Answer:
£2120.27
Step-by-step explanation:
A = P (1 + r100)
A = 2000 (1+ 0.03/365)^365(2)
A = 2000 ( 1.00008)^730
A = 2000 (1.060)
A = £2120.27
What is the correct definition for sec theta?
Answer:
D Is the correct answer Thats was too easy
Answer:
sec(θ) = hypotenuse / adjacent.
Step-by-step explanation:
sec theta= cos -1 theta
Work out the surface area of this sphere.
Give your answer to 1 decimal place.
Spheres
Surface area =
4tr?
6 cm
Answer:
452.2 cm
Step-by-step explanation:
A = 4πr²
A = 4 (3.14) (6)²
A = 4 (3.14) (36)
A = 452.16
A = 452.2 cm (nearest tenth)
The dress store is having a sale where all merchandise is 1/4 off. A woman buys $48 of merchandise at a sale price.
Answer:$36 depending on what question is i just assuming how much she has to pay
Step-by-step explanation:
48 divded by 4 is 12. $48-$12 is $36. The $12 is the 1/4 discount.
There is a bag with only red marbles and blue marbles.
The probability of randomly choosing a red marble is
7/10th
There are 42 red marbles in the bag and each is equally likely to be chosen.
Work out how many marbles in total there must be.
Answer:
60 marbles in total
Step-by-step explanation:
Find how many marbles there are in total by dividing 42 by 0.7:
42/0.7
= 60
So, there are 60 marbles in total
A Roper survey reported that 65 out of 500 women ages 18-29 said that they had the most say when purchasing a computer; a sample of 700 men (unrelated to the women) ages 18-29 found that 133 men said that they had the most say when purchasing a computer. What is the 99% confidence interval for the difference of the two proportions
Answer:
[tex]Z=-2.87[/tex]
Step-by-step explanation:
From the question we are told that:
Probability on women
[tex]P(W)=65 / 500[/tex]
[tex]P(W) = 0.13[/tex]
Probability on women
[tex]P(M)=133 / 700[/tex]
[tex]P(M) = 0.19[/tex]
Confidence Interval [tex]CI=99\%[/tex]
Generally the equation for momentum is mathematically given by
[tex]Z = \frac{( P(W) - P(M) )}{\sqrt{(\frac{ \sigma_1 * \sigma_2 }{(1/n1 + 1/n2)}}})[/tex]
Where
[tex]\sigma_1=(x_1+x_2)(n_1+n_2)[/tex]
[tex]\sigma_1=\frac{( 65 + 133 )}{ ( 500 + 700 )}[/tex]
[tex]\sigma_1=0.165[/tex]
And
[tex]\sigma_2=1 - \sigma = 0.835[/tex]
Therefore
[tex]Z = \frac{( 0.13 - 0.19)}{\sqrt{\frac{( 0.165 * 0.835}{ (500 + 700) )}}}[/tex]
[tex]Z=-2.87[/tex]
In the accompanying diagram of isosceles triangle ABC, overline AB cong overline BC , BAC =X , and m angle ABC=3x+70
Answer:
x = 22
Step-by-step explanation:
In order to solve this, we need to understand that in an isosceles triangle the two angles that are located at its base are equal to each other.
base - (the side that is not one of the two sides that are equivalent to each other)
Knowing this we can see that ∠ACB will equal ∠BAC, therefore ∠ACB will be equal to x°. Since the sum of all inner angles of a triangle is equal to 180°, we can make the following equation...
x° + x° + (3x + 70)° = 180°
2x° + 3x° + 70° = 180°
5x° = 180° - 70°
5x° = 110°
x° = 110° / 5
x° = 22°
x = 22
Therefore, x = 22.
The diagram shows that `/_A cong /_D` and `bar(AB) cong bar(DE)`. Which other statement do you need to prove triangle congruency through the SAS criterion?
A. /_C cong /_F
B. bar(BC) cong bar (EF)
C. /_B cong /_E
D. bar(AC) cong bar(DF)
Answer:
Option D
Step-by-step explanation:
In the given triangles ΔABC and ΔDEF,
∠A ≅ ∠D
AB ≅ DE
By SAS property of congruence of two triangles,
Two sides and the included angle of one triangles should be congruent to corresponding two sides and the included angle of the other triangle.
Therefore, AC ≅ FD will be the desired property to prove the given triangles congruent.
Option D will be the correct option.
Answer:
Step-by-step explanation:
An internet cafe charges a fixed amount per minute to use the internet. The cost of using the
internet in dollars is, y = 3/4x. If x is the number of minutes spent on the internet, how many
minutes will $6 buy?
er
Answer:
x = 8 minutes
Step-by-step explanation:
Given that,
An internet cafe charges a fixed amount per minute to use the internet.
The cost of using the internet in dollars is,
[tex]y=\dfrac{3}{4}x[/tex]
Where
x is the number of minutes spent on the internet
We need to find the value of x when y = $6.
So, put y = 6 in the above equation.
[tex]6=\dfrac{3}{4}x\\\\x=\dfrac{6\times 4}{3}\\\\x=8\ min[/tex]
So, 8 minutes must spent on internet.
The fracture strength of a certain type of manufactured glass is normally distributed with a mean of 509 MPa with a standard deviation of 17 MPa. (a) What is the probability that a randomly chosen sample of glass will break at less than 509 MPa
Answer:
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 509 MPa with a standard deviation of 17 MPa.
This means that [tex]\mu = 509, \sigma = 17[/tex]
What is the probability that a randomly chosen sample of glass will break at less than 509 MPa?
This is the p-value of Z when X = 509. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{509 - 509}{17}[/tex]
[tex]Z = 0[/tex]
[tex]Z = 0[/tex] has a p-value of 0.5
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa
What is the longest side of a right angled triangle called?
Answer:
The hypotenuse
a bag contain 3 black balls and 2 white balls.
1. A ball is taken from the black and then replaced, a second is taken. what is the probabilities that.
(a) there are both black,
(b)one is black one is white,
(c) at lease one is black,
(d) at most one is one is black.
2. find out if all the balls are chosen without replacement.
please kindly solve with explanation. thank you.
Answer:
Step-by-step explanation:
Total number of balls = 3 + 2 = 5
1)
a)
[tex]Probability \ of \ taking \ 2 \ black \ ball \ with \ replacement\\\\ = \frac{3C_1}{5C_1} \times \frac{3C_1}{5C_1} =\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}\\\\[/tex]
b)
[tex]Probability \ of \ one \ black \ and \ one\ white \ with \ replacement \\\\= \frac{3C_1}{5C_1} \times \frac{2C_1}{5C_1} = \frac{3}{5} \times \frac{2}{5} = \frac{6}{25}[/tex]
c)
Probability of at least one black( means BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{5} \\\\= \frac{9}{25} + \frac{6}{25} + \frac{6}{25}\\\\= \frac{21}{25}[/tex]
d)
Probability of at most one black ( means WW or WB or BW)
[tex]=\frac{2}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{2}{5} \times \frac{2}{5} + \frac{3}{5}\\\\= \frac{4}{25} + \frac{6}{25} + \frac{6}{25}\\\\=\frac{16}{25}[/tex]
2)
a) Probability both black without replacement
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
b) Probability of one black and one white
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
c) Probability of at least one black ( BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{6}{20} + \frac{6}{20} \\\\=\frac{18}{20} \\\\=\frac{9}{10}[/tex]
d) Probability of at most one black ( BW or WW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{2}{20} + \frac{6}{20} \\\\=\frac{14}{20}\\\\=\frac{7}{10}[/tex]
A regression was run to determine whether there is a relationship between hours of tv watched per day(x) and number of sit-ups a person can do (y). The results of the regression are given below. Use this to predict the number of sit-ups a person who watches 11 hours of tv can do
Y=ax+b
A=-1.341
B=32.234
R=-0.896
Answer:
17
Step-by-step explanation:
Given the regression model :
Y=ax+b
x = Hours of TV watched per day
y= number of sit-ups a person can do
A=-1.341
B=32.234
Y = - 1.341x + 32.234
Predict Y, when x = 11
Y = - 1.341(11) + 32.234
Y = −14.751 + 32.234
Y = 17.483
Hence, the person Cann do approximately 17 sit-ups
Find a degree 3 polynomial with real coefficients having zeros 1
and 2−2i and a lead coefficient of 1. Write P in expanded form. Be sure to write the full equation, including P(x)=
9514 1404 393
Answer:
P(x) = x³ -5x² +12x -8
Step-by-step explanation:
If the coefficients are real, then the complex roots must be conjugates. The third root is 2+2i. For root r, (x -r) is a factor, so the factorization is ...
P(x) = (x -1)(x -2 +2i)(x -2 -2i) = (x -1)((x -2)² +4) = (x -1)(x^2 -4x +8)
Expanding further, we find ...
P(x) = x³ -5x² +12x -8
You want to make a playlist with all different songs. How many ways can you make a playlist of 16 songs if you must play Leavon, Dream on, Here Comes the Sun, and Clocks in that order?
Answer in permutations
Answer: [tex]_{13} P _{13}[/tex]
Another acceptable answer is 13! where the exclamation mark is needed.
The numeric form is 6,227,020,800 which is a little over 6 billion.
==============================================================
Explanation:
Let's lump those four songs together to form a so called "mega song". So we treat those four items as one single item. This is ensure that those songs are played in the order we want. The other songs aren't treated this way.
We start with 16 songs and drop to 16-4 = 12 songs when taking out those four named songs. Then we add 1 to get 12+1 = 13 since we're adding in that "mega song" block.
---------------------------
So to recap so far, we've gone from 16 songs to 13 songs. The goal is to find out how many arrangements of 13 songs are possible. Order matters.
We'll use the nPr permutation function
[tex]_{n} P _{r} = \frac{n!}{(n-r)!}\\\\[/tex]
where in this case n = 13 and r = 13. Your teacher doesn't want you to evaluate this function. You simply need to state the symbolic form. So that's why we go from [tex]_{n} P _{r}[/tex] to [tex]_{13} P _{13}[/tex]
If you wanted to answer this in terms of factorial notation, then you could say this
[tex]_{n} P _{r} = \frac{n!}{(n-r)!}\\\\_{13} P _{13} = \frac{13!}{(13-13)!}\\\\_{13} P _{13} = \frac{13!}{(0)!}\\\\_{13} P _{13} = \frac{13!}{1}\\\\_{13} P _{13} = 13!\\\\[/tex]
So we can see that the notations [tex]_{13} P _{13}[/tex] and [tex]13![/tex] mean the exact same thing.
If you wanted to know the actual number of permutations, then,
13! = 13*12*11*10*9*8*7*6*5*4*3*2*1 = 6,227,020,800
which is a little over 6 billion permutations.
9. Mariah has 28 centimeters of reed
and 10 meters of reed for weaving
baskets. How many meters of reed
does she have? Write your answer as a
decimal and explain your answer.
Will give brainliest answer please give explanation
If this block dropped into 23.0mL of water, what will the new volume be?
If a:b = 1:2 then find the value of (3a + b): (4a + 2b).
Answer:
5:8
Step-by-step explanation:
By question it's given that ,
[tex]\implies a:b = 1:2 [/tex]
Let us suppose that the common ratio is x , therefore the Numbers ,
[tex]\implies a = 1x [/tex]
[tex]\implies b = 2x [/tex]
And we need to find the value of ,
[tex]\implies (3a + b): (4a + 2b ) \\\\\implies (3 * x + 2x ) : (4*x + 2*2x ) \\\\\implies (3x + 2x):(4x+4x)\\\\\implies 5x : 8x \\\\\implies 5:8 [/tex]
Hence the required answer is 5:8 .
A forestry researcher wants to estimate the average height of trees in a forest near Atlanta, Georgia. She takes a random sample of 18 trees from this forest. The researcher found that the average height was 4.8 meters with a standard deviation of 0.55 meters. Assume that the distribution of the heights of these trees is normal. For this sample what is the margin of error for her 99% confidence interval
Answer:
The margin of error for her confdence interval is of 0.3757.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 18 - 1 = 17
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 17 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 2.8982
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}}[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
Standard deviation of 0.55 meters.
This means that [tex]s = 0.55[/tex]
What is the margin of error for her 99% confidence interval?
[tex]M = T\frac{s}{\sqrt{n}}[/tex]
[tex]M = 2.8982\frac{0.55}{\sqrt{18}}[/tex]
[tex]M = 0.3757[/tex]
The margin of error for her confdence interval is of 0.3757.
Margin of error is the distance between the mean and the limit of confidence intervals. The margin of error for the given condition is 3.28 approximately.
What is the margin of error for small samples?Suppose that we have:
Sample size n < 30
Sample standard deviation = sPopulation standard deviation = [tex]\sigma[/tex]Level of significance = [tex]\alpha[/tex]Degree of freedom = n-1Then the margin of error(MOE) is obtained as
Case 1: Population standard deviation is knownMargin of Error = [tex]MOE = T_{c}\dfrac{\sigma}{\sqrt{n}}[/tex]
Case 2: Population standard deviation is unknown[tex]MOE = T_{c}\dfrac{s}{\sqrt{n}}[/tex]
where [tex]T_{c}[/tex] is critical value of the test statistic at level of significance
For the given case, taking the random variable X to be tracking the height of trees in the sample taken of trees from the considered forest.
Then, by the given data, we get:
[tex]\overline{x} = 4.8[/tex], [tex]s = 4.8[/tex], n = 18
The degree of freedom is n-1 = 17
Level of significance = 100% - 99% = 1% = 0.01
The critical value of t at level of significance 0.01 with degree of freedom 17 is obtained as T = 2.90 (from the t critical values table)
Thus, margin of error for 99% confidence interval for considered case is:
[tex]MOE = T_{c}\dfrac{s}{\sqrt{n}}\\\\MOE = 2.9 \times \dfrac{4.8}{\sqrt{18}} \approx 3.28[/tex]
Thus, the margin of error for the given condition is 3.28 approximately.
Learn more about margin of error here:
https://brainly.com/question/13220147
A walking path across a park is represented by the equation y = -4x + 10. A new path will be built perpendicular to this path. The paths will intersect at the point (4, -6). Identify the equation that represents the new path.
Answer: [tex]y=\frac{1}{4}x-7[/tex]
Step-by-step explanation:
The perpendicular slope of the line(m) = [tex]-\frac{1}{m}[/tex]:
m = -4 ⇒ [tex]-\frac{1}{m} =-\frac{1}{(-4)} =\frac{1}{4}[/tex]The function formula is y = mx + b, where the y-intercept(b) is found by substituting in the values of a point on the line ⇒ (4, -6):
[tex]y=\frac{1}{4}x+b\\-6=\frac{1}{4}(4)+b\\-6=1+b\\b=-6-1=-7[/tex]
So the perpendicular equation is [tex]y=\frac{1}{4}x-7[/tex].
Can someone help me please..
Which function has the following characteristics?
- A vertical asymptote at x=3
- A horizontal asymptote at y=2
- Domain: {x ≠ ±3}
A. y= (2x-8) / (x-3)
B. y= (2x^2 - 8) / (x^2 - 9)
C. y= (x^2 - 9) / (x^2 - 4)
D. y= (2x^2 - 18) / (x^2 - 4)
The function has the characteristics is (b) y= (2x^2 - 8) / (x^2 - 9)
How to determine the function?The features are given as:
A vertical asymptote at x=3A horizontal asymptote at y=2Domain: {x ≠ ±3}The function that has the above features is (b).
This is proved as follows:
y= (2x^2 - 8) / (x^2 - 9)
Set the denominator not equal to 0, to determine the domain
x^2 - 9 ≠ 0
Add 9 to both sides
x^2 ≠ 9
Take the square roots
x ≠ ±3 --- domain
Replace ≠ with =
x = ±3 --- vertical asymptote
Set the numerator to 0
2x^2 - 8 = 0
Divide through by 2
x^2 - 4 = 0
This gives
x^2 = 4
Take the square roots
x = 2 ---- horizontal asymptote
Hence, the function has the characteristics is (b) y= (2x^2 - 8) / (x^2 - 9)
Read more about functions at:
https://brainly.com/question/4138300
#SPJ1
How and what is the value of X?
Answer:
9 =x
Step-by-step explanation:
The angles are vertical angles and vertical angles are equal
56 = 6x+2
Subtract 2 from each side
56-2 = 6x+2-2
54 = 6x
Divide each side by 6
54/6 = 6x/6
9 =x
the admission fee for a charity event is $7 for children and 10$ for adults. The event was attended by 700 people, and the total amount collected in admissions was $6,400.
Answer:
200 kids and 500 adults
Step-by-step explanation:
x+y=700
7x+10y=6,400
(200,500)
kids=200
adults=500
We have a study involving 5 different groups that each contain 9 participants (45 total). What two degrees of freedom would we report when we report the results of our study
Answer:
Degree of freedoms F(4,40)
Step-by-step explanation:
Given:
There is a study which is involving 5 different groups that each contains 9 participants (totally 45)
The objective is to calculate the degree of freedoms
Formula used:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Solution:
Numerator degree of freedom = k-1
denominator degree of freedom=N-K
Where,
K= number of groups = 5
N= total number of observations
which is given as follows,
N=45
Then,
Numerator degree of freedom = k-1
=5-1
=4
Denominator degree of freedom = N-K
=45-5
=40
Therefore,
Degree of freedoms, F(4,40)
What is the y-intercept of the line given by y=4x - 6
Answer:
y= -6
Step-by-step explanation:
the y-intercept is -6, which corresponds to point (0,-6)
remember that you're using the
y=mx+b format of an equation of a line where b is the y-intercept.
Also, if you make x=0, y will be -6.
Write the following using algebraic notation, using the letter x for any
unknown numbers:
I think of a number, double it, then add fifteen.
You do X2 + 15 and that will be your answer.
By the way, the 2 is a power and is meant to be smaller on top of the X.
what is nine and three hundred twenty-one thousandths in decimal notation?
Answer:
Step-by-step explanation:
-6×-5y=6
4x+y=3
What's answer to this equation
9514 1404 393
Answer:
(x, y) = (3/2, -3)
Step-by-step explanation:
Using the second equation, we can write an expression for y:
y = 3 -4x
Using this in the first equation, we have ...
-6x -5(3 -4x) = 6
-6x -15 +20x = 6 . . . . eliminate parentheses
14x = 21
x = 21/14 = 1.5
y = 3 -4(1.5) = 3 -6 = -3
The solution is (x, y) = (1.5, -3).
__
I find a graphing calculator a useful tool for finding solutions quickly.
i need help with these questions. anyone down to help me ?please
9514 1404 393
Answer:
A: less than 2 hoursB: 2 to 5 hoursC: more than 5 hoursStep-by-step explanation:
The attached graph shows the various company costs for x number of hours. The graph nearest the x-axis represents the lowest cost.
We can see that cost is lowest using Company A for 2 hours or less, and Company C for 5 hours or more. For times between those, Company B has the lowest charges.
Of course, the equation for charges in each case is the sum of the service fee and the product of hourly charge and number of hours (x).
__
I find the graphing calculator to be the most efficient tool for solving these. The alternative is to compare the equations pairwise to see which gives lower rates. With a little practice, you learn that the "break even hours" will be the difference in service fees divided by the difference in hourly cost.
For example A will cost the same as B when the $20 service fee and the $10/hour cost difference are the same: for 2 hours. A and C will cost the same when the $45 service fee and the $15/hour cost difference are the same, after 3 hours. B and C will cost the same when the $25 difference in service fees and the $5/hour cost difference are the same, after 5 hours.
So B is cheaper above 2 hours, and C is cheaper than that above 5 hours. With no service fee, A is cheaper for small numbers of hours (<2).
rom each corner of a square piece of sheet metal 18 centimeters on a side,we remove a small square and turn up the edges to form an open box. Whatis the largest volume this box could have
Answer:
The volume is maximum when the height is 3 cm.
Step-by-step explanation:
let the side of the removed potion is x.
length of the box = 18 - 2 x
width of the box = 18 - 2 x
height = x
Volume of box
V = Length x width x height
[tex]V = (18 - 2 x)^2 \times x\\\\V = x(324 + 4x^2 - 72 x)\\\\V = 4 x^3 - 72 x^2 + 324 x \\\\\frac{dV}{dx} = 12 x^2 - 144 x + 324 \\\\So,\\\\ \frac{dV}{dx} =0\\\\x^2 - 12 x + 27 = 0 \\\\x^2 -9 x - 3 x + 27 =0\\\\x (x - 9) - 3 (x -9) = 0\\\\x = 3, 9[/tex]
Now
[tex]\frac{d^2V}{dx^2}=24 x - 144 \\\\Put x = 3 \\\\\frac{d^2V}{dx^2}=24\times 3 - 144 = - 72\\\\Put x = 9\\\\\frac{d^2V}{dx^2}=24\times 9 - 144 = 72\\[/tex]
So, the volume is maximum when x = 3 .