Problem 1: Consider a 573 nm wavelength yellow light falling on a pair of slits separated by 0.065 mm. Calculate the angle (in degrees) for the third-order maximum of the yellow light. O= |

Answers

Answer 1

The angle for the third-order maximum of the yellow light is 1.52 degrees.

The angle for the third-order maximum of 573 nm wavelength yellow light falling on a pair of slits separated by 0.065 mm can be calculated using the formula: θ = sin^(-1)(nλ/d), where n is the order of the maximum, λ is the wavelength of the light, and d is the distance between the slits. In this case, n = 3, λ = 573 nm, and d = 0.065 mm.

First, we need to convert the distance between the slits from millimeters to meters. 0.065 mm = 6.5 x 10^(-5) m.

Then, we can plug in the values and solve for the angle:
θ = sin^(-1)((3)(573 x 10^(-9) m)/(6.5 x 10^(-5) m))
θ = sin^(-1)(0.0265)
θ = 1.52 degrees

In conclusion, it is possible to determine the angle of the third-order maximum when yellow light with a wavelength of 573 nm is diffracted through a pair of slits separated by 0.065 mm using the formula = (m) / d. The angle is roughly 5.15 degrees after substituting the specified values and converting the result to degrees.

To know more about the wavelength, click here;

https://brainly.com/question/31143857

#SPJ11


Related Questions

(d) estimate the time t t at which the cars are again side by side. (round your answer to one decimal place.)

Answers

To estimate the time at which the cars are again side by side, we need to find the time it takes for Car A to travel one complete lap more than Car B.

We know that Car A travels one lap in 100 seconds, while Car B travels one lap in 120 seconds. Let's call the time it takes for the cars to be side by side again "t". After t seconds, Car A will have completed t/100 laps, while Car B will have completed t/120 laps. For the cars to be side by side again, Car A must have completed one more lap than Car B.

So we need to solve the equation:

t/100 = t/120 + 1

Multiplying both sides by 12000 (the least common multiple of 100 and 120) gives:

120t = 100t + 12000

Simplifying this equation gives:

20t = 12000

t = 600 seconds

Therefore, the cars will be side by side again after 600 seconds, or 10 minutes.

For more questions like time visit the link below:

https://brainly.com/question/31183893

#SPJ11

he standard free energy change for the conversion of glucose to glucose-6- phosphate by hexokinase is go’ = -16.6 kj/mol (t = 37 oc). what is the equilibrium constant for the hexokinase reaction?

Answers

The equilibrium constant for the hexokinase reaction is approximately 7.042.

The relationship between standard free energy change (ΔG°), equilibrium constant (K) and the standard free energy change per mole of reaction (ΔG°/mol) is given by the following equation:

ΔG° = -RT lnK

where R is the gas constant (8.314 J/mol·K), T is the temperature in Kelvin, and ln is the natural logarithm.

Given ΔG° = -16.6 kJ/mol and T = 37°C = 310 K, we can solve for K:

ΔG° = -RT lnK

-16.6 kJ/mol = -(8.314 J/mol·K)(310 K) lnK

lnK = 1.951

K = e^(1.951)

K ≈ 7.042

For more question on equilibrium constant click on

https://brainly.com/question/30076880

#SPJ11

The equilibrium constant for the hexokinase reaction is approximately 2.46 x [tex]10^7[/tex].

The equilibrium constant, denoted as K, can be calculated from the standard free energy change using the following equation:

ΔG° = -RT ln(K)

where R is the gas constant and T is the temperature in Kelvin. At 37°C, which is 310 K, we have:

ΔG° = -16.6 kJ/mol

R = 8.314 J/(mol*K)

Converting the units of ΔG° to joules, we have:

ΔG° = -16,600 J/mol

Substituting the values into the equation and solving for K, we get:

K = [tex]e^{(-ΔG°/RT)[/tex] = [tex]e^{(-16600 J/mol / (8.314 J/(mol*K) * 310 K))[/tex]≈ 2.46 x [tex]10^7[/tex].

Learn more about equilibrium constant here:

https://brainly.com/question/10038290

#SPJ11

what capacitance, in μf , has its potential difference increasing at 1.5×106 v/s when the displacement current in the capacitor is 1.2 a ?

Answers

The capacitance (C) is determined to be 0.8 microfarads (μF) when the displacement current [tex]I_d[/tex] is 1.2 A and the rate of change of potential difference [tex]{\frac{dV}{dt}}[/tex] is 1.5 × 10⁶ V/s.

To determine the capacitance (C) in microfarads (μF), we can use the formula:

[tex]C = \frac{I_d}{\frac{dV}{dt}}[/tex]

where [tex]I_d[/tex] is the displacement current in amperes (A), and [tex]\frac{dV}{dt}[/tex] is the rate of change of potential difference in volts per second (V/s).

Given:

Displacement current [tex]I_d[/tex] = 1.2 A

Rate of change of potential difference [tex]\frac{dV}{dt}[/tex] = 1.5 × 10⁶ V/s

Substituting these values into the formula, we can calculate the capacitance:

C = (1.2 A) / (1.5 × 10⁶ V/s)

Simplifying this expression yields:

C = 0.8 × 10⁻⁶ F

Therefore, the capacitance is 0.8 microfarads (μF) when the potential difference is increasing at a rate of 1.5 × 10⁶ V/s and the displacement current in the capacitor is 1.2 A.

To know more about the capacitance refer here :

https://brainly.com/question/28445252?#

#SPJ11

Which of the following are odd-electron species? Select all that apply.Multiple select question.a. ClOb. ClO2-c. N2Od. NO2

Answers

b. ClO2- and NO2 are odd-electron species because they have an odd number of valence electrons.

Odd-electron species are molecules or ions with an odd number of valence electrons.

To determine if a species is odd-electron, we need to count the total number of valence electrons and see if it is an odd number.

For example, ClO has 18 valence electrons which is an even number, so it is not an odd-electron species.

Here is the electron count for each option:
a. ClO: 7 + 6 + 1 = 14 valence electrons (even)
b. ClO2-: 7 + 6 + 6 + 1 = 20 valence electrons (odd)
c. N2O: 5 + 5 + 6 = 16 valence electrons (even)
d. NO2: 5 + 6 + 6 = 17 valence electrons (odd)
Therefore, the odd-electron species are ClO2- and NO2.


Summary: ClO2- and NO2 are odd-electron species because they have an odd number of valence electrons.

learn more about electrons click here:

https://brainly.com/question/860094

#SPJ11

heat in a room from an air register moves from warmer areas to cooler areas of the room due to _____.

Answers

Heat in a room from an air register moves from warmer areas to cooler areas due to convection.

Convection is the process of heat transfer through the movement of a fluid, such as air or water. In the context of heating a room, warm air is typically blown into the room through an air register or vent. The warm air rises and creates a convection current. As the warm air circulates, it comes into contact with more excellent surfaces, objects, or cooler air in the room. The heat energy is transferred from the warmer air to the more excellent areas through convection. This process continues until the temperature equalizes, with the heat gradually spreading throughout the room and warming the more excellent regions. Convection is the process of heat transfer through the movement of a fluid, such as air or water. In the context of heating a room, warm air is typically blown into the room through an air register or vent. The warm air rises and creates a convection current. As the warm air circulates, it comes into contact with more excellent surfaces, objects, or cooler air in the room. The heat energy is transferred from the warmer air to the more excellent areas through convection. This process continues until the temperature equalizes, with the heat gradually spreading throughout the room and warming the more excellent regions.

Learn more about convection here:

https://brainly.com/question/4138428

#SPJ11

calculate the t statistic. y= 19,525 sy =24,782 my =17,726 oy = ? n= 372

Answers



To calculate the t statistic, we need to first determine the standard error of the mean (SEM) and then divide the difference between the sample mean and the population mean by the SEM.

t = (y - my) / (sy / sqrt(n))

where y is the sample mean, sy is the sample standard deviation, my is the population mean, and n is the sample size.


In this case, we are given the sample mean (y = 19,525), the sample standard deviation (sy = 24,782), the population mean (my = 17,726), and the sample size (n = 372).

To calculate the SEM, we use the formula:

SEM = sy / sqrt(n)

Plugging in the values we get:

SEM = 24,782 / sqrt(372) = 1283.57

Now we can calculate the t statistic:

t = (19,525 - 17,726) / 1283.57 = 1.40

Therefore, the t statistic is 1.40.

learn more about standard deviation

https://brainly.com/question/475676

#SPJ11

you purchased a 1,500 w electric heater. the manufacturer's installation instructions require the use of a nema 5-15r receptacle. what minimum conductor size (awg) would you need to purchase to bring power to this receptacle from your home's electrical panel?

Answers

To bring power to the NEMA 5-15R receptacle from your home's electrical panel for the 1,500 W electric heater, you would need to purchase a minimum conductor size (AWG) of **14 AWG**.

The choice of conductor size (AWG) depends on the electrical load and the circuit's ampacity requirements.
For a 1,500 W electric heater, considering it operates at 120 V, you can calculate the current using the formula: Current (A) = Power (W) / Voltage (V).
In this case, the current would be approximately 12.5 A (1,500 W / 120 V).

According to the National Electrical Code (NEC), a 15 A circuit requires a minimum conductor size of 14 AWG.
Since the current for the electric heater is 12.5 A, a 14 AWG conductor would be sufficient to handle the load safely and meet the NEC requirements.

To learn more about electric heater
https://brainly.com/question/30888810
#SPJ11

if a wind instrument, like a tuba, has a fundamental frequency of 66.0 hz, what are its first three overtones? it is closed at one end.

Answers

The base dissociation constant (Kb) for imidazole (C3H4N2) can be represented as follows:

C3H4N2 + H2O ⇌ C3H4N2H+ + OH-

The equilibrium constant expression is:

Kb = [C3H4N2H+][OH-] / [C3H4N2][H2O]

The acid dissociation constant (Ka) for imidazole hydrochloride (C3H4N2HCl) can be represented as follows:

C3H4N2HCl + H2O ⇌ C3H4N2H+ + Cl- + H2O

The equilibrium constant expression is:

Ka = [C3H4N2H+][Cl-] / [C3H4N2HCl]

To know more about dissociation refer here

https://brainly.com/question/30961097#

#SPJ11

What is dark matter made of, and how is it possible?

Answers

Answer:

Explanation:

it is made up of other, more exotic particles like axions or WIMPS (Weakly Interacting Massive Particles).

The objective lens of a large telescope has a focal length of 12.6 m. If its eyepiece has a focal length of 3.0 cm, what is the magnitude of its magnification?
A : 4.2
B : 129
C : cannot be calculated without knowing the length of the telescope
D : 12.9
E : 420

Answers

The magnitude of the magnification is 420 (option e).

To calculate the magnification of a telescope, we use the formula:

Magnification = (Focal Length of Objective Lens) / (Focal Length of Eyepiece)

Given that the focal length of the objective lens is 12.6 m (or 1260 cm) and the focal length of the eyepiece is 3.0 cm, we can substitute these values into the formula:

Magnification = 1260 cm / 3.0 cm = 420

Therefore, the magnitude of the magnification is 420. Hence, the correct answer is (E) 420.

The term "magnitude" is used by physicists to refer to the "distance or quantity" of something. It reflects the direction and/or magnitude of motion in the context of motion.

It's an excellent technique to emphasise the magnitude or scope of anything. Magnitude is a physics word that can refer to either distance or quantity.

We can build a link between a moving object's size and velocity and its total magnitude. Magnitude relates to the size of something or the amount of money available. Magnitude may be used for a multitude of things.

For more such questions on magnitude, click on:

https://brainly.com/question/30337362

#SPJ11

To find the magnitude of the magnification of the telescope, we can use the formula: magnification = - (focal length of objective lens) / (focal length of eyepiece) Substituting the values given in the question, we get: magnification = - (12.6 m) / (0.03 m) = - 420

Since magnification is defined as the ratio of the image size to the object size, the negative sign simply indicates that the image is inverted. Therefore, the magnitude of the magnification is simply the absolute value of the calculated value, which is 420. Therefore, the answer is E) 420. The magnification of a telescope can be calculated using the formula: Magnification = focal length of the objective lens / focal length of the eyepiece. In this case, the focal length of the objective lens is 12.6 m (or 1260 cm) and the focal length of the eyepiece is 3.0 cm. To find the magnification, simply divide the focal length of the objective lens by the focal length of the eyepiece: Magnification = 1260 cm / 3.0 cm = 420. So, the magnitude of the magnification for this telescope is 420.

Learn more about magnification here :

https://brainly.com/question/21370207

#SPJ11

Two asteroids head straight for Earth from the same direction. Their speeds relative to Earth are 0.81c for asteroid 1 and 0.59 for asteroid 2.Find the speed of asteroid 1 relative to asteroid 2.Wouldn't it be v=.22?

Answers

Answer:No, the calculation you provided is incorrect. To find the relative speed of asteroid 1 with respect to asteroid 2, we need to use the relativistic velocity addition formula:

v = (v1 - v2) / (1 - v1*v2/c^2)

where v1 is the velocity of asteroid 1 relative to Earth, v2 is the velocity of asteroid 2 relative to Earth, and c is the speed of light.

Substituting the given values, we get:

v = (0.81c - 0.59c) / (1 - 0.81c * 0.59c / c^2)

v = 0.22c / (1 - 0.48)

v = 0.42c

Therefore, the speed of asteroid 1 relative to asteroid 2 is 0.42 times the speed of light (c).

Explanation:

If you put a dish of water in a vacuum jar and decrease the pressure inside the jar by a vacuum pump, water
A. boils and freezes
B. disappears
C. remains intact
D. sublimates

Answers

If you put a dish of water in a vacuum jar and decrease the pressure inside the jar by a vacuum pump, the water will remain intact.

When the pressure inside the jar decreases, the boiling point of water decreases as well. However, the pressure in the dish of water remains constant, and it is not low enough to allow the water to boil.  As the pressure decreases, the boiling point of water lowers, causing it to boil at room temperature. Similarly, the pressure is not low enough for the water to freeze or sublimate, so it remains liquid. This is because the vacuum pump decreases the jar's pressure, not the water itself. Therefore, the water molecules do not have enough energy to change their state and remain in their current form.

To know more about  vacuum pump visit:

https://brainly.com/question/29442563

#SPJ11

A gazelle is running at 9.09 m/s. he hears a lion and accelerates at 3.80 m/s/s. 2.16 seconds after hearing the lion, how far has he travelled?

Answers

A gazelle is running at 9.09 m/s. he hears a lion and accelerates at 3.80 m/s²; the gazelle has traveled approximately 25.14 meters after 2.16 seconds since hearing the lion.

To find the total distance traveled by the gazelle, we'll use the formula d = v0t + 0.5at^2, where d is the distance, v0 is the initial velocity, t is the time, and a is the acceleration. Given the initial velocity of 9.09 m/s, acceleration of 3.80 m/s², and time of 2.16 seconds:
1. Calculate the distance covered during the initial velocity: d1 = v0 * t = 9.09 m/s * 2.16 s = 19.6344 m
2. Calculate the distance covered during acceleration: d2 = 0.5 * a * t^2 = 0.5 * 3.80 m/s² * (2.16 s)^2 = 5.50896 m
3. Add the distances to find the total distance: d = d1 + d2 = 19.6344 m + 5.50896 m ≈ 25.14 m
The gazelle has traveled approximately 25.14 meters after 2.16 seconds since hearing the lion.

Learn more about acceleration here:

https://brainly.com/question/30499732

#SPJ11

to generate the theoretical plots of the response of an rlc circuit, the spreadsheet calculates and plots ~700 points. what determines the number and placement of the points required

Answers

The number and placement of points required to generate theoretical plots of the response of an RLC circuit depend on the desired level of accuracy and the complexity of the circuit.

In general, the more complex the circuit, the more points that are needed to accurately model its behavior. Additionally, the frequency range of interest and the specific features of the response being analyzed can also influence the number and placement of points.

For example, if the circuit's response is being analyzed over a broad range of frequencies, a higher density of points may be needed in certain regions to accurately capture any resonances or other frequency-dependent phenomena.

To know more about RLC circuit, refer here:

https://brainly.com/question/13092725#

#SPJ11

A photon of initial energy 0.1 MeV undergoes Compton scattering at an angle of 60°. Find (a) the energy of the scattered photon, (b) the recoil kinetic energy of the electron, and (c) the recoil angle of the electron.

Answers

The energy of the scattered photon is E₁ = E₀ - ΔE = 0.1 MeV - 0.042 MeV = 0.058 MeV. The recoil kinetic energy of the electron is given by: K = (0.042 MeV)/(1 + (0.1 MeV/(0.511 MeV/c²))) = 0.013 MeV. The recoil angle of the electron is φ = cos⁻¹(0.707) = 45°.

The energy of the scattered photon can be calculated using the formula: ΔE = E₀ - E₁ = E₀ * [1 - cos(θ)] where E₀ is the initial energy of the photon, E₁ is the energy of the scattered photon, and θ is the angle of scattering. Substituting the given values, we get ΔE = 0.1 MeV * [1 - cos(60°)] = 0.042 MeV.

The recoil kinetic energy of the electron can be calculated using the formula: K = (ΔE)/(1 + (E₀/m₀c²)), where K is the recoil kinetic energy of the electron, ΔE is the change in energy of the photon, E₀ is the initial energy of the photon, m₀ is the rest mass of the electron, and c is the speed of light. Substituting the given values, we get K = (0.042 MeV)/(1 + (0.1 MeV/(0.511 MeV/c²))) = 0.013 MeV.

The recoil angle of the electron can be calculated using the formula: cos(φ) = [1 + (E₀/m₀c²)]/[(E₀/m₀c²) * (1 - cos(θ)) + 1], where φ is the angle of recoil of the electron. Substituting the given values, we get cos(φ) = [1 + (0.1 MeV/(0.511 MeV/c²))]/[(0.1 MeV/(0.511 MeV/c²)) * (1 - cos(60°)) + 1] = 0.707.

To know more about kinetic energy, refer here:

https://brainly.com/question/30764377#

#SPJ11

A hollow cylindrical copper pipe is 1.40M long and has an outside diameter of 3.50 cm and an inside diameter of 2.20cm . How much does it weigh? w=?N

Answers

The weight of the copper pipe is approximately 390.76 N. To find the weight of the copper pipe, we first need to calculate its volume. The formula for the volume of a hollow cylinder is: V = πh(R² - r²)

Where V is the volume, h is the height of the cylinder (which in this case is 1.40 m), R is the radius of the outer circle (which is half of the outside diameter, or 1.75 cm), and r is the radius of the inner circle (which is half of the inside diameter, or 1.10 cm).

Substituting the values we have:

V = π(1.40 m)(1.75 cm)² - (1.10 cm)²
V = 0.004432 m³

Next, we need to find the density of copper. According to Engineering Toolbox, the density of copper is 8,960 kg/m³.

Now we can use the formula for weight:

w = m*g

Where w is the weight, m is the mass, and g is the acceleration due to gravity, which is approximately 9.81 m/s².

To find the mass, we can use the formula:

m = density * volume

Substituting the values we have:

m = 8,960 kg/m³ * 0.004432 m³
m = 39.81 kg

Finally, we can calculate the weight:

w = 39.81 kg * 9.81 m/s²
w = 390.76 N

Therefore, the weight of the copper pipe is approximately 390.76 N.

To know more about weight, refer

https://brainly.com/question/86444

#SPJ11

Two charged particles having charges +25μC and +50μC are separated by a distance of 8 cm. The ratio of forces on them is:

Answers

The ratio of forces on the two charged particles is determined by Coulomb's law, which states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. In this case, we have two particles with charges of +25μC and +50μC, separated by a distance of 8 cm.

To find the ratio of forces, we can use the formula F1/F2 = (q1*q2)/(d1^2)/(q2*q2)/(d2^2), where F1 and F2 are the forces on the particles, q1 and q2 are their charges, and d1 and d2 are their distances from each other.

Plugging in the given values, we get F1/F2 = (+25μC*+50μC)/(8cm)^2/(+50μC*+50μC)/(8cm)^2 = 25/50 = 1/2. Therefore, the ratio of forces on the two particles is 1:2, with the particle with the larger charge experiencing twice as much force as the particle with the smaller charge.

Overall, the ratio of forces on two charged particles can be determined using Coulomb's law, which takes into account the charges and distances between the particles. In this particular case, we found that the ratio of forces was 1:2, with the particle with the larger charge experiencing twice as much force as the particle with the smaller charge.

To know more about Coulomb's law click this link-

brainly.com/question/506926

#SPJ11

An engineer entered into a written contract with an owner to serve in the essential position of on-site supervisor for construction of an office building. The day after signing the contract, the engineer was injured while bicycling and was rendered physically incapable of performing as the on-site supervisor. The engineer offered to serve as an off-site consultant for the same pay as originally agreed to by the parties.


Is the owner likely to prevail in an action against the engineer for damages resulting from his failure to perform under the contract?

Answers

The owner is likely to prevail in an action against the engineer for damages resulting from his failure to perform under the contract due to his physical incapacity caused by a bicycling injury.

In general, the principle of contract law is that parties are expected to fulfill their contractual obligations. However, there are certain circumstances where performance may be excused or modified. In this case, the engineer's physical incapacity resulting from the bicycling injury prevents him from serving as the on-site supervisor as agreed upon in the contract.

While the engineer offered to serve as an off-site consultant for the same pay, this may not be sufficient to discharge his obligations under the original contract. The essential position of on-site supervisor requires physical presence and direct supervision, which the engineer is unable to provide due to his injury. If the contract explicitly specifies the engineer's role as the on-site supervisor, the owner may have a strong argument that the engineer's failure to perform constitutes a breach of contract.

However, the outcome may also depend on the specific terms of the contract and any provisions related to unforeseen circumstances or force majeure events. If the contract includes provisions for situations where the engineer becomes physically incapable of performing his duties, or if there is a provision allowing for the assignment or substitution of the engineer's role, it could potentially protect the engineer from liability. Ultimately, the determination of whether the owner will prevail in an action against the engineer would require a careful examination of the contract terms and the applicable laws in the jurisdiction where the contract was formed.

Learn more about contract here:

https://brainly.com/question/30488755

#SPJ11

the presence of what type of object accounts for the very fast orbiting of stars and gas about the center of the milky way?

Answers

The Milky Way's center's extremely quick circling of stars and plasma is explained by the existence of a supermassive black hole.

Sagittarius A* (Sgr A*), a supermassive black hole in the center of the galaxy, has been confirmed through astronomical observations and research. The estimated mass of this black hole is millions of times more than the mass of the Sun. The surrounding matter is significantly impacted by its strong gravitational pull, which causes stars and gas to orbit it quickly. These quick orbital velocities are a result of the supermassive black hole's powerful gravitational pull, which controls the dynamics of objects close to the galactic center.

To know more about gravitational pull, here

brainly.com/question/6839945

#SPJ4

A laser emits 4.7 × 10^19 photons per second from an excited state with energy E2 3.98 eV . The lower energy level is E1 = 0 eV Part A What is the wavelength of this laser? Express your answer with the appropriate units. λ= 1 Part B What is the power output of this laser? Express your answer with the appropriate units. A ?

Answers

Part A: The wavelength of this laser is: λ = 263.3 nm

Part B: The power output of this laser is: P = 6.96 W

Explanation for the above written short answer is written below,

For Part A, we can use the formula E = hc/λ to find the wavelength, where h is Planck's constant and c is the speed of light.

First, we need to find the energy of each photon using E = E2 - E1 = 3.98 eV.

Converting this to joules, we get 6.38 × 10^-19 J.

Plugging this into the formula and solving for λ, we get λ = hc/E = (6.626 × 10^-34 J·s)(2.998 × 10^8 m/s)/(6.38 × 10^-19 J) = 263.3 nm.

For Part B, we can use the formula
P = E/t,
where E is the energy emitted per second and
t is the time.

We know that the laser emits 4.7 × 10^19 photons per second, and each photon has an energy of 6.38 × 10^-19 J (as calculated in Part A).

Multiplying these together, we get E = (4.7 × 10^19)(6.38 × 10^-19) = 2.9966 J/s.

Therefore, the power output is P = E/t = 2.9966 J/s = 6.96 W.

To know more about "Planck's constant" refer here:

https://brainly.com/question/27389304#

#SPJ11

what percentage of the sun's total mass is lost each year as a result of fusion converting mass into energy?

Answers

The percentage of the Sun's total mass lost each year as a result of fusion converting mass into energy is approximately 4.26 x 10⁻⁹%.

Find the percentage of the sun's total mass?

The process of nuclear fusion in the Sun's core converts a small fraction of its mass into energy according to Einstein's mass-energy equivalence equation, E = mc².

The total energy radiated by the Sun each year is about 3.8 x 10²⁶ joules.

To calculate the mass lost, we divide this energy by the speed of light squared (c²) to obtain the equivalent mass:

Δm = E / c²

Using the value for the speed of light (c) of approximately 3 x 10⁸ meters per second, the mass lost is:

Δm = (3.8 x 10²⁶ J) / (3 x 10⁸ m/s)² ≈ 4.22 x 10⁹ kg

To calculate the percentage, we divide the mass lost by the Sun's total mass and multiply by 100:

Percentage = (4.22 x 10⁹ kg / 1.989 x 10³⁰ kg) x 100 ≈ 4.26 x 10⁻⁹%

Therefore, approximately 4.26 x 10⁻⁹% of the Sun's total mass is lost annually due to fusion converting mass into energy.

To know more about mass, refer here:

https://brainly.com/question/11954533#

#SPJ4

why can we not see the tidal disruption of a star by a black hole with masses greater than about 108 solar masses?

Answers

We cannot see the tidal disruption of a star by a black hole with masses greater than about 10^8 solar masses because of the phenomenon known as the event horizon.

The event horizon is the boundary around a black hole beyond which nothing, including light, can escape its gravitational pull. It is determined by the mass of the black hole, with larger black holes having larger event horizons.

When a star gets too close to a black hole, the tidal forces exerted by the black hole's gravity can stretch and deform the star. This process is known as tidal disruption. As the star gets closer to the black hole, the gravitational forces acting on the star's different parts become stronger, causing the star to experience tidal forces that can tear it apart.

In the case of black holes with masses greater than about 10^8 solar masses, their event horizons are extremely large. As a result, the tidal forces acting on a star approaching such a massive black hole are distributed over a larger area, reducing the strength of the tidal forces near the event horizon.

Because the tidal forces are weaker near the event horizon of a massive black hole, the disruption and stretching of the star are not as pronounced as they would be with a smaller black hole. The star is more likely to cross the event horizon without being torn apart completely, and once it crosses the event horizon, it becomes hidden from our view. This means that the direct observation of the tidal disruption process becomes impossible.

Therefore, the limited visibility of the tidal disruption of a star by a black hole with masses greater than about 10^8 solar masses is primarily due to the size of the black hole's event horizon. The larger event horizon reduces the strength of tidal forces near the black hole, allowing the star to potentially pass through the event horizon intact and preventing us from directly observing the disruptive process.

To know more about event horizon, please click on:

https://brainly.com/question/13045740

#SPJ11

air at 101 kpa and 360 k flows at 15 m/s over a flat plate maintained at 300 k assume that the transition reynolds number is 5

Answers

Air at a pressure of 101 kPa and a temperature of 360 K flows at a velocity of 15 m/s over a flat plate maintained at a temperature of 300 K. It is assumed that the transition Reynolds number is 5.

The transition Reynolds number is a dimensionless parameter that determines the flow regime over a surface. It is defined as the ratio of inertial forces to viscous forces and is used to distinguish between laminar and turbulent flow. In this case, the given transition Reynolds number is 5.

When the air flows over the flat plate, the flow regime will depend on the value of the Reynolds number. If the Reynolds number is below the transition value, the flow will be laminar, characterized by smooth and orderly layers of air. If the Reynolds number exceeds the transition value, the flow becomes turbulent, with chaotic and irregular motion.

The exact behavior of the flow, whether it is laminar or turbulent, will also depend on other factors such as surface roughness, boundary layer thickness, and the nature of the flow itself. However, based on the given information, we can infer that the flow is expected to be in the laminar regime due to the low transition Reynolds number of 5.

In summary, the given conditions of air pressure, temperature, velocity, and transition Reynolds number suggest that the flow over the flat plate is likely to be laminar.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

The time it takes for a radio signal from the Cassini orbiter to reach Earth is at most 85 min. With this one-way travel time, calculate the distance Cassini is from Earth.

Answers

The Cassini is approximately 1.529 x 10^12 meters away from Earth.

What is the distance between Cassini orbiter and Earth?

To calculate the distance, we can use the speed of light to calculate the distance Cassini is from Earth.

First, we convert the maximum one-way travel time of 85 minutes to seconds:

85 minutes x 60 seconds/minute = 5100 seconds

Next, we use the speed of light, which is approximately 299,792,458 meters per second, to calculate the distance:

distance = speed x time

distance = 299,792,458 m/s x 5100 s

distance ≈ 1.529 x 10^12 meters

Therefore, Cassini is approximately 1.529 x 10^12 meters away from Earth.

Learn more about Distance

brainly.com/question/30510042

#SPJ11

Calculate the kinetic energy in j of an electron moving at 6.00 x 10^6.

Answers

The kinetic energy of the electron moving at 6.00 × 10^6 m/s is approximately 1.6347221 × 10^(-18) joules (J).

To calculate the kinetic energy of an electron moving at a given velocity, we can use the formula for kinetic energy:

KE = (1/2) * m * v^2

where:

KE is the kinetic energy,

m is the mass of the electron, and

v is the velocity of the electron.

The mass of an electron (m) is approximately 9.10938356 × 10^(-31) kilograms.

Given the velocity (v) as 6.00 × 10^6 meters per second, we can now calculate the kinetic energy:

KE = (1/2) * (9.10938356 × 10^(-31) kg) * (6.00 × 10^6 m/s)^2

KE = (1/2) * (9.10938356 × 10^(-31) kg) * (3.6 × 10^13 m^2/s^2)

KE ≈ 1.6347221 × 10^(-18) joules (J)

To know more about kinetic energy refer here

https://brainly.com/question/26405082#

#SPJ11

Solve for the amount of molecules of H2O if a container has 2.22 moles of H2O in it.
Please help

Answers

2.22 moles of [tex]H_2O[/tex] contain 1.34 x [tex]10^2^4[/tex] molecules (2.22 moles x 6.022 x 10^23 molecules/mole = 1.34 x[tex]10^2^4[/tex] molecules).


To determine the amount of [tex]H_2O[/tex] molecules in a container with 2.22 moles of [tex]H_2O[/tex], we need to use Avogadro's number, which is approximately 6.022 x [tex]10^2^3[/tex] molecules per mole.

This number represents the number of molecules or atoms in one mole of any substance.

To calculate the number of molecules, simply multiply the moles by Avogadro's number:

2.22 moles of [tex]H_2O[/tex] x 6.022 x [tex]10^2^3[/tex] molecules/mole = 1.34 x 1[tex]0^2^4[/tex] molecules of [tex]H_2O[/tex]

So, in a container with 2.22 moles of [tex]H_2O[/tex], there are approximately 1.34 x [tex]10^2^4[/tex]molecules of [tex]H_2O[/tex] present.

For more such questions on molecules, click on:

https://brainly.com/question/30337264

#SPJ11

suppose the polar ice sheets broke free and quickly floated toward earth’s equator without melting. what would happen to the duration of the day on earth?

Answers

If the polar ice sheets broke free and moved towards Earth's equator without melting, the redistribution of mass would cause a slight decrease in the duration of the day on Earth due to the conservation of angular momentum.

If the polar ice sheets were to break free and rapidly migrate towards Earth's equator without melting, a redistribution of mass would occur. This redistribution would cause a slight decrease in the duration of the day on Earth. This is because the movement of mass closer to the equator would decrease the moment of inertia of the planet, leading to an increase in the rotational speed of Earth to conserve angular momentum. Consequently, the shorter duration of the day would result from the increased rotational speed. It is important to note that the actual effect would be extremely small and likely negligible in comparison to other factors affecting the Earth's rotation.

Learn more about polar ice sheets here:

https://brainly.com/question/14717918

#SPJ11

design an analog computer to simulate d2 ____vo dt2 2___ dvo dt vo = 10 sin 2t

Answers

An analog computer can be designed using operational amplifiers to simulate the second-order differential equation d2(vo)/dt2 + 2(dvo/dt) + vo = 10 sin(2t). The circuit would include two integrators, two summers, and a sinusoidal signal generator.

The first integrator would integrate the input sinusoidal signal to obtain the velocity signal, and the second integrator would integrate the velocity signal to obtain the position signal. The two summers would sum the input signal and the feedback signal to generate the error signal and sum the position signal and the damping signal to obtain the velocity signal. The output of the second integrator would be the simulated response of the second-order differential equation.

Analog computers were popular in the mid-twentieth century for solving differential equations, but they have largely been replaced by digital computers. Analog computers offer advantages in terms of speed, accuracy, and noise immunity, but they also have drawbacks in terms of complexity, maintenance, and flexibility.

Learn more about Analog computers here:

https://brainly.com/question/18943642

#SPJ11

an out of tune low c (128.3 hz) and middle c (264 hz)?

Answers

When a musical instrument is out of tune, it means that the frequencies of its notes do not match the standard tuning frequency for the musical scale. The standard tuning frequency for the note A4 (440 Hz) is used as a reference frequency to tune all other notes.

In the case of the out-of-tune low C (128.3 Hz), it is significantly lower in frequency than the standard tuning frequency for C4 (261.63 Hz), which is one octave above A4. This means that the low C note will sound "flat" compared to the standard C note.

Similarly, in the case of the out-of-tune middle C (264 Hz), it is slightly higher in frequency than the standard tuning frequency for C4 (261.63 Hz). This means that the middle C note will sound "sharp" compared to the standard C note.

When notes in a musical instrument are out of tune, it can lead to a dissonant and unpleasant sound. It is important for musicians to tune their instruments regularly to ensure that their music sounds harmonious and pleasant to the listener.

To know more about  frequencies  refer here :-

https://brainly.com/question/29739263#

#SPJ11

An object's angular momentum changes by 10 kg m^2/s in 2 sec. what magnitude average torque acted on the object?

Answers

An object's angular momentum changes by 10 kg m^2/s in 2 sec; the average torque acting on the object is 5 Nm.

Angular momentum is the product of moment of inertia and angular velocity, represented by L= Iω.

When the angular momentum changes by ΔL in time t, the average torque acting on the object is given by τ= ΔL/Δt. Here, ΔL= 10 kg m^2/s and Δt= 2 s.  

Substituting the values in the formula, we get τ= ΔL/Δt= 10 kg m^2/s ÷ 2 s= 5 Nm.

Therefore, the average torque acting on the object is 5 Nm. It is important to note that torque is the measure of how much a force acting on an object causes it to rotate, and it depends on both the magnitude and direction of the force.

Learn more about torque here:

https://brainly.com/question/31248352

#SPJ11

Other Questions
5 carbon pentoses include __________________which is an important component of high energy compounds such as _______________. The Solow model suggests that steady-state investment per worker is positively related to the capitallabor ratio. This occurs because Select one: a. the higher the capitallabor ratio, the lower the capital depreciation rate. b. the higher the capitallabor ratio , the greater the amount of resources available for capital investment. c. the higher the capitallabor ratio, the more investment per worker is required to replace depreciating capital. d. the higher the capitallabor ratio, the less the economy needs to equip new workers with the same high level of capital. Given that XZ=9. 8, XY=21. 2, and m What type of characteristic image is it? when a manager is sent to work at a subsidiary in a foreign country, but is not happy and prematurely returns to the home country, it is known as blank______. could you also give the formula you used so if they acted like a monopolist and charged a single price to all consumers, what price would they charge to maximize profits?Demand and Costs Demand for Concert Tickets: P= 30 Q Marginal Revenue: MR= 30 2Q Total Cost: 100 Max Yes, the downward sloping demand curve tells us that they have some monopoly power. Ray Marginal Cost: 10 Average Total Cost: 10 1) A powerhouse is on one edge of a straight river and a factory is on the other edge, 100 meters downstream. The river is 50 meters wide. It costs 10 per meter to run electrical cable across the river and 7 per meter on land. How should the cable be installed to minimize the cost? Notice writing lost and found Let A = {4, 5, 6} and B = {6, 7, 8}, and let S be the "divides" relation from A to B. That is, for every ordered pair (x, y) A B, x S y x | y. Which ordered pairs are in S and which are in S1? (Enter your answers in set-roster notation. ) S = S1 = TRUE/FALSE. If the negation operator in propositional logic distributes over the conjunction and disjunction operators of propositional logic then DeMorgan's laws are invalid. what is the standard form equation of the ellipse that has vertices (0,4) and co-vertices (2,0)? Which system has to do with regulate body functions and maintain homeostasis?. 50 L of oxygen at a pressure of 64 KPais compressed to a volume of 4. 1 L to fit in a scuba tank. Round to thenearest whole number gardeners would need to use 960 newtons of force to lift a potted tree 45 centimeters onto a deck. instead, they set up a lever. if they press the lever down 2 meters, how much force do they use to lift the tree? a city is facing a major expense, but it is short on money. it might _______ in order to pay for the expense consider a metabolic reaction that has g' < 0 kj/mol and g < 0 kj/mol. what can you predict about the values of keq and the mass action ratio (q) that would result from these free energy changes? Choose one or more:A. Q = 1 B. Q > 1 C.Keq > 1 D.Keq = 1 E. Keq < 1 F. Q < 1 Your brother has decided to ask you for advice about saving up for his teenager's college fund.He plans on withdrawing $8,000 at the end of year 4, $12,000 at the end of year 5, and $16,000 each at the end of year 6 and year 7.How much does your brother need to deposit today into an account with an annual interest rate of 3%? an inductive approach to research introduced by barney glaser and anselm strauss in which theories are generated solely from an examination of data rather than being derived deductively in known as The circumference of the Curiosity Rovers wheels are 157. 1 cm. If the wheels are rotated 14, 756. 8 times, how many miles has Curiosity traveled