Answer:
a) 764.45K
b) 210.48 kJ/kg
c) 30.14%
Explanation:
pressure ratio = 10
minimum temperature = 295 k
maximum temperature = 1240 k
isentropic efficiency for compressor = 83%
Isentropic efficiency for turbine = 87%
a) Air temperature at turbine exit
we can achieve this by interpolating for enthalpy
h4 = 783.05 kJ/kg ( calculated in the background ) at state 4 using Table A-17 for Ideal gas properties of air
T4 ( temperature at Turbine exit ) = 760 + ( 780 - 760 ) [tex](\frac{783.05-778.18}{800.13-778.18} )[/tex] = 764.45K
b) The net work output
first we determine the actual work input to compressor
Wc = h2 - h1 ( calculated values )
= 626.57 - 295.17 = 331.4 kJ/kg
next determine the actual work done by Turbine
Wt = h3 - h4 ( calculated values )
= 1324.93 - 783.05 = 541.88 kJ/kg
finally determine the network output of the cycle
Wnet = Wt - Wc
= 541.88 - 331.4 = 210.48 kJ/kg
c) determine thermal efficiency
лth = Wnet / qin ------ ( 1 )
where ; qin = h3 - h2
equation 1 becomes
лth = Wnet / ( h3 - h2 )
= 210.48 / ( 1324.93 - 626.57 )
= 0.3014 = 30.14%
A wet electrode can cause arc blow ?
Answer:
yes it can
Explanation:
A bearing is to be used as shaft support to carry both radial and thrust forces. Calculations show that a 02 series ball bearing with a bore size of 20 mm would work well for this application. What are the static and dynamic load ratings of this bearing in kN
Answer:
The correct answer is "20.8 kN" and "31 kN". A further explanation is given below.
Explanation:
The angular touch bearing seems to be a fine replacement while accommodating radial and even some displacement pressures. You may receive static as well as dynamic scores from either the manufacturer's collections.The load ratings should be for the SKF bearing including its predetermined distance:
Static load
= 20.8 kN
Dynamic load
= 31 kN
For RTK to work, what do we need besides two or more receivers collecting data from a sufficient number of satellites simultaneously?
Answer:
phase measurement and the information content
Explanation:
The full form of RTK is Real Time Kinematic. It is used for satellite navigation technique to increase the precision of the position data that is derived from the positioning systems based on satellites like the NavIC, GPS, Galileo, BeiDou and GLONASS. It takes help of the measurements of phase of signal's carrier wave and also the information content of these signals and it also relies on the single interpolated virtual station in order to provide the real time corrections and provide correct and accurate information.
Cody’s car accelerates from 0m/s to 45 m/s northward in 15 seconds. What is the acceleration of the car

Answer:
3 m/s²
Explanation:
Acceleration is calculated as :
a= Δv/ t
where ;
Δv = change in velocity
Δv = 45 - 0 = 45 m/s
t= 15 s
a= 45 /15
a= 3 m/s²
30 points and brainiest if correct please help A, B, C, D
Which of the following describes the purpose of the button on the housing of a tape measure?
A. to measure right angles
B. to lock the tape into place
C. to hold a measuring pencil
D. to help wind the tape by hand
Answer:
B. to lock the tape into place
Explanation:
the button on the front of the housing locks the tape into place when pressed, preventing the tape from being pulled out further it retracting
Calculate the radius of a vanadium atom, given that it has a BCC crystal structure, density of 5.96 g/cm3, and an atomic weight of 50.9 g/mol (Max. pts. 5).
Answer:
The answer is "[tex]\bold{1.32 \times 10^{-3} \ cm}[/tex]".
Explanation:
All of the atoms in a BCC crystalline structure are contained in the 8-corner unit cell.
Each corner connects the atom to a single cell [tex]\frac{1}{8}[/tex]
Therefore, the unit cell number of atoms:
[tex]= 8 \times \frac{1}{8}+ 1 \\\\= 1+1 \\\\= 2 \ atom[/tex]
[tex]The mass unit cell = \frac{ \text{Number of atoms} \times \text{atomic weight}} {Avagadro number}\\\\= \frac{2 \times 50.9}{6.023 \times 10^{23}} \\\\= 1.69 \times 10^{-22} \ g\\\\Area Of the atom= \frac{4r}{\sqrt{3}}\\\\ 5.96 = \frac{1.69 \times 10^{-22}}{volume}\\\\volume= 2.835 \times 10^{25}\\\\v=d^3\\\\v= (\frac{4r}{\sqrt{3}})^3\\\\\to 2.835 \times 10^{-23} \times (\sqrt{3})^3 = 4^3 r^3[/tex]
[tex]\to \sqrt[3]{\frac{{2.835 \times 10^{-23} \times (\sqrt{3})^3}}{4^3}} =r\\\\\to r= 1.32 \times 10^{-3} \ cm[/tex]
what is the correct answer A, B, C, D
will give 35 points and brainiest
Which of the following devices is used to determine if an item is horizontal?
A. a level
B. a lever
C. a shank
D. a clamp
Answer:
B a lever because it can move up and down
Explanation:
A skier wears a jacket filled with goose down that is 15 mm thick. Another skier wears a wool sweater that is 4.0 mm thick. Both have the same surface area. Assuming the temperature difference between the inner and outer surfaces of each garment is the same, calculate the ratio (wool/goose down) of the heat lost due to conduction during the same time interval. Isn't heat flow directly proportional to the distance?
Answer:
Why the f do you have a dumb goose on your clothes?
Explanation:
Chickens are so much better than gooses, first of all, and second of all, drop out of school. Its so much easier. Next year eligible to drop out by law and ima f school and live in da hood with JB Money. Care to join me in Racine? I need some more "employees" to help be a look-out for cops
The ratio of the heat lost due to conduction during the same time interval is Qw / Qs = 6.
What is heat loss?The deliberate or accidental transfer of heat from one material to another is known as heat loss. Radiation, convection, and conduction can all contribute to this.
When a component comes in direct touch with another component, whether it is insulated or not, conduction frequently happens. U value x Wall area x Delta T is the formula used to calculate the amount of heat loss via a wall in BTUs.
Q = KA ΔTФ / L
QL /K = A ΔTФ
Where, A T and is constant
so, QL/K = constant
Qg Lg / Kg = Qw Lw /Kw
0.04 x 15 x 10-3 / 0.025 x 4 x 10-3
Qw / Qs = 6
Therefore, the heat loss is Qw / Qs = 6.
To learn more about heat loss, refer to the link:
https://brainly.com/question/14228650
#SPJ5
What are the numbers for the coil connection of the LB2 relay?
Answer:
85 and 86 are the coil pins while 30, 87, and 87a are the switch pins. 87 and 87a are the two contacts to which 30 will connect. If the coil is not activated, 30 will always be connected to 87a. Think of this as the relay in the Normally Closed (OFF) position.
Explanation:
A 2 m3 insulated rigid tank contains 3 kg of nitrogen at 90 kPa. Now work is done on the system until the pressure in the tank rises to 175 kPa. Determine the entropy change of nitrogen in kJ/K during this process assuming constant specific heats.
Answer: [tex]\Delta S[/tex] = 1.47kJ/K
Explanation: Entropy is the measure of a system's molecular disorder, i.e, the unuseful work a system does.
The nitrogen gas in the insulated tank can be described as an ideal gas, so it can be used the related formulas.
For the entropy, the ratio of initial and final temperatures is needed and as volume is constant, we use:
[tex]\frac{P_{1}}{T_{1}} =\frac{P_{2}}{T_{2}}[/tex]
[tex]\frac{P_{2}}{P_{1}} =\frac{T_{2}}{T_{1}}[/tex]
[tex]\frac{T_{2}}{T_{1}} =\frac{175}{90}[/tex]
[tex]\frac{T_{2}}{T_{1}} =1.94[/tex]
Specific Heat is the quantity of heat required to increase the temperature 1 degree of a unit mass of a substance. Specific heat of nitrogen at constant volume is [tex]c_{v}=[/tex] 0.743kJ/kg.K
The change in entropy is calculated by
[tex]\Delta S= m[c_{v}ln(\frac{T_{2}}{T_{1}})-Rln(\frac{V_{2}}{V_{1}} )][/tex]
For the nitrogen insulated in a rigid tank:
[tex]\Delta S= m[c_{v}ln(\frac{T_{2}}{T_{1}})][/tex]
Substituing:
[tex]\Delta S= 3[0.743ln(1.94)][/tex]
[tex]\Delta S=[/tex] 1.47
The entropy change of nitrogen in an insulated rigid tank is 1.47kJ/K
What are the prefixes for 1, 10, 1000, 1,000,000, .1, .01, .001, .000001
Prefix Symbol Multiplier Exponential
yotta Y 1,000,000,000,000,000,000,000,000 1024
zetta Z 1,000,000,000,000,000,000,000 1021
exa E 1,000,000,000,000,000,000 1018
peta P 1,000,000,000,000,000 1015
tera T 1,000,000,000,000 1012
giga G 1,000,000,000 109
mega M 1,000,000 106
kilo k 1,000 103
hecto h 100 102
deca da 10 101
1 100
deci d 0.1 10¯1
centi c 0.01 10¯2
milli m 0.001 10¯3
micro µ 0.000001 10¯6
nano n 0.000000001 10¯9
pico p 0.000000000001 10¯12
femto f 0.000000000000001 10¯15
atto a 0.000000000000000001 10¯18
zepto z 0.000000000000000000001 10¯21
yocto y 0.000000000000000000000001 10¯24
A steam power plant with a power output of 230 MW consumes coal at a rate of 60 tons/h. If the heating value of the coal is 30,000 kJ/kg, determine the overall efficiency of this plant.
Answer:
[tex]\eta =46\%[/tex]
Explanation:
Hello!
In this case, we compute the heat output from coal, given its heating value and the mass flow:
[tex]Q_H=60\frac{tons}{h}*\frac{1000kg}{1ton}*\frac{1h}{3600s}*\frac{30,000kJ}{kg}\\\\Q_H=500,000\frac{kJ}{s}*\frac{1MJ}{1000J} =500MW[/tex]
Next, since the work done by the power plant is 230 MW, we compute the efficiency as shown below:
[tex]\eta =\frac{230MW}{500MW}*100\% \\\\\eta =46\%[/tex]
Best regards!
For a 55 wt% Pb–45 wt% Mg alloy slowly cooled from 700°C to 300°C, at what temperature does the first solid phase form?
Answer:
hello your question is incomplete attached below is the complete question
answer : 550°c
Explanation:
From the phase diagram attached we can see that at point between 500° and 600° i.e.550°c on the phase diagram the first solid phase was form when a 55 wt% Pb-45 wt% Mg alloy slowly cools down from 700 to 300°c
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5 × 10^-4 mm (0.9843 × 10^-5 in.) and a crack length of 5 × 10^-2 mm (1.969 × 10^-3 in.) when a tensile stress of 130 MPa (18860 psi) is applied?
Answer:
2600 MPa
Explanation:
The formula to be used for the question is
σ(m) = 2 * σ(o) * [α/ρ(t)]^0.5, where
σ(m) = maximum stress
σ(o) = maximum applied tensile stress
α = length of surface crack
ρ(t) = radius of curvature of the crack
It's an easy one, as we have all the values given from the question, and all we do is plug them in directly
σ(m) = 2 * 130 * [(0.05/2)/0.00025]^0.5
σ(m) = 260 * [0.025/0.00025]^0.5
σ(m) = 260 * 100^0.5
σ(m) = 260 * 10
σ(m) = 2600 MPa
A series resistive circuit has two resistors. R1 is 570 ohms and R2 is 560 ohms.
The total circuit current is 17.9 milliamps.
Find the voltage drop across R1 in volts.
Answer:
10.203 Volts
Explanation:
For this problem, we need to understand that a series resistive circuit is simply a circuit with some type of voltage source and some resistors, in this case, R1 and R2.
First, we need to find the voltage in the circuit. To do this, we need to find the total resistance of the circuit. When two resistors are in series, you sum the resistance. So we can say the following:
R_Total = R1 + R2
R_Total = 570 Ω + 560 Ω
R_Total = 1130 Ω
Now that we have R_Total for the circuit, we can find the voltage of the circuit by using Ohm's law, V = IR.
V_Total = I_Total * R_Total
V_Total = 17.9 mA * 1130 Ω
V_Total = 20.227 V
Now that we have V_Total, we can find the voltage drop across each resistor by using Ohm's law once more. Note, that since our circuit is series, both resistors will have the same current (I.e., I_Total = I_1 = I_2).
V_Total = V_1 + V_2
V_Total = V_1 + I_2*R2
V_Total - I_2*R2 = V_1
20.227 V - (17.9 mA * 560 Ω) = V_1
20.227 V - (10.024 V) = V_1
10.203 V = V_1
Hence, the voltage drop across R1 is 10.203 Volts.
Cheers.
A segment of a roadway has a free flow speed of 45 mph and a jam density of 25 ft per vehicle. Determine the maximum flow and at a flow rate of 1950 vph
Answer:
2376 vph
Explanation:
Given data
free flow speed ( Vf ) = 45 mph
Jam density = 25 ft per vehicle
flow rate = 1950 vph
first we calculate the Jam density in vehicle /mile
= 5280 / 25 = 211.2 vehicle/mile
where ; 1 mile = 5280 feet
The maximum flow can be calculated using Greenshield method
q = ( Vf * jam density ) / 4 = ( 45 * 211.2 ) / 4
= 2376 vph
The current through a 0.1 Henrys (H) inductor is i(t) = 10 t e^-5tA. Find the voltage across the inductor.
a. v(t) = 10 te^-5t V
b. v(t) = 0.1 (10te^-5t) V
c. v(t) = 5te^-5t V
d. v(t) = (1 - 5t) e^-5t V
Answer: d. [tex]v(t)=(1-5t)e^{-5t}[/tex]V
Explanation: Inductance is a property of an inductor: when there is a change in current passing through a conductor, it creates a voltage in the conductor itself and in the other conductors. Inductance unit is Ω.s or henry (H)
So, the relation between Voltage and Current in an inductor is given by
[tex]v=L\frac{di}{dt}[/tex]
in which
L is inductance in H
i is current in A
Current is [tex]i(t)=10te^{-5t}[/tex], so, derivative will be:
[tex]\frac{di}{dt}=10e^{-5t}+10t(-5)e^{-5t}[/tex]
[tex]\frac{di}{dt}=10e^{-5t}-50te^{-5t}[/tex]
[tex]\frac{di}{dt}=10e^{-5t}(1-5t)[/tex]
Then, voltage is
[tex]v=0.1.10.e^{-5t}(1-5t)[/tex]
[tex]v=(1-5t)e^{-5t}[/tex]
Voltage across the 0.1H inductor is [tex](1-5t)e^{-5t}[/tex] V
Think of an employee object. What are several of the possible states that the object may have over time?
Hi, your question is unclear. However, I inferred you meant 'object' in computer programming.
Explanation:
Remember, the term 'object' used in programming refers to stored data that can take different forms or states.
For example, a company's employee database may have several object states. Which includes;
New Employee (meaning the database can contain newly employed employees)Former Employee (meaning the database can contain past/formerly employed employee) Current Employee (meaning the database can contain present/current employees)Suspended Employee (meaning the database could contain employees on suspension)
You have a 12-in. diameter pile that is embedded in the ground 50-ft. The soil is a clay and has a cohesion of 1,000-psf. Determine the Ultimate Pile Capacity, Qult.
Answer:
hello your question is incomplete attached below is the complete question
answer : 0.75 ( A )
Explanation:
Given data:
12 - in diameter pile
embedded 50-ft
type of soil ; clay
Cohesion = 1000 psf
Determine the Ultimate pile Capacity
cohesion = 1000 psf
hence 1000 psf = 1 ksf (where ; 1 psf = 0.0.001ksf )
form the given table the value of α corresponding to 1 ksf = 0.75
List the three main phases of photo interpretation in photogrammetry
Answer:
Stages of Interpretation and Mapping
Selection of photographs. Whenever possible, all photographs of a site or small area should be assessed for fitness of purpose. ...
Control points. A good spread of control points on a photograph is vital to establish the exact location or size of features. ...
Transformation.
Explanation:
A solid cylinder of diameter 100 mm and height 50 mm is forged between two frictionless flat dies to a height of 25 mm. What is the percentage change in diameter?
a. 0
b. 2.07
c. 20.7
d. 41.4
Answer:
d. 41.4
Explanation:
The initial diameter di = 100mm
The initial height hi {✓59m
Final height = 25 m
Final diameter = ?
Initial volume = after forging volume
D*(di)²*hi = D *(df)²*hf
D will cancel out from either sides of the equation
100² x 50 = df²x25
10000x2 = df²
20000 = df²
df = √20000
df = 141.42mm
Change in diameter = 141.42-100
= 41.42
The percentage change = 41.42/100*100
= 41.4%
The last option is the answer
Which tool helps you measure the success of your website?
Answer:
Google AnalYtics.
Instead of running blood through a single straight vessel for a distance of 2 mm, one mammalian species uses an array of 100 smaller parallel pipes of the same total cross-sectional area, 4.0 mm2. Total volume flow is 1000 mm3/is. The pressure drop for fluid passing through the single pipe is lower than that through the 100 vessel array by a factor of:_____.A. 10.B. 100.
C. 1000.
Answer:
A. 10
Explanation:
For a single straight vessel; we can express the equation as;
[tex]H_{f_1} = \dfrac{8 \ fl \ Q_1^2}{\pi ^2 gd_1^5} \ \ \ \ \ ... (1)[/tex]
Given that:
The total volume Q₁ = 1000 m/s²
Then the Q₂ = 1000/100 = 10 mm/s₂
However, the question proceeds by stating that 100 pipes of the same cross-section is being used.
Therefore, the formula for the area can be written as:
[tex]\dfrac{\pi}{4}d_1^2 = 100 \bigg ( \dfrac{\pi}{4} d_2^2\bigg)[/tex]
Divide both sides by [tex]\dfrac{\pi}{4}[/tex]
[tex]d_1^2 = 100 \ d_2^2[/tex]
Making [tex]d_1[/tex] the subject of the formula;
[tex]d_1 = 10d_2[/tex]
However, considering a pipe in parallel
[tex]H_{f_2} = (H_f_2)_1 = (H_f_2)_2=...= (H_f_2)_{10}= \dfrac{8 \ fl Q_2^2}{\pi^2 \ gd _2^5} \ \ \ \ \ \ \ ...(2)[/tex]
Relating equation (1) by (2); then solving; we have;
[tex]\dfrac{H_{f_1}}{H_{f_2}} = \dfrac{\dfrac{8flQ_1^2}{\pi^2 \ gd _1^5} }{\dfrac{8\ fl Q_2^2 }{\pi^2 gd_2^5} }[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{Q_1^2}{Q_2^2} \times \dfrac{d_2^5}{d_1^5}[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{(1000)^2}{(10)^2} \times \dfrac{d_2^5}{(10 \ d_2)^5}[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{1}{10}[/tex]
[tex]H_{f_2} =10H_{f_1}[/tex]
Determine the brake horsepower required by a pump for a discharge of 0.2 m3/s and a total dynamic head of 20m, with an efficiency of 80%.
Answer:
The BHP would be "65.659 HP".
Explanation:
The given values are:
Discharge,
Q = 0.2 m³/s
Dynamic head,
H = 20 m
Efficiency,
% = 80%
Now,
The Power will be:
⇒ [tex]P=\delta QH[/tex]
On substituting the values, we get
⇒ [tex]=1000\times 9.81\times 0.2\times 20[/tex]
⇒ [tex]=39240 \ W[/tex]
The brake horse power will be:
⇒ [tex]BHP=\frac{100 Q H}{3960n}[/tex]
On putting values, we get
⇒ [tex]=\frac{100\times 0.2\times 20}{3960\times 0.80}[/tex]
⇒ [tex]=65.659 \ HP[/tex]
System reliability improves by using redundant systems. The reliability of the system can be improved by using two such systems in parallel. Again, if the probability of failure of any one subsystem is 0.01, what is the reliability of this system?
Answer:
Reliability is 0.99
Explanation:
Reliability is complementary to probability of failure, i.e. R(t) = 1 –F(t)
F(t) = 0.01
R(t) = 1 - 0.01 = 0.99
Reliability is 0.99
Its means that the probability of failure has dropped 10 times.
Water at 70 kPa and 1008C is compressed isentropically in a closed system to 4 MPa. Determine the final temperature of the water and the work required, in kJ/kg, for this compression.
Answer:
The answer is "909.3928 KJ".
Explanation:
[tex]70 \ kPa \ \ and \ \ 100^{\circ}C \\\\s_i= 7.56162\ \frac{kJ}{kgK}\\\\u_i= 2509.39 \ \frac{kJ}{kg}\\\\[/tex]
The method is isentropic since the cylinders are shielded.
Calculating the work:
[tex]w= u_2-u_i \\\\[/tex]
[tex]= 3418.7728-2509.38 \\\\=909.3928 \ KJ[/tex]
The final temperature of the water is 676.164 °C and the specific work required is 1171.384 kilojoules per kilogram.
Let suppose that compression occurs quasi-statically, work is done on the closed system and enthalpy is increased. By First Law of Thermodynamics, we model compression process as following:
[tex]W_{in} + (U_{1} - U_{2}) + (P_{1}\cdot V_{1} - P_{2}\cdot V_{2}) = 0[/tex] (1)
Where:
[tex]W_{in}[/tex] - Compression work, in kilojoules. [tex]U_{1}[/tex], [tex]U_{2}[/tex] - Initial and final internal energies of the system, in kilojoules.[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Initial and final pressures of the system, in kilopascals.[tex]V_{1}[/tex], [tex]V_{2}[/tex] - Initial and final volumes of the system, in cubic meters.By definition of enthalpy, in kilojoules per kilogram, and by dividing the resulting expression by the mass of the entire system, we have the following expression:
[tex]w_{in} = h_{2}-h_{1}[/tex] (2)
Where:
[tex]w_{in}[/tex] - Specific compression work, in kilojoules per kilogram.[tex]h_{1}[/tex], [tex]h_{2}[/tex] - Initial and final specific enthalpies, in kilojoules per kilogram.From steam tables we find that initial and final states of the water are represented by the following data:
Initial state
[tex]P = 70\,kPa[/tex], [tex]T = 100\,^{\circ}C[/tex], [tex]h = 2679.76\,\frac{kJ}{kg}[/tex], [tex]s = 7.56162\,\frac{kJ}{kg\cdot K}[/tex] (Superheated steam)
Final state
[tex]P = 4000\,kPa[/tex], [tex]T = 676.164\,^{\circ}C[/tex], [tex]h = 3851.144\,\frac{kJ}{kg}[/tex], [tex]s = 7.56162\,\frac{kJ}{kg}[/tex] (Superheated steam)
By (1) we have that the specific work required is:
[tex]w_{in} = 3851.144\,\frac{kJ}{kg} - 2679.76\,\frac{kJ}{kg}[/tex]
[tex]w_{in} = 1171.384\,\frac{kJ}{kg}[/tex]
The final temperature of the water is 676.164 °C and the specific work required is 1171.384 kilojoules per kilogram.
To learn more on closed systems, we kindly invite to check this verified question: https://brainly.com/question/3690180
The shape of the wood beam is a rectangle. In a paragraph explain the tradeoffs an engineer would make in selecting a wood with a rectangle shape versus manufactured beams with other stronger but lighter weight shapes.
Answer:
Wood is heavy
Explanation:
If the cuvet is dirty (caused by fingerprints, water spots, or lint), what effect does it have on the absorbance of the sample?
When we talk of cuvette,we are talking about the instrument we use to hold the solutions that we make use of in the calorimetry experiment and so we will take a measurement of the volume of the solution,if there is some water and other impurities present,we will go ahead to take a measurement of the more volume, however,if some water or other impurities are there,will go ahead and take a measurement of the more volume and now,it will be less of the actual content as a result of some amount of water or impurity in it.
When Concentration = Mass/Volume
A higher volume will be taken, then assumption of mass can be made to be the same because the water or the impurity will as well have mass and as we are taking the mass long also with the mass of the sample when doing this.
Therefore,the concentration will be less.
The transition zone in which the ocean's density increases rapidly with depth is called the:___________
Answer: Pycnocline.
Explanation:
The Pycnocline is the layer, where there is a significant change in density of water with respect to depth.
In freshwater environments such as lakes this density change is primarily as a result of change in water temperature, while in seawater environments e.g oceans the cause of change in density change are changes in water temperature or salinity.
Once you have chosen a topic, what should you do before beginning the research process? a. Find as many possible facts and details on your topic c. Discuss your idea with others b. Choose a position d. None of these Please select the best answer from the choices provided A B C D
Answer:
The answer is C
Explanation:
Once you have chosen a topic, the next thing you should do before beginning the research process is: C. discuss your idea with others.
What is a research topic?A research topic refers to an event, issue, or subject that a researcher is keenly and deeply motivated or interested in, especially when conducting a study or research.
Based on scientific information and records, it is very important you discuss your idea with others once you have chosen a topic, before beginning the research process.
Read more on research topic here: https://brainly.com/question/24590700
#SPJ2