Rank the following substances in order from most soluble in water to least soluble in water: methane, CH4; 1-hexanol, C6H13OH; potassium chloride, KCl; and ethane, C2H6.

Answers

Answer 1

The order of substances that are soluble in water are: 1-hexanol > KCl > Ethane > Methane

When determining the solubility of substances in water, it is important to consider the polarity of the substance and the type of intermolecular forces present. In general, polar substances are more soluble in water than nonpolar substances. Using this knowledge, we can rank the substances in order from most soluble to least soluble in water.
1. 1-hexanol, [tex]C_6H_{13}OH[/tex] - This is a polar substance with a hydroxyl group (-OH) that can form hydrogen bonds with water molecules. As a result, it is highly soluble in water.
2. Potassium chloride, KCl - This is an ionic compound that dissociates into K+ and Cl- ions in water. Since water is a polar solvent, it is able to dissolve these ions easily, making potassium chloride highly soluble in water.
3. Ethane, [tex]C_2H_6[/tex] - This is a nonpolar substance with only weak van der Waals forces between its molecules. As a result, it is not very soluble in water.
4. Methane, [tex]CH_4[/tex] - This is also a nonpolar substance with only weak van der Waals forces between its molecules. It is the least soluble of the substances listed in water.

To learn more about solubility click here https://brainly.com/question/28170449

#SPJ11


Related Questions

the ph of an aqueous solution of 0.148 m potassium cyanide, kcn (aq), is . this solution is

Answers

The pH of an aqueous solution of 0.148 M potassium cyanide, KCN (aq), is greater than 7, indicating that the solution is basic.

The pH of an aqueous solution of 0.148 M potassium cyanide, KCN (aq), can be determined by understanding the behavior of KCN in water. KCN is a salt that dissociates into K+ and CN- ions in aqueous solution. The CN- ions can react with water molecules to form HCN and OH- ions, according to the following equilibrium reaction:
[tex]CN- (aq) + H_2O (l) <--> HCN (aq) + OH- (aq)[/tex]
The formation of OH- ions increases the pH of the solution, making it basic. To calculate the pH, we first need to find the concentration of OH- ions using the equilibrium constant, Kb, for the above reaction. Kb for CN- is [tex]2.1 * 10^{-5}[/tex]. Using an ICE table and the Kb expression, we can solve for the OH- concentration. Once the concentration of OH- ions is found, we can use the relationship between pH and pOH:
pH + pOH = 14
Since we know the concentration of OH- ions, we can calculate the pOH using the formula:
pOH = -log10[OH-]
Finally, we can find the pH by subtracting the calculated pOH from 14.

To learn more about pH click here https://brainly.com/question/491373

#SPJ11

how many milliliters of a previously standardized 2.45 m naoh would be required to neutralize this acid solution, assuming the bottle is correctly labeled?

Answers

2.04 mL of the 2.45 M NaOH solution would be required to neutralize the acid solution, assuming the bottle is correctly labeled.

To determine the volume of the 2.45 M NaOH solution required to neutralize the acid solution, we need to know the concentration and volume of the acid solution.

Let's assume the acid solution is HCl, since you did not specify which acid it is.

We can use the balanced chemical equation for the neutralization reaction between NaOH and HCl to determine the stoichiometry of the reaction:

NaOH + HCl → NaCl + H2O

The stoichiometry of this reaction tells us that one mole of NaOH reacts with one mole of HCl. Therefore, we can use the following equation to calculate the volume of NaOH required:

moles of HCl = concentration of HCl × volume of HCl

moles of NaOH = moles of HCl (from the balanced equation)

moles of NaOH = concentration of NaOH × volume of NaOH

Since the moles of NaOH and HCl are equal, we can set the two expressions for moles equal to each other:

concentration of HCl × volume of HCl = concentration of NaOH × volume of NaOH

Solving for volume of NaOH, we get:

volume of NaOH = (concentration of HCl × volume of HCl) / concentration of NaOH

We can now substitute the values we know. Let's assume that the acid solution has a concentration of 0.1 M and a volume of 50 mL:

volume of NaOH = (0.1 M × 50 mL) / 2.45 M

volume of NaOH = 2.04 mL

To know more about acid solution, please click on:

https://brainly.com/question/30140673

#SPJ11

What volume in milliliters (mL) of an HCl solution with a pH of 1.58 can be neutralized by 35.0 mg of CaCO3

Answers

To determine the volume of HCl solution needed to neutralize 35.0 mg of CaCO3, we first need to convert the given pH to concentration and then apply stoichiometry.

1. Convert pH to concentration:
pH = 1.58
[H+] = 10^(-pH) = 10^(-1.58) = 0.0261 M (molar concentration of HCl)

2. Convert mg of CaCO3 to moles:
35.0 mg CaCO3 * (1 g / 1000 mg) * (1 mol CaCO3 / 100.09 g CaCO3) = 3.50 x 10^(-4) mol CaCO3

3. Apply stoichiometry (the balanced equation is: 2 HCl + CaCO3 → CaCl2 + H2O + CO2):
3.50 x 10^(-4) mol CaCO3 * (2 mol HCl / 1 mol CaCO3) = 7.00 x 10^(-4) mol HCl

4. Calculate the volume of HCl solution:
volume = moles / concentration = 7.00 x 10^(-4) mol HCl / 0.0261 M = 0.0268 L

5. Convert volume to milliliters:
0.0268 L * (1000 mL / 1 L) = 26.8 mL

Thus, 26.8 mL of an HCl solution with a pH of 1.58 can be neutralized by 35.0 mg of CaCO3.

To learn more about stoichiometry:

brainly.com/question/30215297

#SPJ11

This is the chemical formula for methyl tert-butyl ether (the clean-fuel gasoline additive MTBE): CH3OCCH33 A chemical engineer has determined by measurements that there are 9.6 moles of hydrogen in a sample of methyl tert-butyl ether. How many moles of oxygen are in the sample

Answers

There are 7.2 moles of oxygen in the given sample of MTBE. This is calculated based on the fact that each mole of MTBE contains 3 moles of oxygen and 4 moles of hydrogen.

Based on the chemical formula for methyl tert-butyl ether (MTBE), we can see that there are 3 atoms of oxygen in each molecule of MTBE. Therefore, if we have 9.6 moles of hydrogen in a sample of MTBE, we can calculate the number of moles of oxygen in the sample as follows: For every mole of MTBE, there are 3 moles of oxygen. So, if we have 9.6 moles of hydrogen, we must have consumed 9.6/4 = 2.4 moles of MTBE (since each mole of MTBE contains 4 moles of hydrogen).
Therefore, the number of moles of oxygen in the sample is:
2.4 moles MTBE x 3 moles oxygen/mole MTBE = 7.2 moles oxygen
So, there are 7.2 moles of oxygen in the sample of MTBE.

Learn more about chemical: https://brainly.com/question/29240183

#SPJ11

The ligand in 1MPO is a ______, where the ______ residue of the ligand hydrophobically interacts with Tyr 6 and Tyr 41 of Chain A.

Answers

The ligand in 1MPO is a molecule, where the specific residue of the ligand hydrophobically interacts with Tyr 6 and Tyr 41 of Chain A.

1MPO is a protein structure with the ligand 4-hydroxyphenylpyruvate bound to Chain A. The ligand is a small molecule that binds to the protein and modifies its activity. In this case, the ligand is a derivative of the amino acid phenylalanine, where the carboxyl group is replaced by a ketone group and the amino group is replaced by a hydroxyl group. The ligand has a planar structure and contains a phenyl ring with a hydroxyl group at the 4 position and a carbonyl group at the 2 position, followed by a two-carbon chain and a carboxyl group. In the crystal structure of 1MPO, the phenyl ring of the ligand is oriented toward the hydrophobic cavity of the protein, where it interacts with the side chains of Tyr 6 and Tyr 41 of Chain A through hydrophobic interactions. Hydrophobic interactions are noncovalent interactions between nonpolar molecules or nonpolar regions of molecules, where the nonpolar molecules or regions tend to associate with each other to minimize their exposure to the surrounding water molecules. In the case of 1MPO, the hydrophobic residues of the protein and the hydrophobic part of the ligand are interacting with each other through van der Waals forces, which are weak attractive forces between nonpolar molecules or regions. This hydrophobic interaction is one of the main driving forces for the binding of the ligand to the protein and contributes to the stability of the complex.

To know more about ligand please refer: https://brainly.com/question/2980623

#SPJ11

what mass of sodium chloride should be added to 250.0mL of 0.25M aquous solution f ammonia to produce a solution of pH 10.70

Answers

0.0146 g of sodium chloride should be added to 250.0 mL of 0.25 M aqueous solution of ammonia to produce a solution of pH 10.70.

[tex]NH_4[/tex]+ + Cl- → [tex]NH_3[/tex]+ HCl

For every mole of ammonium ion, one mole of sodium chloride is required. The number of moles of ammonium ion in 250.0 mL of 0.25 M solution is:

moles [tex]NH_4[/tex]+ = (1.0 x [tex]10^{-3[/tex] M)(0.250 L) = 2.5 x [tex]10^{-4[/tex] moles

Therefore, the mass of sodium chloride required is:

mass NaCl = (2.5 x [tex]10^{-4[/tex] moles)(58.44 g/mol) = 0.0146 g

pH is a measure of the acidity or alkalinity of a solution in physics. It is defined as the negative logarithm (base 10) of the concentration of hydrogen ions (H+) in a solution. A solution with a pH of 7 is considered neutral, indicating that it has an equal concentration of hydrogen ions and hydroxide ions (OH-). Solutions with a pH less than 7 are considered acidic, meaning that they have a higher concentration of hydrogen ions, while solutions with a pH greater than 7 are considered alkaline or basic, indicating a higher concentration of hydroxide ions.

The pH scale is logarithmic, which means that each whole number change in pH represents a ten-fold difference in the concentration of hydrogen ions. For example, a solution with a pH of 3 has ten times more hydrogen ions than a solution with a pH of 4, and 100 times more than a solution with a pH of 5. pH is an important concept in many areas of physics, including electrochemistry, biochemistry, and environmental science. Accurate measurement of pH is critical in many laboratory procedures, such as titrations and enzyme assays, and is also important in understanding the behavior of natural and engineered systems, such as soils, water bodies, and industrial processes.

To learn more about pH visit here:

brainly.com/question/491373

#SPJ4

g Vulcanization of rubber results in _______ between the neighboring chains of the polymer. hydrogen bonding salt bridges phosphide bridges disulfide bridges none of these

Answers

Vulcanization of rubber results in disulfide bridges between the neighboring chains of the polymer which is option D

Vulcanization is the process of treating rubber with sulfur or other chemicals to improve its strength, durability, and elasticity. During vulcanization, sulfur atoms react with the rubber molecules to form cross-links or bridges between neighboring chains of the polymer. These cross-links help to stabilize the rubber and prevent it from melting or degrading at high temperatures or under stress.

Disulfide bridges, formed by the reaction between two sulfur atoms, are the most common type of cross-link in vulcanized rubber. They are strong, covalent bonds that can withstand a lot of force and strain, making the rubber more resilient and resistant to wear and tear. Hydrogen bonding, salt bridges, and phosphide bridges are other types of chemical bonds that can form between polymer chains, but they are not typically involved in the vulcanization process.

Therefore, the correct answer to the question is disulfide bridges, option D.

To know more about Vulcanization click on below link :

https://brainly.com/question/31640287

#SPJ11

. Consider the titration of 25.00 mL of 0.250 M HBr with 0.290 M Na OH. What is the pH of the solution after 12.50 mL of K OH has been added

Answers

The pH of the solution after 12.50 mL of 0.290 M NaOH has been added to 25.00 mL of 0.250 M HBr will be the pH of the solution after 12.50 mL of 0.290 M NaOH has been added is 5.64.

First, we need to determine the number of moles of HBr present in 25.00 mL of 0.250 M HBr:

moles of HBr = (0.250 mol/L) x (0.02500 L) = 0.00625 mol

Next, we need to determine the number of moles of NaOH added to the solution:

moles of NaOH = (0.290 mol/L) x (0.01250 L) = 0.00363 mol

Since NaOH and HBr react in a 1:1 ratio, the number of moles of HBr remaining after the addition of NaOH can be calculated as follows:

moles of HBr remaining = moles of HBr - moles of NaOH = 0.00625 mol - 0.00363 mol = 0.00262 mol

The total volume of the solution after the addition of NaOH is:

V = 25.00 mL + 12.50 mL = 37.50 mL = 0.03750 L

The concentration of HBr after the addition of NaOH is:

[HBr] = moles of HBr remaining / V = 0.00262 mol / 0.03750 L = 0.0699 M

Finally, we can calculate the pH of the solution using the dissociation constant of HBr (Ka = 8.7 × 10⁻⁹):

Ka = [H⁺][Br⁻]/[HBr]

[H⁺] = Ka x [HBr] / [Br⁻] = (8.7 × 10⁻⁹) x (0.0699 M) / (0.00262 M) = 2.31 × 10⁻⁶ M

pH = -log[H⁺] = -log(2.31 × 10⁻⁶) = 5.64

Therefore, the pH of the solution after 12.50 mL of 0.290 M NaOH has been added is 5.64.

learn more about pH here:

https://brainly.com/question/30934747

#SPJ11

what are the values of cwnd at times t1, t2, t3? How should the TCP transmitter react after receiving A3 and A2.

Answers

The values of cwnd (congestion window) at times t₁, t₂, and t₃, as well as the TCP (Transmission Control Protocol) transmitter's reaction after receiving A₃ and A₂, need additional context or information to provide a specific answer.

The congestion window (cwnd) is a parameter used in TCP to control the amount of data that can be sent without causing network congestion. It is dynamically adjusted by the TCP transmitter based on various factors such as network conditions, available bandwidth, and packet loss.

The values of cwnd at times t₁, t₂, and t₃ would depend on the specific implementation of the TCP congestion control algorithm being used, as well as the network conditions and events that occur during those times.

Without knowing the details of the algorithm, network conditions, and events, it is not possible to provide a specific value for cwnd at those times.

Similarly, the TCP transmitter's reaction after receiving A₃ and A₂ would depend on the context of what A₃ and A₂ represent. A₃ and A₂ could refer to specific events or messages in the TCP protocol or a related networking protocol.

The reaction of the TCP transmitter would be determined by the protocol specification and the implementation being used.

To provide a more accurate answer, please provide additional context or information about the specific scenario or protocol being referred to in the question.

To know more about TCP (Transmission Control Protocol) refer here:

https://brainly.com/question/30668345#

#SPJ11

If CaCl2 is added to the following reaction mixture at equlibrium, how will the quantities of each component compare to the original mixture after equilibrium is reestablished

Answers

when CaCl2 is added to the reaction mixture at equilibrium, the concentrations of CaCl2, Ca²⁺, and Cl⁻ will be higher than in the original mixture after equilibrium is reestablished.

Let's consider the following equilibrium reaction:

CaCl2 (aq) ⇌ Ca²⁺ (aq) + 2 Cl⁻ (aq)

When CaCl2 is added to the reaction mixture at equilibrium, the concentration of CaCl2 will increase. According to Le Chatelier's Principle, the reaction will shift to counteract this change in order to reestablish equilibrium. In this case, the reaction will shift to the right, consuming some of the added CaCl2 and producing more Ca²⁺ and Cl⁻ ions.

After equilibrium is reestablished, the quantities of each component will be as follows:

1. CaCl2: The concentration will be higher than in the original mixture, as some of the added CaCl2 will remain.
2. Ca²⁺: The concentration will be higher than in the original mixture, as the reaction shifted to the right to produce more Ca²⁺ ions.
3. Cl⁻: The concentration will also be higher than in the original mixture, as the reaction shifted to the right to produce more Cl⁻ ions.

To know more about equilibrium Visit:

https://brainly.com/question/30694482

#SPJ11

Calculate the mass of HONH2 required to dissolve in enough water to make 250.0 mL of solution having a pH of 10.00

Answers

The mass of HONH2 required to dissolve in enough water to make 250.0 mL of solution having a pH of 10.00 is 3.20 x 10^-13 g.

The first step in solving this problem is to recognize that HONH2 can act as a weak base in water. To find the mass of HONH2 required to make a 250.0 mL solution of pH 10.00, we need to use the equation for the ionization of a weak base:

HONH2 + H2O ⇌ H3O+ + ONH2-

The equilibrium constant expression for this reaction is:

Kb = [H3O+][ONH2-] / [HONH2]

We can find Kb from the given pH:

pOH = 14.00 - pH = 4.00

pKb = 14.00 - pOH = 10.00

Kb = 1.00 x 10^-10

We also know that the concentration of ONH2- is equal to the concentration of H3O+ in this solution:

[ONH2-] = [H3O+] = 1.00 x 10^-4 M

Substituting these values into the Kb expression and solving for [HONH2], we get:

[HONH2] = Kb / [ONH2-] = 1.00 x 10^-10 / 1.00 x 10^-4 = 1.00 x 10^-14 M

Now we can use the definition of molarity to find the number of moles of HONH2 required:

Molarity = moles of solute / liters of solution

moles of HONH2 = Molarity x liters of solution = 1.00 x 10^-14 mol

Finally, we can use the molar mass of HONH2 to convert moles to grams:

mass of HONH2 = moles of HONH2 x molar mass of HONH2

molar mass of HONH2 = 32.04 g/mol

mass of HONH2 = 1.00 x 10^-14 mol x 32.04 g/mol = 3.20 x 10^-13 g

Know more about weak base here:

https://brainly.com/question/22104949

#SPJ11

210 Pb has a half-life of 22.3 years and decays to produce 206 Hg. If you start with 5.94 g of 210 Pb, how many grams of 206 Hg will you have after 11.5 years

Answers

After 11.5 years, we will have 2.95 g of 206 Hg.

To solve this problem, we need to use the half-life formula:

N = N₀ (1/2)^(t/t₁/₂)

where:

N₀ = initial amount of 210 Pb (5.94 g)

N = amount of 210 Pb after 11.5 years

t = time elapsed (11.5 years)

t₁/₂ = half-life of 210 Pb (22.3 years)

Using these values, we can calculate the amount of 210 Pb remaining after 11.5 years:

N = 5.94 g (1/2)^(11.5/22.3) N = 3.19 g.

So after 11.5 years, we have 3.19 g of 210 Pb. To find the amount of 206 Hg produced, we need to use the fact that one atom of 210 Pb produces one atom of 206 Hg:

5.94 g of 210 Pb contains (5.94 g / 208.98 g/mol) * 6.02 × 10^23 atoms/mol = 1.43 × 10^22 atoms.

So after 11.5 years, we have 1.43 × 10^22 atoms of 210 Pb, which will produce the same number of atoms of 206 Hg.

To find the mass of 206 Hg, we need to multiply the number of atoms by the atomic mass of 206 Hg,

=1.43 × 10^22 atoms of 206 Hg * 205.97 g/mol = 2.95 g.

Therefore, after 11.5 years, we will have 2.95 g of 206 Hg.


To know more about radioactive decay visit:

https://brainly.com/question/30068164

#SPJ11

in a DSC experiment, the melting temperature of a certain protein is found to be 46 C and the enthalpy of denaturation is 382. Estimate the entropy of denaturation assuming that the denaturation is a two-state process; that is, native protein denatured protein. the single polypeptide protein chain has 122 amino acids. calculate rthe entropy of denaturation per amino acid.

Answers

The entropy of denaturation per amino acid is approximately 0.00981 J/mol·K.

How to determine the entropy of denaturation in a DSC experiment?

In a DSC experiment, the melting temperature (Tm) is the temperature at which the protein undergoes a transition from its folded, native state to a denatured state. The enthalpy of denaturation (∆H) is the amount of heat required to completely denature the protein at constant temperature

To estimate the entropy of denaturation assuming it's a two-state process and calculate the entropy of denaturation per amino acid.

Step 1: Use the formula ΔG = ΔH - TΔS to find the entropy of denaturation.
In this case, at the melting temperature, ΔG = 0, so the formula becomes:
0 = ΔH - TΔS

Step 2: Solve for ΔS
Rearrange the formula to find ΔS:
ΔS = ΔH / T

Step 3: Plug in the values
ΔS = 382 J/mol / (46°C + 273.15)K
ΔS ≈ 382 J/mol / 319.15 K
ΔS ≈ 1.197 J/mol·K

Step 4: Calculate the entropy of denaturation per amino acid
Since the protein has 122 amino acids, we can find the entropy of denaturation per amino acid by dividing ΔS by the number of amino acids:
Entropy of denaturation per amino acid ≈ 1.197 J/mol·K / 122
Entropy of denaturation per amino acid ≈ 0.00981 J/mol·K

To know more about entropy of denaturation:

https://brainly.com/question/14910348

#SPJ11

Solid Ca reacts with N2 gas to form solid calcium nitride, Ca3N2. a. A reaction mixture initially contains only calcium and nitrogen. When the reaction stops, the mixture contains 6 mol calcium, 4 mol nitrogen, and 12 mol calcium nitride. How many moles of calcium and nitrogen were present before the reaction began

Answers

The initial number of moles of calcium is x = 6 mol, and the initial number of moles of nitrogen is y = 4 mol.

The balanced chemical equation for the reaction between solid calcium and nitrogen gas to form solid calcium nitride is:

[tex]3 Ca (s) + N_2 (g) = Ca_3N_2 (s)[/tex]

From the given information, we can set up a system of equations based on the conservation of mass:

Let x be the number of moles of calcium present initially.

Let y be the number of moles of nitrogen present initially.

After the reaction stops, the mixture contains:

6 mol of calcium, which is the amount that initially reacted and is now all converted to calcium nitride

4 mol of nitrogen, which is the amount that initially reacted and is now all converted to calcium nitride

12 mol of calcium nitride, which is the amount produced in the reaction

Using the coefficients in the balanced chemical equation, we can write:

6 mol of Ca = 2 mol of [tex]Ca_3N_2[/tex]

4 mol of [tex]N_2[/tex] = 2/3 mol of [tex]Ca_3N_2[/tex]

x mol of Ca = 6 mol of Ca

y mol of [tex]N_2[/tex] = 4 mol of [tex]N_2[/tex]

From the first equation, we can calculate the number of moles of calcium nitride that would be produced from the initial amount of calcium:

2 mol of [tex]Ca_3N_2[/tex] = 6 mol of Ca

x mol of [tex]Ca_3N_2[/tex] = (6 mol of Ca) × (2 mol of [tex]Ca_3N_2[/tex] / 6 mol of Ca)

x mol of [tex]Ca_3N_2[/tex] = 2 mol of [tex]Ca_3N_2[/tex]

From the second equation, we can calculate the number of moles of calcium nitride that would be produced from the initial amount of nitrogen:

2/3 mol of [tex]Ca_3N_2[/tex] = 4 mol of [tex]N_2[/tex]

y mol of [tex]Ca_3N_2[/tex] = (4 mol of [tex]N_2[/tex]) × (2/3 mol of [tex]Ca_3N_2[/tex] / 4 mol of [tex]N_2[/tex])

y mol of [tex]Ca_3N_2[/tex] = 2/3 mol of [tex]Ca_3N_2[/tex]

For more question on moles click on

https://brainly.com/question/29367909

#SPJ11

A buffer solution that is 0.10 M sodium acetate and 0.20 M acetic acid is prepared. Calculate the initial pH of this solution. The Ka for CH3COOH is 1.8 x 10-5 M. As usual, report pH to 2 decimal places. 2.Calculate the pH when 27.6 mL of 0.048 MHCl is added to 100.0 mL of the above buffer.

Answers

The initial pH of the solution is 4.44 and the pH when 27.6 mL of 0.048 M HCl is added to 100.0 mL of the above buffer is 4.53.

A buffer solution is a mixture that maintains a relatively constant pH when small amounts of acid or base are added. In

this case, the buffer solution consists of 0.10 M sodium acetate and 0.20 M acetic acid.

To calculate the initial pH, we use the Henderson-Hasselbalch equation: pH = pKa + log ([A-]/[HA]), where [A-] is the

concentration of the conjugate base (sodium acetate) and [HA] is the concentration of the weak acid (acetic acid).

First, we determine pKa from Ka: pKa = -log(Ka) = [tex]-log(1.8 * 10^{-5})[/tex] = 4.74.

Now we can calculate the pH: pH = 4.74 + log(0.10/0.20) = 4.74 - 0.30 = 4.44.

When 27.6 mL of 0.048 M HCl is added to 100.0 mL of the buffer, we calculate the moles of HCl added (0.048 mol/L *

0.0276 L = 0.0013248 mol). The acetic acid will neutralize the added HCl, decreasing the amount of acetic acid and

increasing the amount of sodium acetate by the same amount.

The new concentrations are [HA] = (0.20 mol/L * 0.100 L - 0.0013248 mol) / 0.1276 L and

[A-] = (0.10 mol/L * 0.100 L + 0.0013248 mol) / 0.1276 L.

Finally, we recalculate the pH using the updated concentrations: pH = 4.74 + log([A-]/[HA]) ≈ 4.53.

To learn more about pH click here https://brainly.com/question/491373

#SPJ11

Given the following reaction:
Mg(OH)2 + 2HCl → MgCl2 + 2H₂O
How many grams of MgCl₂ will be produced from 12.0 g of Mg(OH)2
and 42.0 g of HCl?

Answers

Answer:

it is a acid-base reaction that can be called neutralization reaction

Explanation:

Mg(OH)2 + 2HCl ==> MgCl2 + 2H2O

moles of Mg(OH)2 present = 12.0 g x 1 mole/58.3 g = 0.2058 moles

moles HCl present = 42.0 g x 1 mole/36.5 g = 1.15 moles

Limiting reactant = Mg(OH)2 based on mole ratio of 2HCl : 1Mg(OH)2 you run out of Mg(OH)2 before HCl is used up

moles of MgCl2 produced = 0.2058 moles Mg(OH)2 x 1 mole MgCl2/mole Mg(OH)2 = 0.2058 moles MgCl2

grams MgCl2 produced = 0.2058 moles x 95.2 g/mole = 19.6 g (to 3 significant figures)

link-https://brainly.com/question/31805048

If you have 83.2g of Fe and 110.0g of H,0 then which one is the limiting reactant and which one is in excess.

Answers

Answer:

Explanation:

For every two moles of H2O, one mole of H2 is produced. 3) Na runs out first. It is the limiting reagent. Water is the excess reagent.

The apparent partition coefficient of ionizable drugs is calculated as the ___ of the total drug concentrations in the nonpolar and aqueous phase.

Answers

The apparent partition coefficient of ionizable drugs is calculated as the ratio of the total drug concentrations in the nonpolar and aqueous phase.

The nonpolar phase typically refers to a solvent such as octanol or lipid membranes, which have a low polarity and are thus more likely to attract nonpolar molecules such as lipids and hydrophobic drugs. The aqueous phase refers to the watery environment in which the drugs are typically dissolved or suspended. The partition coefficient is an important parameter in drug design and development, as it helps determine how easily a drug can penetrate cell membranes and reach its target site of action.

Drug abuse can be defined as the repeated abuse of drugs. Although most people imagine the phrase to only refer to illegal drugs, whereas in fact it can refer to legal drugs such as alcohol and prescription drugs.

For more information on drugs refer https://brainly.com/question/26254731

#SPJ11

Give your own examples where the entropy of a system decreases, and where it increases. Explain your examples based on thermodynamic laws. List the type of processes that occurs in a Carnot cycle. How could you design a Carnot engine with 100% efficiency

Answers

Entropy is a measure of the disorder or randomness of a system. The second law of thermodynamics states that the total entropy of a closed system always increases over time. However, there are situations where the entropy of a system can decrease.

An example of a decrease in entropy is when a gas is compressed. The gas molecules are forced closer together, resulting in a decrease in the volume of the gas. This reduction in volume leads to a decrease in the number of possible microstates, which causes a decrease in the entropy of the system.
On the other hand, an example of an increase in entropy is when ice melts. The transition from a solid to a liquid results in an increase in the number of possible microstates, which leads to an increase in the entropy of the system.
A Carnot cycle consists of four processes: two isothermal processes (in which the temperature of the system remains constant) and two adiabatic processes (in which no heat is exchanged between the system and its surroundings). The Carnot cycle is a theoretical model that describes the maximum possible efficiency of a heat engine.
To design a Carnot engine with 100% efficiency, the engine would need to operate between two heat reservoirs at different temperatures. The engine would extract heat from the hot reservoir, convert some of that heat into work, and then release the remaining heat into the cold reservoir. The efficiency of the engine would depend on the temperature difference between the two reservoirs. However, even with perfect insulation and ideal materials, it is impossible to achieve 100% efficiency in a real-world engine due to factors such as friction and energy losses in the form of heat.

learn more about Entropy here

https://brainly.com/question/20166134

#SPJ11

what is the ph of a solution made by mixing 5.00 ml of 0.105 m koh with 15.0 ml of 9.5 x 10-2 m ca(oh)2?

Answers

Answer:

0.773

Explanation:

To find the pH of the solution, we need to determine the concentration of hydroxide ions (OH-) in the solution, as pH is defined as the negative logarithm of the hydrogen ion (H+) concentration, and in a basic solution, the concentration of OH- is greater than that of H+.

First, let's calculate the moles of OH- that will be present in the solution. We can do this by using the following equation:

moles of OH- = concentration x volume

For the KOH solution:

moles of OH- = 0.105 M x 0.00500 L = 0.000525 moles

For the Ca(OH)2 solution:

moles of OH- = 9.5 x 10^-2 M x 0.0150 L x 2 = 0.00285 moles (Note: we multiply by 2 because there are two moles of OH- per mole of Ca(OH)2)

The total moles of OH- in the solution is the sum of the moles from the two solutions:

total moles of OH- = 0.000525 moles + 0.00285 moles = 0.003375 moles

Next, we can calculate the total volume of the solution:

total volume = 5.00 mL + 15.0 mL = 20.0 mL = 0.0200 L

Now we can calculate the concentration of OH-:

OH- concentration = moles of OH- / total volume

OH- concentration = 0.003375 moles / 0.0200 L

OH- concentration = 0.16875 M

Finally, we can find the pH of the solution:

pH = -log[OH-]

pH = -log(0.16875)

pH = 0.773

Ethylenediamine (en) is a bidentate ligand. What is the coordination number of cobalt in [Co(en)2Cl2]Cl

Answers

The coordination number of cobalt in [Co(en)₂Cl₂]Cl is 6.

The formula [Co(en)₂Cl₂]Cl indicates that there are two ethylenediamine (en) ligands, each of which can donate two electrons to the cobalt ion (Co), making a total of four electrons donated by the ligands.

Additionally, there are two chloride (Cl⁻) ions, each of which can donate one electron to the cobalt ion. Therefore, there are a total of six donor atoms surrounding the cobalt ion, which gives a coordination number of 6.

The coordination number of a metal ion is the number of donor atoms that are directly bonded to the metal ion. In this case, the ethylenediamine ligands are bidentate, meaning that they can form two bonds with the metal ion, and each chloride ion can form one bond with the metal ion.

Therefore, the total number of donor atoms surrounding the cobalt ion is six, which gives a coordination number of 6.

To know more about coordination number, refer here:

https://brainly.com/question/31610101#

#SPJ11

Write chemical equation for second step of a Born - Haber cycle. Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

In this equation, MgO is the solid alkaline earth metal oxide, [tex]H_2O[/tex] is the liquid water, and [tex]Mg(OH)_2[/tex] is the aqueous alkaline earth metal hydroxide. The symbol (s) indicates a solid phase, (l) indicates a liquid phase, and (aq) indicates an aqueous (dissolved in water) phase.

The second step of the Born-Haber cycle involves the reaction of an alkaline earth metal oxide with water to produce an alkaline earth metal hydroxide. The chemical equation for this reaction is:

MgO(s) +  [tex]H_2O[/tex](l) →  [tex]Mg(OH)_2[/tex](aq)

When it comes to thermostructural properties, MgO is perhaps the most significant alkaline earth oxide. It is largely used in refractory materials for steelmaking, where its extremely high melting point and corrosion resistance are highly prized properties. When the alkali metals are sliced, they first seem brilliant grey, but when they react with the oxygen in the air, they soon turn dull and white. Tarnishing is the term for this.

Learn more about Haber cycle visit: brainly.com/question/29606563

#SPJ4

If two air masses have the same relative humidity of 60%, which one contains more water vapor: Group of answer choices the one with the lower temperature. the one with the higher temperature. not enough information is provided both have the same water vapor.

Answers

If two air masses have the same relative humidity of 60%, the one with the higher temperature contains more water vapor. This is because warmer air can hold more water vapor than cooler air. Therefore, even if both air masses have the same relative humidity, the warmer air mass can hold more water vapor overall.

The air mass with the higher temperature contains more water vapor. Although both air masses have the same relative humidity of 60%, warmer air has the capacity to hold more water vapor compared to colder air.

To know more about relative humidity visit:-

https://brainly.com/question/22069910

#SPJ11

For which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation? a. 2Ho(g)+ C(s)CH(g) b. CO(g)+ C(s)->2C0(g) c. 2NO48) N,043) 5. d. CO(g)+H,0(g)CO2(g)+Ha(g) e. CO2(g) +H2(g) CO(g)+H20(g)

Answers

The reaction for which the enthalpy change under standard conditions corresponds to a standard enthalpy of formation is

option d. CO(g) + H2O(g) → CO2(g) + H2(g).

What is Enthalpy?

Enthalpy is a thermodynamic property of a system that represents the sum of its internal energy and the product of its pressure and volume, often used to describe heat transfer in chemical reactions.

What is standard enthalpy?

Standard enthalpy is the enthalpy change that occurs when a reaction takes place under standard conditions, which are defined as a temperature of 298 K (25°C), a pressure of 1 bar, and a concentration of 1 mol/L.

The reaction for which the enthalpy change under standard conditions corresponds to a standard enthalpy of formation is

option d. CO(g) + H2O(g) → CO2(g) + H2(g).

This is because the reaction involves the formation of one mole of CO2(g) and one mole of H2(g) from one mole of CO(g) and one mole of H2O(g) under standard conditions. The enthalpy change for this reaction is equal to the standard enthalpy of formation of CO2(g) and H2(g) minus the standard enthalpy of formation of CO(g) and H2O(g). Therefore, it corresponds to a standard enthalpy of formation.

To know more about enthalpy visit:

https://brainly.com/question/16720480

#SPJ11

What partial pressure of oxygen cannot be exceeded so that the reduction of sulfate to bisulfide can take place at pH 7

Answers

At pH 7, the partial pressure of oxygen that cannot be exceeded for this reaction to take place is approximately 10⁻⁷ atm.

This is because at this level of oxygen, the reduction of sulfate to bisulfide can occur without any interference from oxygen.

However, if the partial pressure of oxygen exceeds this value, the reaction will not occur as oxygen will inhibit the reduction of sulfate to bisulfide. It is important to note that the exact partial pressure of oxygen may vary depending on the specific conditions of the reaction, such as temperature and pressure.

To know more about pressure click on below link :

https://brainly.com/question/31231456#

#SPJ11

A given reaction has an activation energy of 24.52 kJ/mol. At 25°C, the half-life is 4 minutes. At what temperature will the half-life be reduced to 20 seconds? Group of answer choices 150°C 115°C 100°C 125°C

Answers

The correct answer to the given question is 125°C.

We can use the Arrhenius equation to solve this problem:

k = A * e^(-Ea/RT)

where:

k is the rate constant

A is the pre-exponential factor

Ea is the activation energy

R is the gas constant (8.314 J/mol*K)

T is the temperature in Kelvin

Since we are looking for the temperature at which the half-life is reduced to 20 seconds, we can use the following relationship:

t1/2 = ln(2) / k

where t1/2 is the half-life.

We can combine these equations to eliminate the rate constant:

ln(2) / k1 = Ea / R * (1/T1 - 1/T2)

where T1 is the initial temperature (25°C = 298 K), T2 is the final temperature (unknown), and k1 is the rate constant at T1.

We can solve for T2:

T2 = Ea / R * (1/k1 * ln(2) + 1/T1)

First, we need to find k1. We know that the half-life at T1 is 4 minutes, or 240 seconds. So:

ln(2) / k1 = 240

k1 = ln(2) / 240 = 0.00289 s^-1

Now we can plug in the values:

T2 = (24.52 * 10^3 J/mol) / (8.314 J/mol*K) * (1/0.00289 s^-1 * ln(2) + 1/298 K)

T2 = 393 K = 120°C

Therefore, the temperature at which the half-life is reduced to 20 seconds is approximately 120°C. The closest option given is 125°C.

To know more about temperature please visit:

https://brainly.com/question/31792425

#SPJ11

A 2 cation of a certain transition metal has five electrons in its outermost d subshell. Which transition metal could this be

Answers

A 2+ cation of a transition metal with five electrons in its outermost d subshell would have a d5 electron configuration. Based on this information, the transition metal in question must be in the middle of the d block, specifically in the 3d series.

Among the transition metals in the 3d series, the one with a 2+ cation that has five electrons in its outermost d subshell is Manganese (Mn). Therefore, the transition metal in question is most likely Manganese (Mn).

Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows: [N2]eq = 3.6 mol L-1, [O2]eq = 4.1 mol L-1, [N2O]eq = 3.3 × 10-18 mol L-1.2N2(g) + O2(g) ⇌ 2N2O(g)Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows: [N2]eq = 3.6 mol L-1, [O2]eq = 4.1 mol L-1, [N2O]eq = 3.3 × 10-18 mol L-1.2N2(g) + O2(g) ⇌ 2N2O(g)5.0 × 10362.0 × 10-372.2 × 10-194.9 × 10-174.5 × 1018

Answers

The value of Kc for the given reaction is [tex]4.9 * 10^{-17}[/tex] when the equilibrium concentrations are given.

To determine the value of Kc for the given reaction, we need to use the equilibrium concentrations of the reactants and products. The equilibrium constant, Kc, is defined as the ratio of the product concentrations to the reactant concentrations, each raised to the power of their stoichiometric coefficients.
For the reaction [tex]2N_2(g) + O_2(g) <--> 2N_2O(g)[/tex], the expression for Kc is:
Kc =[tex][N_2O]^2 / ([N2]^2[O_2])[/tex]
Substituting the given equilibrium concentrations, we get:
Kc = [tex](3.3 * 10^{-18})^2 / [(3.6)^2*(4.1)][/tex]
Kc = [tex]4.9 * 10^{-17}[/tex]
Therefore, this indicates that at equilibrium, the reaction favors the formation of [tex]N_2O[/tex] over [tex]N_2[/tex] and [tex]O_2[/tex], since the concentration of [tex]N_2O[/tex] is much smaller than the concentrations of [tex]N_2[/tex] and [tex]O_2[/tex].

To learn more about concentrations click here https://brainly.com/question/10725862

#SPJ11

Assume that heat in the amount of 100 kJ is transferred from a cold reservoir at 600 K to a hot reservoir at 1150 K contrary to the Clausius statement of the second law. What is the total entropy change

Answers

The total entropy change in this situation would be negative, since energy is being transferred from a higher temperature to a lower temperature.

What is energy?

Energy is a vital natural resource that is essential for the functioning of the universe. It is the capacity to do work and is present in many forms, such as kinetic energy, potential energy, electrical energy, thermal energy, light energy, sound energy and nuclear energy. All these forms of energy can be converted from one form to another. Energy is used to power our homes, run our vehicles, cook our food and generate electricity for our everyday needs. It is also used to power industries and other scientific experiments.

This violates the Clausius statement of the second law, which states that heat cannot flow from a colder to a hotter body without an accompanying increase in entropy. The total entropy change in this situation would therefore be -100 kJ.

To learn more about energy

https://brainly.com/question/29339318

#SPJ4

Sodium hydroxide is extremely soluble in water. At a certain temperature, a saturated solution contains 571 g NaOH(s) per liter of solution. Calculate the molarity of this saturated NaOH(aq) solution.

Answers

The molarity of the saturated NaOH(aq) solution is 14.28 M. This means that there are 14.28 moles of NaOH in one liter of the solution.

Sodium hydroxide is a strong base that is commonly used in many industrial and laboratory applications. It is also known as caustic soda and has the chemical formula NaOH. In this question, we are given that a saturated solution of NaOH at a certain temperature contains 571 g NaOH(s) per liter of solution.
To calculate the molarity of this solution, we first need to convert the mass of NaOH to moles. The molar mass of NaOH is 40.00 g/mol, so we can calculate the number of moles of NaOH as follows:
moles of NaOH =\frac{ mass of NaOH }{ molar mass of NaOH}
moles of NaOH =\frac{ 571 g }{ 40.00 g/mol}
moles of NaOH = 14.28 mol
Next, we need to calculate the volume of the solution in liters. Since we are given that the solution contains 571 g of NaOH per liter, the volume of the solution is simply 1 liter.
Finally, we can calculate the molarity of the solution using the following formula:
molarity = \frac{moles of solute }{ volume of solution in liters}
molarity = \frac{14.28 mol }{ 1 L}
molarity = 14.28 M
It is important to note that NaOH is a highly corrosive and dangerous substance, and proper safety precautions should always be taken when handling it.

learn more about molarity Refer: https://brainly.com/question/8732513

#SPJ11

Other Questions
Acquiring, scheduling and receiving all components of a product or service is known as: Supply Chain management Supply Chain management Quality assurance Quality assurance Project management Project management Logistics what determines the amount of tax revenue generated from oil and natural gas produced in Texas Quizlet Quizlet What is defined as the amount of one currency that must be offered to purchase one unit of a foreign currency The enzyme that adds nucleotides during DNA replication may skip or add a nucleotide because of which of the following?a) Thymine dimersb) Ionizing radiationc) Nucleoside analogsd) Intercalating agentse) Nonionizing radiation Wendy aged 10 and Irene aged 12 share 55 cedis in the ratio of their ages.how much dose Wendy receive Aldosterone secretion from the adrenal cortex is stimulated by ______ blood pressure, and ______ Na plasma levels. ____________________ basic rationale for punishment provides that the utility of punishment to society (by deterring crime) outweighs the negative of the punishment itself. After studying Spanish in Columbia for six months, Gwen comes home to Connecticut. She finds she is blurting out certain words in Spanish, even though she knows them perfectly well in English. This is a linguistic example of During the first day of speeches in your public speaking class, you had a bad sinus infection and your ears were plugged so you couldn't hear the speakers. You were experiencing _____. Group of answer choices physiological noise pseudo noise psychological noise physical noise Which policing philosophy requires every level of the organization to have a structure and design that highlights not only effective communication, but also the sharing of information and other resource Hank was transferred from Arizona to North Dakota on March 1 of the current year. He immediately put his home in Phoenix up for rent. The home was rented May 1 to November 30 and was vacant during the month of December. It was rented again on January 1 for six months. What expenses related to the home, if any, can Hank deduct on his return Match the best planting material with the need. You have a sand modified root zone and you want to plant Tifway bermudagrass. ______ The corporate culture at Federal Financial Services is very competitive and encourages result-oriented behaviors. What type of culture is this ______ control focuses on the use of information about results to correct deviations from the acceptable standard after they arise. Group of answer choices Corrective Concurrent Feedback Outback Reactionary Organizations find they must continue to identify and develop innovative ways to _________ customer relationships to maintain a competitive advantage. a. Add value to b. Forecast errors in c. Track signals in d. Reduce big data in sandy is a 40 year old woman complaining of weakness and fatiguw what would be the most appropriate course of action for her Q1. Suppose that in a year an American worker can produce 100 shirts or 20 computers, while a Chinese worker can produce 100 shirts or 10 computers. (a) In America, what is the opportunity cost of producing an additional shirt (measured in terms of foregone computers) Suppose the income of an individual has decreased from $600 to $500 a week. His consumption of a good X has increased from 10 units to 12 units a week. Calculate income elasticity of demand for good X. The standard cell potential (Eo cell ) for the reaction below is 1.10 V. The cell potential for this reaction is ________ V when the concentration of [Cu2 ] in one of gregor mendel's famous hybridization experiments, 8000 offspring peas were obtained and 24.9% of them had green flowers the others had white flowerswhich methods could you use to calculate a confidence interval for the data