#SPJ11
Sam the snail crawls at a rate of 2. 64 ft. /minute. What is Sam’s rate in miles per hour? State your answer to the nearest hundredth. (1 miles = 5280 feeet)
Sam the snail's rate is approximately 0.03 miles per hour.
To find Sam's rate in miles per hour, we need to convert his speed from feet per minute to miles per hour.
We know that 1 mile is equal to 5280 feet. First, we can convert Sam's speed from feet per minute to feet per hour by multiplying it by 60 since there are 60 minutes in an hour.
Therefore, Sam's speed in feet per hour is 2.64 ft/min * 60 min/hr = 158.4 ft/hr.
Next, we can convert Sam's speed from feet per hour to miles per hour. Since 1 mile is equal to 5280 feet, we can divide Sam's speed in feet per hour by 5280 to get his speed in miles per hour.
Therefore, Sam's speed in miles per hour is 158.4 ft/hr / 5280 ft/mi = 0.03 mi/hr.
Therefore, Sam the snail crawls at a rate of approximately 0.03 miles per hour.
Learn more about speed:
https://brainly.com/question/312162
#SPJ11
Lee marks sixths on a number line. He
writes just before 1. What fraction does
he write on the first mark to the right of 17
Common Core Assessment
14. Divide Katrina
To determine the fraction that Lee writes on the first mark to the right of 17, we need to understand the numbering pattern and the position of the marks.
If Lee marks sixths on the number line, it means that the interval between each mark is 1/6.
Starting from 0, the first mark to the right of 17 would be located at 18.
To find the fraction written on this mark, we can calculate the difference between 18 and 17 and express it as a fraction of the interval between each mark (1/6).
18 - 17 = 1
Therefore, the fraction that Lee writes on the first mark to the right of 17 is 1/6.
Learn more about fraction here:
https://brainly.com/question/10354322
#SPJ11
Solve the equation by completing the square
a^2+14a-51=0
Answer:
a = 3, -17
Step-by-step explanation:
a ² + 14a - 51 = 0
1) put the a, not a ², in parenthesis.
2) half the coefficient (14) of a. that is 7. Put that into same parenthesis.
3) we have (a + 7)
4) square this and multiply out. (a + 7) ² = a ² + 7a + 7a +49 = a ² +14a + 49
5) this looks just like the original equation except for +49. What do we have to do to get back to original? 49 – (-51) = 49 + 51 = 100. We have to subtract 100
6) now we have (a + 7) ² – 100 =0
7) (a + 7) ² = 100
8) (a + 7) = ± √100
9) a = ± √100 - 7
a = ±10 - 7
= -17 and 3
Solve the simultaneous equations
x^2 +y^2 =9
X+y=2
The given simultaneous equations are x² + y² = 9 ...............(1)
x + y = 2 ...............(2)
Equation (2) is solved for y by taking x as the subject:
y = 2 - x
Substitute this value of y in the equation (1):
x² + y² = 9x² + (2 - x)² = 9x² + 4 - 4x + x² = 9
Rearrange the above equation in the standard quadratic form by bringing all terms to one side of the equation:
x² + x² - 4x - 5 = 02
x² - 4x - 5 = 0
This equation is a quadratic equation and can be solved by using the quadratic formula:
x = [-(-4) ± √(-4)² - 4(2)(-5)]/2(2)
x = [4 ± √56]/4
x = [4 ± 2√14]/4
x = [2 ± √14]/2
Substitute these values of x in equation (2) to find the corresponding values of y:
For x = [2 + √14]/2,
y = 2 - [2 + √14]/2
y = (4 - [2 + √14])/2
y = (2 - √14)/2
For x = [2 - √14]/2,
y = 2 - [2 - √14]/2
y = (4 - [2 - √14])/2
y = (2 + √14)/2
Therefore, the solution of the given simultaneous equations is
x = [2 + √14]/2,
y = (2 - √14)/2
OR
x = [2 - √14]/2,
y = (2 + √14)/2
To know more about simultaneous , visit:
https://brainly.com/question/14365907
#SPJ11
The cost function for a company ro produce a lunch box c(x)= 3x+7000, where x is the number of lunch boxes. the company sells the lunch boxes for $12 each. write a function and profit revenue for the company
The profit function is 9x - 7000 and the revenue function is 12x.
Given that the cost function for a company to produce a lunch box is c(x)= 3x+7000 where x is the number of lunch boxes and the company sells the lunch boxes for $12 each.
To write a profit function, the revenue function is required to calculate the profit earned by the company.
The revenue function is given as:
Revenue = Selling Price × Quantity Sold
Price is $12 for each lunch box, therefore
Revenue = $12 × Quantity sold
Quantity sold is represented as x, therefore,
Revenue = 12x
The profit function is given as:
Profit = Revenue - Cost
The cost function is given as c(x)= 3x+7000
Therefore,
Profit = 12x - (3x + 7000)
Profit = 9x - 7000
Hence, the profit function is 9x - 7000 and the revenue function is 12x.
To know more about revenue visit:
https://brainly.com/question/14952769
#SPJ11
When government spending increases by $5 billion and the MPC = .8, in the first round of the spending multiplier process a. spending decreases by $5 billion b. spending increases by $25 billion c. spending increases by $5 billion d. spending increases by $4 billion
When government spending increases by $5 billion and the MPC = .8, in the first round of the spending multiplier process, spending increases by $20 billion.
The spending multiplier is the amount by which GDP will increase for each unit increase in government spending. It is calculated as 1/(1-MPC), where MPC is the marginal propensity to consume. In this case, MPC = .8, so the spending multiplier is 1/(1-.8) = 5.
Therefore, when government spending increases by $5 billion, the total increase in spending in the economy will be $5 billion multiplied by the spending multiplier of 5, which equals $25 billion. However, the initial increase in spending is only $5 billion, hence the increase in the first round of the spending multiplier process is $20 billion.
In summary, when government spending increases by $5 billion and the MPC = .8, the initial increase in spending is $5 billion, but the total increase in the first round of the spending multiplier process is $20 billion.
To know more about marginal propensity to consume visit:
https://brainly.com/question/31517852
#SPJ11
linear polystyrene has phenyl groups that are attached to alternate not adjacent carbons of the polymer chain. Explain the mechanistic basis for this fact
The mechanistic basis for linear polystyrene having phenyl groups attached to alternate carbons of the polymer chain is due to the nature of the polymerization reaction, specifically free-radical polymerization.
1. Free-radical polymerization of styrene starts with the initiation step, where a free radical initiator generates a reactive radical site.
2. The reactive radical site reacts with the double bond of the styrene monomer, forming a new radical site on the styrene molecule.
3. This new radical site on the styrene molecule can now react with another styrene monomer, effectively joining them together.
4. As the radical site is always at the end of the growing polymer chain, the phenyl groups of each added styrene monomer will be attached to alternate carbons. This occurs because the reactive site is situated between the phenyl group and the double bond in the monomer, creating a zigzag pattern as the chain grows.
Conclusion:
The attachment of phenyl groups to alternate carbons of the polymer chain in linear polystyrene can be attributed to the free-radical polymerization mechanism. The reactive radical site, created during the polymerization, allows the phenyl groups to be connected in an alternating pattern along the chain.
To learn more about polymerization visit:
https://brainly.com/question/27354910
#SPJ11
the assembly time for a product is uniformly discributed between 6 to 10 minutes the standard deviaiton of assembly time in minutes is approximately
The assembly time for a product is uniformly distributed between 6 to 10 minutes the standard deviation of assembly time in minutes is approximately 1.155.
To find the standard deviation of assembly time for a product that is uniformly distributed between 6 to 10 minutes, we can use the following formula for a uniform distribution:
Standard Deviation (σ) = √((b - a)² / 12)
Here, 'a' is the lower limit (6 minutes) and 'b' is the upper limit (10 minutes).
Step 1: Calculate (b - a)²
(10 - 6)² = 4² = 16
Step 2: Divide by 12
16 / 12 = 1.3333
Step 3: Find the square root
√1.3333 ≈ 1.155
So, the standard deviation of assembly time for a product in minutes is approximately 1.155.
Know more about Standard Deviation here:
https://brainly.com/question/475676
#SPJ11
let s = {3, 8, 13, 18, 23, 28}, e = {8, 18, 28}, f = {3, 13, 23}, and g = {23, 28}. (enter ∅ for the empty set.) find the event (e ∩ f ∩ g)c.
The event (e ∩ f ∩ g)c is equal to the set {3, 8, 13, 18}.
To find the complement of the intersection of sets e, f, and g, denoted as (e ∩ f ∩ g)c, we first need to determine the intersection of sets e, f, and g.
The intersection of sets e, f, and g is the set of elements that are present in all three sets. In this case:
e ∩ f ∩ g = {23, 28}
To find the complement of this intersection, we need to consider all the elements that are not in the set {23, 28}.
Given that the original set s = {3, 8, 13, 18, 23, 28}, the complement of the intersection can be found by subtracting {23, 28} from set s:
(e ∩ f ∩ g)c = s - {23, 28}
Calculating this, we have:
(e ∩ f ∩ g)c = {3, 8, 13, 18}
Therefore, the event (e ∩ f ∩ g)c is equal to the set {3, 8, 13, 18}.
To know more about set refer to-
https://brainly.com/question/8053622
#SPJ11
Describe what each variable does to transform the basic function.
+ d
.
g(x) = a - 2b(x-c)
)
c:
a:
d:
b:
Main answer: Transformations of basic functions depend on the changes made to their variables.
Supporting answer :Functions can be transformed in different ways. The variable a modifies the vertical stretch or compression of a function. A negative value of a produces a reflection over the x-axis. The variable b is used to modify the horizontal stretch or compression of the function. A negative value of b produces a reflection over the y-axis. The variable h translates the graph to the left (h > 0) or to the right (h < 0). Lastly, the variable k translates the graph up (k > 0) or down (k < 0).
Know more about Functions here:
https://brainly.com/question/26896273
#SPJ11
If the average value of the function f on the interval 1≤x≤4 is 8, what is the value of ∫41(3f(x) 2x)dx ?
According to question the value of ∫41(3f(x) 2x)dx is 73.
We know that the average value of the function f on the interval [1,4] is 8. This means that:
(1/3) * ∫1^4 f(x) dx = 8
Multiplying both sides by 3, we get:
∫1^4 f(x) dx = 24
Now, we need to find the value of ∫4^1 (3f(x) 2x) dx. We can simplify this expression as follows:
∫1^4 (3f(x) 2x) dx = 3 * ∫1^4 f(x) dx + 2 * ∫1^4 x dx
Using the average value of f, we can substitute the first integral with 24:
∫1^4 (3f(x) 2x) dx = 3 * 24 + 2 * ∫1^4 x dx
Evaluating the second integral, we get:
∫1^4 x dx = [x^2/2]1^4 = 8.5
Substituting this value back into the equation, we get:
∫1^4 (3f(x) 2x) dx = 3 * 24 + 2 * 8.5 = 73
To learn more about integral visit:
brainly.com/question/18125359
#SPJ11
Determine if the following functions T : R2 R2 are one-to-one and/or onto. (Select all that apply.) (a) T(x, y)-(2x, y) one-to-one onto U neither (b) T(x, y) -(x4, y) one-to-one onto neither one-to-one onto U neither (d) T(x, y) = (sin(x), cos(y)) one-to-one onto U neither
So there are Output pairs that cannot be obtained for any input pair.
(a) T(x, y) = (2x, y)
This function is one-to-one but not onto. It is one-to-one because different input pairs (x1, y1) and (x2, y2) will always result in different output pairs (2x1, y1) and (2x2, y2). However, it is not onto because for any y ≠ 0, there is no input pair (x, y) that maps to the output pair (0, y).
(b) T(x, y) = (x^4, y)
This function is onto but not one-to-one. It is onto because for any given output pair (a, b), we can find an input pair (x, y) such that T(x, y) = (a, b) by taking the fourth root of a for x and setting y to b. However, it is not one-to-one because different input pairs can result in the same output pair. For example, T(1, 2) = T(-1, 2) = (1, 2).
(c) T(x, y) = (sin(x), cos(y))
This function is neither one-to-one nor onto. It is not one-to-one because different input pairs can result in the same output pair due to the periodic nature of sine and cosine functions. For example, T(0, 0) = T(2π, 0) = (0, 1). It is also not onto because the range of the function is limited to the interval [-1, 1] for both x and y, so there are output pairs that cannot be obtained for any input pair.
To know more about Output .
https://brainly.com/question/27646651
#SPJ11
T(x, y) = (2x, y) is one-to-one and onto.
To show one-to-one, assume T(a, b) = T(c, d). Then we have (2a, b) = (2c, d), which implies a = c and b = d.
To show onto, we need to show that for any (x, y) in R2, there exists (a, b) in R2 such that T(a, b) = (x, y). If we take (a, b) = (x/2, y), then T(a, b) = (x, y).
(b) T(x, y) = (x^4, y) is one-to-one but not onto.
To show one-to-one, assume T(a, b) = T(c, d). Then we have (a^4, b) = (c^4, d), which implies a = c and b = d.
To show not onto, note that there is no (a, b) in R2 such that T(a, b) = (-1, 0), since x^4 is always non-negative.
(d) T(x, y) = (sin(x), cos(y)) is neither one-to-one nor onto.
To show not one-to-one, note that T(0, 0) = T(2π, 0), but (0, 0) ≠ (2π, 0).
To show not onto, note that there is no (x, y) in R2 such that T(x, y) = (0, 1), since sin(x) is always between -1 and 1.
Know more about functions here:
https://brainly.com/question/12431044
#SPJ11
What is the equation of a line perpendicular to 4x+3y=15 that goes through the point (5,2)?
Answer:
y = (3/4)x - 7/4
Step-by-step explanation:
y – y1 = m (x – x1), where y1 and x1 are the coordinates of a given point.
4x + 3y = 15
3y = -4x + 15
y = -(4/3)x + 5.
the slope of this line is -4/3.
the slope of the perpendicular line is -1 / (-4/3) = +3/4.
equation of perpendicular line through (5, 2) is:
y - 2 = (3/4) (x -5) = (3/4)x - (15/4)
y = (3/4)x - (15/4) + 2
y = (3/4)x - 7/4
Which expression is equivalent [a^8]^4
a^2
a^4
a^12
a^32
Answer:
a³²
Step-by-step explanation:
the law of exponents states that when raising a power to another power multiply the exponents
our answer will go like this:
(a⁸)⁴
a⁸*⁴
a³²
Suppose you walk 18. 2 m straight west and then 27. 8 m straight north. What vector angle describes your
direction from the forward direction (east)?
Add your answer
Given that a person walks 18.2 m straight towards the west and then 27.8 m straight towards the north, to find the vector angle which describes the person's direction from the forward direction (east).
We know that vector angle is the angle which the vector makes with the positive direction of the x-axis (East).
Therefore, the vector angle which describes the person's direction from the forward direction (east) can be calculated as follows:
Step 1: Calculate the resultant [tex]vectorR = √(18.2² + 27.8²)R = √(331.24)R = 18.185 m ([/tex]rounded to 3 decimal places)
Step 2: Calculate the angleθ = tan⁻¹ (opposite/adjacent)where,opposite side is 18.2 mandadjacent side is [tex]27.8 mθ = tan⁻¹ (18.2/27.8)θ = 35.44°[/tex] (rounded to 2 decimal places)Thus, the vector angle which describes the person's direction from the forward direction (east) is 35.44° (rounded to 2 decimal places).
Hence, the correct option is 35.44°.
To know more about the word describes visits :
https://brainly.com/question/6996754
#SPJ11
Calculate the net force these forces acts on a single object, 30n up 25n down 5n down 5n up
The net force acting on the object is 10N up
When multiple forces act on an object, the net force is the total force acting on the object. It determines the object's motion, including its direction and speed.
To calculate the net force, we need to add all the forces acting on the object. If the net force is zero, the object will remain at rest or move with a constant velocity, while if it is non-zero, the object's velocity will change, and it will accelerate in the direction of the net force.
In this scenario, there are four forces acting on the object, two pointing up and two pointing down. To calculate the net force, we need to add all the forces together, taking into account their direction and magnitude.
Since the forces pointing up and down are opposite in direction, we subtract the smaller force from the larger one to get the resultant force. In other words, we can cancel out the forces pointing in opposite directions, leaving us with a single net force acting on the object.
So, in this case, we have a 30N force pointing up, a 25N force pointing down, a 5N force pointing down, and a 5N force pointing up.
First, we'll cancel out the 5N force pointing down with the 5N force pointing up.
30N up - 25N down - 5N down + 5N up
= 30N - 25N - 5N + 5N
= 30N - 20N
= 10N up
Therefore, the net force acting on the object is 10N up. This means that the object will accelerate in the upward direction with a force of 10N
To know more about Force here
https://brainly.com/question/26115859
#SPJ4
Complete Question
Calculate the net force these forces acts on a single object, 30N [up],
25N [down], 5N [down] and 5N [up]
Express x²-8x+5 in form of (x-a)^2 -b
Answer:
a=4, b=11
Step-by-step explanation:
You have to complete the square.
x²-8x+5 = (x-4)²-16 +5 = (x-4)² - 11
Sanjay’s closet is shaped like a rectangular prism. It measures feet high and has a base that measures feet long and feet wide. What is the volume of Sanjay’s closet?
The volume of Sanjay’s closet would be 82.875 ft³
It is known that a rectangular prism is a three-dimensional shape that has two at the top and bottom and four are lateral faces.
The volume of a rectangular prism=Length X Width X Height
Given parameters are;
4 1/4 ft long, 3 1/4 ft wide, and 6 ft tall.
V = Length X Width X Height
V = 3 1/4 x 4 1/4 x 6
V = 82. 7/8 ft³ or 82.875 ft³
The complete question is
Sanjay’s closet is shaped like a rectangular prism. It measures 4 1/4 ft long, 3 1/4 ft wide, and 6 ft tall. What is the volume of Sanjay’s closet?
Learn more about a rectangular prism;
https://brainly.com/question/21308574
#SPJ1