The redox reaction will occurs spontaneously as the electrode potential of the cell is positive.
The equation of the redox reaction is as :
3Zn²⁺(aq) + 2Cr(s) ----> 3Zn(s) + 2Cr³⁺(aq)
At cathode : 3Zn²⁺ + 6e⁻ ---> 3Zn
At anode : 2Cr ---> 2Cr³⁺ + 6e⁻
The standard potential of the cell is as :
E° cathode = - 0.74 V
E° anode = - 0.76 V
The E° cell is as :
E° cell = E° cathode - E° anode
E° cell = - 0.74 V - ( - 0.76 )
E° cell = 0.02 V
The E° cell is the positive, therefore the redox reaction occurs spontaneously.
To learn more about redox reaction here
https://brainly.com/question/28300253
#SPJ1
Who was the person to prove in the laboratory, the relationship between concentrations of certain atmospheric gases and temperature levels
The person who first proved in the laboratory the relationship between concentrations of certain atmospheric gases and temperature levels was Svante Arrhenius, a Swedish chemist and physicist.
In 1896, Arrhenius published a paper titled "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground," in which he described experiments he had conducted to investigate the effect of carbon dioxide (CO2) on the Earth's temperature. Arrhenius hypothesized that changes in the concentration of atmospheric CO2 could influence the amount of heat retained by the Earth's atmosphere, leading to changes in the planet's climate.
To test his hypothesis, Arrhenius built a laboratory apparatus that simulated the Earth's atmosphere, and he measured the amount of heat absorbed by the apparatus at different concentrations of CO2. Arrhenius found that increasing the concentration of CO2 in the apparatus caused the temperature to rise, providing evidence for his hypothesis that changes in atmospheric CO2 levels could influence the Earth's temperature.
Arrhenius's work laid the foundation for modern climate science, and his findings have been confirmed by numerous subsequent studies. Today, the relationship between atmospheric CO2 concentrations and global temperature is a well-established scientific fact, and it is widely accepted that human activities, such as the burning of fossil fuels, are driving an increase in atmospheric CO2 levels and contributing to global warming.
To know more about Arrhenius refer here:
https://brainly.com/question/28298470#
#SPJ11
Calculate the molecular mass or formula mass (in amu) of each of the following substances: (a) PCl5 amu (b) C4H10 amu (c) NF2 amu (d) Al2O3 amu (e) Fe(NO3)3 amu (f) Mg3N2 amu (g) (NH4)2CO3 amu
a solution contains 0 g of heptane and 50 g of octane the vapor pressures of pureheptane and pure octane are what is the vapor pressure of each solution component in the mixture
The vapor pressure of heptane in the mixture is 0 psi, and the vapor pressure of octane in the mixture is 14.7 psi.
The vapor pressure of each component in the solution can be calculated using Raoult's Law, which states that the vapor pressure of a component in a solution is equal to the product of its mole fraction in the solution and its vapor pressure in its pure state.
Let's first calculate the mole fraction of heptane and octane in the solution:
Mole fraction of heptane = 0 g / (0 g + 50 g) = 0
Mole fraction of octane = 50 g / (0 g + 50 g) = 1
Since there is no heptane in the solution, the vapor pressure of heptane in the mixture is 0.
Now, let's calculate the vapor pressure of octane in the mixture:
Vapor pressure of octane = mole fraction of octane * vapor pressure of pure octane
= 1 * vapor pressure of pure octane
The vapor pressure of pure octane at 25°C is 14.7 psi. Therefore, the vapor pressure of octane in the mixture is:
Vapor pressure of octane = 1 * 14.7 psi
= 14.7 psi
To learn more about vapor pressure
https://brainly.com/question/11864750
#SPJ4
when 10 g of sodium hydroxide is dissolved in 1 L of water, the temperature is found to rise by 26.6 dgrees celcius. What is the molar heat of solution of sodium hydroxide
The molar heat of solution of sodium hydroxide is 446,192 J/mol.
To calculate the molar heat of solution of sodium hydroxide, we can use the equation:
q = mCΔT
where q is the heat absorbed by the solution, m is the mass of the solute (in grams), C is the specific
heat capacity of the solution (in J/g·°C), and ΔT is the temperature change (in °C).
First, we need to calculate the heat absorbed by the solution:
q = mCΔT
q = 1000 g (specific heat of water = 4.18 J/g·°C) (26.6 °C)
q = 111,548 J
Next, we need to calculate the number of moles of sodium hydroxide:
n = m/MW
n = 10 g / 40.00 g/mol
n = 0.25 mol
Finally, we can calculate the molar heat of solution:
ΔHsoln = q/n
ΔHsoln = 111,548 J / 0.25 mol
ΔHsoln = 446,192 J/mol
Molar heat of solution = 446,192 J/mol
To know more about molar heat of solution refer here : https://brainly.com/question/556855#
#SPJ11
Electrochemistry is the study of chemical reactions that _____. generate electrical current use electrical current generate and use electrical current
Electrochemistry is the study of chemical reactions that involve the transfer of electrons between species, leading to the generation and use of electrical current. So the correct answer is "generate and use electrical current".
Electrochemical reactions can involve the oxidation and reduction of species, and the movement of electrons can be harnessed to produce electricity in batteries and other devices. Conversely, electrical current can be used to drive electrochemical reactions, such as in the process of electrolysis, where an electrical current is used to break apart a compound into its constituent ions. Electrochemistry has a wide range of applications in energy storage, corrosion prevention, chemical synthesis, and many other fields.
To learn more about Electrochemistry. Click this!
brainly.in/question/1064763
#SPJ11
Please answer the following: ("All of the answers are correct" is not the correct answer)
2,3-bisphosphoglycerate:
A. Binds in the central cavity in the T-form of hemoglobin.
B. preferentially binds to oxyhemoglobin and stabilizes it.
C. All of the answers are correct.
D. binds to positively charged groups on the β subunits.
E. binds in the central cavity in the T-form of hemoglobin and binds to positively charged groups on the β subunits.
2,3-bisphosphoglycerate (2,3-BPG) is a small molecule that binds to haemoglobin in red blood cells. Specifically, it binds to the T-form of haemoglobin, which is a conformational state that has a lower affinity for oxygen than the R-form.
The T-form is stabilized by interactions between the β subunits of haemoglobin.
2,3-BPG binds to positively charged groups on the β subunits of haemoglobin. These interactions occur in the central cavity of the T-form of haemoglobin. The binding of 2,3-BPG to haemoglobin reduces the affinity of haemoglobin for oxygen, which is important in delivering oxygen to tissues. In summary, 2,3-BPG binds to the T-form of haemoglobin in the central cavity and interacts with positively charged groups on the β subunits. This binding reduces the affinity of haemoglobin for oxygen, which is critical for oxygen delivery to tissues.
To know more about hemoglobin click here:
https://brainly.com/question/15011428
#SPJ11
The molecular shape of ammonia, NH3 is Group of answer choices trigonal planar tetrahedral bent linear pyramidal
The molecular shape of ammonia, NH3 is pyramidal. among the given choices.
The molecular shape of ammonia, NH3, is pyramidal. The central nitrogen atom has three outer atoms bonded to it, which creates a trigonal pyramidal shape. The lone pair of electrons on the nitrogen atom pushes the bonded electron pairs closer together, creating a distorted tetrahedral shape. This distortion causes the nitrogen-hydrogen bonds to bend slightly, resulting in a pyramidal shape. The geometry of the molecule plays a role in its properties, such as its polarity and reactivity.
Learn more about molecular shape here:
https://brainly.com/question/30357177
#SPJ11
A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050M NAC2H3O2 .Which of the following actions will destroy the buffer effectiveness?
A. adding 0.050 moles of NaC2H3O2
B. adding 0.050 moles of NaOH
C. adding 0.050 moles of HCl
D. adding 0.050 moles of HC2H3O2
E. none of the above
The correct answer is B. Adding 0.050 moles of NaOH will destroy the buffer effectiveness in buffer solution.
A buffer solution is a solution that can resist changes in pH when small amounts of acid or base are added to it. In this case, the buffer solution consists of acetic acid (HC2H3O2) and its conjugate base (C2H3O2- or NAC2H3O2).
To determine if an action will destroy the buffer effectiveness, we need to consider what happens to the buffer components and how they affect the pH of the solution.
A. Adding 0.050 moles of NaC2H3O2: This will not destroy the buffer effectiveness because we are adding more of the conjugate base, which can react with any added acid to maintain the pH.
B. Adding 0.050 moles of NaOH: This will destroy the buffer effectiveness because the added base will react with the weak acid (HC2H3O2) to form water and the acetate ion (C2H3O2-), which is a strong conjugate base. This will shift the equilibrium towards the products and decrease the concentration of the weak acid, making it less effective at resisting changes in pH.
C. Adding 0.050 moles of HCl: This will not destroy the buffer effectiveness because we are adding acid, which can be neutralized by the buffer components.
D. Adding 0.050 moles of HC2H3O2: This will not destroy the buffer effectiveness because we are adding more of the weak acid, which can react with any added base to maintain the pH.
E. None of the above: This is not the correct answer because option B (adding 0.050 moles of NaOH) will destroy the buffer effectiveness.
Learn more about buffer solution here:
https://brainly.com/question/17164774
#SPJ11
0.4 L of an ideal gas initially at 20 0C and 0.8 atm pressure is heated at constant volume to a final temperature of 80 0C. What is the final pressure
The final pressure of the gas can be found using the Ideal Gas Law:
PV = nRT
where P is the pressure of the gas, V is its volume, n is the number of moles of gas, R is the gas constant, and T is the absolute temperature of the gas.
Since the gas is heated at constant volume, V is constant. Therefore, we can simplify the Ideal Gas Law equation to:
P1/T1 = P2/T2
where P1 is the initial pressure of the gas, T1 is the initial temperature, P2 is the final pressure of the gas, and T2 is the final temperature.
Converting the temperatures to Kelvin (K = °C + 273.15), we get:
P1/T1 = P2/T2
P2 = (P1 × T2) / T1
P2 = (0.8 atm × (80°C + 273.15)) / (20°C + 273.15)
P2 = 1.60 atm
Therefore, the final pressure of the gas is 1.60 atm.
To learn more about Ideal Gas Law. Click this!
brainly.in/question/5875999
#SPJ11
Hexane is commonly used in labs as a solvent for nonpolar compounds. What is the molality of 22.3 mg of vitamin D (C27H44O, 384.6 g/mol) in 50.0 mL of hexane. Hexane has a density of 0.661 g/mL.
The molality of 22.3 mg of vitamin D in 50.0 mL of hexane is 0.00175 mol/kg.
To calculate the molality of vitamin D in hexane, we need to first convert the mass of vitamin D from milligrams to grams:
22.3 mg = 0.0223 g
Next, we need to calculate the number of moles of vitamin D present in 0.0223 g using its molar mass:
n = m/M = 0.0223 g / 384.6 g/mol = 5.80 x 10⁻⁵ mol
Now, we need to calculate the mass of hexane in the given volume of 50.0 mL using its density:
m = V x d = 50.0 mL x 0.661 g/mL = 33.05 g
Finally, we can calculate the molality of vitamin D in hexane using the formula:
molality = moles of solute / mass of solvent in kg
Since we have the mass of solvent in grams, we need to convert it to kilograms:
mass of solvent = 33.05 g / 1000 = 0.03305 kg
molality = 5.80 x 10⁻⁵ mol / 0.03305 kg = 0.00175 mol/kg
Therefore, the molality of 22.3 mg of vitamin D in 50.0 mL of hexane is 0.00175 mol/kg.
To know more about molality, refer
https://brainly.com/question/1370684
#SPJ11
If an excess of a compound that reacts with primary amines were introduced to a cell, how would the activity of newly synthesized pyruvate carboxylase be affected
If an excess of a compound that reacts with primary amines were introduced to a cell, it could potentially lead to a decrease in the activity of newly synthesized pyruvate carboxylase.
What is pyruvate carboxylase?Pyruvate carboxylase is an enzyme that plays a key role in the metabolism of carbohydrates and fats. It catalyzes the conversion of pyruvate, a three-carbon molecule produced during glycolysis, into oxaloacetate, a four-carbon molecule. This reaction requires the presence of ATP and bicarbonate, and it occurs in the mitochondria of cells.
What is primary amines?Primary amine is an organic compound that contains a nitrogen atom attached to two hydrogen atoms and one alkyl or aryl group.
According to the given information:
If an excess of a compound that reacts with primary amines were introduced to a cell, it could potentially lead to a decrease in the activity of newly synthesized pyruvate carboxylase. Pyruvate carboxylase contains lysine residues that are critical for its activity, and excess amounts of a compound that reacts with primary amines could potentially modify or inhibit these lysine residues, thereby reducing the activity of the enzyme. Additionally, excess amounts of the compound could lead to the accumulation of toxic byproducts, which could further disrupt cellular processes and lead to a decrease in pyruvate carboxylase activity. Overall, the exact effect of the compound on pyruvate carboxylase activity would depend on the specific nature and concentration of the compound, as well as the overall metabolic state of the cell and the availability of other cellular components necessary for pyruvate carboxylase function.
To know more pyruvate carboxylase visit:
https://brainly.com/question/30770275
#SPJ11
A chemistry graduate student is given of a trimethylamine solution. Trimethylamine is a weak base with . What mass of should the student dissolve in the solution to turn it into a buffer with pH
To turn the trimethylamine solution into a buffer with a desired pH, the chemistry graduate student needs to add a conjugate acid to the solution. The conjugate acid of trimethylamine is trimethylammonium ion (CH3)3NH+.
First, the student needs to calculate the pKa of trimethylamine using the given Ka value:
Ka = [H+][CH3NH2]/[CH3NH3+]
pKa = -log(Ka)
pKa = -log(4.4 × 10^-10)
pKa = 9.36
Next, using the Henderson-Hasselbalch equation, the student can calculate the ratio of [CH3NH2]/[CH3NH3+] needed to achieve the desired pH:
pH = pKa + log([base]/[acid])
7.4 = 9.36 + log([CH3NH2]/[CH3NH3+])
log([CH3NH2]/[CH3NH3+]) = -1.96
[CH3NH2]/[CH3NH3+] = 0.010 ^ (-1.96)
[CH3NH2]/[CH3NH3+] = 0.014
Now, we can assume that the final volume of the solution remains constant, and use the equation of moles = concentration × volume to calculate the moles of trimethylamine (base) and trimethylammonium ion (acid) required to obtain the desired buffer solution:
Let's assume we need to prepare 1 L of buffer solution.
Assume that the initial trimethylamine solution has a concentration of 0.1 M (just for an example).
We need to determine the amount (in moles) of base (trimethylamine) and acid (trimethylammonium ion) needed to make the buffer solution.
Moles of base (trimethylamine) needed:
moles of base = concentration × volume
moles of base = 0.1 M × 1 L × 0.014
moles of base = 0.0014 moles
Moles of acid (trimethylammonium ion) needed:
moles of acid = concentration × volume
moles of acid = 0.1 M × 1 L × (1 - 0.014)
moles of acid = 0.086 moles
Now, the student needs to calculate the mass of trimethylammonium chloride (the conjugate acid of trimethylamine) needed to provide the required amount of trimethylammonium ion:
molar mass of (CH3)3NHCl = 109.64 g/mol
mass of (CH3)3NHCl = moles of acid × molar mass of (CH3)3NHCl
mass of (CH3)3NHCl = 0.086 moles × 109.64 g/mol
mass of (CH3)3NHCl = 9.49 g
Therefore, the chemistry graduate student needs to dissolve 9.49 g of trimethylammonium chloride in the trimethylamine solution to obtain a buffer with pH 7.4.
To know more about Henderson-Hasselbalch equation visit:
https://brainly.com/question/13423434
#SPJ11
Your team is assigned the Musky Mix. Your unknown has a boiling range of 145-148 oC. You take an IR of your compound and see a carbonyl peak at 1717 cm -1. What is the most likely identity of your unknown
Based on the given information, the most likely identity of your unknown compound is option D. 2-heptanone.
The boiling range of 145-148 °C corresponds well with the boiling point of 2-heptanone, which is approximately 147 °C. Additionally, the presence of a carbonyl peak at 1717 cm⁻¹ in the IR spectrum is indicative of a ketone functional group, which is present in 2-heptanone.
The other options can be ruled out based on their boiling points and functional groups:
A. Mesityl oxide has a boiling point of around 132 °C and contains both carbonyl and alkene groups, not matching the given boiling range or the single carbonyl peak.
B. Methyl trichloroacetate has a boiling point of approximately 171 °C and contains an ester functional group, which typically shows a carbonyl peak around 1735-1750 cm⁻¹, not matching the given boiling range or carbonyl peak.
C. Ethyl butanoate has a boiling point of about 99 °C and also contains an ester functional group, again not matching the given boiling range or carbonyl peak.
Thus, 2-heptanone (D) is the most likely identity of your unknown compound due to its matching boiling range and the presence of a ketone functional group. Therefore the correct option D
The Question was Incomplete, Find the full content below :
Your team is assigned the Musky Mix. Your unknown has a boiling range of 145-148 oC. You take an IR of your compound and see a carbonyl peak at 1717 cm-1. What is the most likely identity of your unknown? A. mesityl oxide B. methyl trichloroacetate C. ethyl butanoate D. 2-heptanone
Know more about 2-heptanone here:
https://brainly.com/question/17516102
#SPJ11
Calculate the pH of each of the following solutions. (a) 7.9 × 10−4 M Ba(OH)2: =__× 10 (Enter your answer in scientific notation.) (b) 8.5 × 10−4 M HNO3:
(a) To calculate the pH of a solution, we need to first determine the concentration of hydrogen ions (H+). For a strong base like Ba(OH)2, we can assume that it dissociates completely in water, yielding two hydroxide ions (OH-) for every one molecule of Ba(OH)2. Therefore, the concentration of OH- in the solution would be 2 times the concentration of Ba(OH)2, which is 1.58 × 10^-3 M (7.9 × 10^-4 M × 2).
Next, we can use the equation for the dissociation of water (Kw = [H+][OH-]) to solve for the concentration of H+ ions:
Kw = [H+][OH-]
1.0 × 10^-14 = [H+][1.58 × 10^-3]
[H+] = 6.33 × 10^-12 M
Finally, we can use the equation for pH (pH = -log[H+]) to find the pH of the solution:
pH = -log(6.33 × 10^-12) = 11.2
Therefore, the pH of a 7.9 × 10^-4 M Ba(OH)2 solution is 11.2.
(b) For a strong acid like HNO3, we can assume that it dissociates completely in water, yielding one hydrogen ion (H+) for every one molecule of HNO3. Therefore, the concentration of H+ in the solution would be equal to the concentration of HNO3, which is 8.5 × 10^-4 M.
Next, we can use the equation for pH (pH = -log[H+]) to find the pH of the solution:
pH = -log(8.5 × 10^-4) = 3.07
Therefore, the pH of an 8.5 × 10^-4 M HNO3 solution is 3.07.
In summary, the pH of a solution can be calculated using the concentration of H+ or OH- ions in the solution, depending on whether it is an acid or a base. For a strong acid or base, we can assume complete dissociation in water, making the calculation straightforward.
To know more about acid click this link-
brainly.com/question/29796621
#SPJ11
In a particular titration experiment, a 25.0 mL sample of HC 2H 3O 2 requires 30.0 mL of a 0.200 M NaOH solution to reach the equivalence point. What is the concentration of the HC 2H 3O 2
Therefore, the concentration of the titration [tex]HC_2H_3O_2[/tex] in the sample is 0.240 M.
The balanced chemical equation for the reaction between [tex]HC_2H_3O_2[/tex] is (acetic acid) and NaOH (sodium hydroxide) is:
[tex]HC_2H_3O_2[/tex] i + NaOH → [tex]NaC_2H_3O_2[/tex] + [tex]H_2O[/tex]
From the equation, we can see that the stoichiometric ratio of [tex]HC_2H_3O_2[/tex] NaOH is 1:1. This means that the number of moles of NaOH used in the titration is equal to the number of moles of [tex]HC_2H_3O_2[/tex] present in the 25.0 mL sample.
We can use the formula:
moles = concentration × volume (in liters)
to calculate the number of moles of NaOH used:
moles NaOH = 0.200 M × 0.0300 L = 0.00600 mol
Since the stoichiometric ratio of [tex]HC_2H_3O_2[/tex] to NaOH is 1:1, the number of moles of [tex]HC_2H_3O_2[/tex] present in the 25.0 mL sample is also 0.00600 mol.
We can now use the formula above to calculate the concentration of [tex]HC_2H_3O_2[/tex]:
concentration [tex]HC_2H_3O_2[/tex] = moles [tex]HC_2H_3O_2[/tex] / volume (in liters)
The volume of the sample is 25.0 mL, or 0.0250 L:
concentration [tex]HC_2H_3O_2[/tex] = 0.00600 mol / 0.0250 L = 0.240 M
Learn more about titration visit: brainly.com/question/186765
#SPJ4
l Jtudell conducted the following reactions: Nis)+Pb black crystals formed and the Ni solid disintegrated Ni(s)+Fe No rxn a. Write the net ionic equations for both of these reactions, gving the "possible"F the second reaction. b. Rank the three metals: Ni, Pb, and Fe based on these 2 reactions. c. Where would Ni be placed on your activity series? 6. A student conducted the following reactions: Ni(s)+Co dark crystals formed and the Ni solid disintegrated Co(s)+N dark crystals formed and the Co solid disintegrated Explain why the student should have immediately known that something was wrong a repeated the tests. Conclusion: Summarize the purpose of the lab, including what an activity series shows. List your activity series. Discuss discrepancies between your activity series and the correct activity these metals. Suggest improvements to the lab. expo
In the first reaction, The net ionic equation for the reaction is: Ni(s) + Pb²⁺(aq) → Ni²⁺(aq) + Pb(s)
In the second reaction, Ni(s) reacts with Fe but no reaction occurs.
Based on these reactions, we can rank the three metals in the following order of reactivity: Ni > Pb > Fe. This is because Ni is reactive enough to displace Pb, but not reactive enough to displace Fe. Ni would be placed above Pb and below Fe in the activity series. In the student's experiment, Ni(s) reacts with Co to form dark crystals and disintegrates, and Co(s) reacts with N to form dark crystals and disintegrate. The student should have known that something was wrong since both Ni and Co cannot displace each other in their respective reactions. This indicates an error in the experiment or an impurity in the reactants.
The purpose of this lab is to determine the activity series of metals, which shows the reactivity of metals in decreasing order. The activity series is useful in predicting the outcomes of single displacement reactions. Based on the given data, the activity series is Ni > Pb > Fe. To improve the lab, ensure the purity of reactants and use accurate measuring tools. Additionally, conduct more tests with different metals to confirm the activity series and account for any discrepancies.
Learn more about the activity series here :
https://brainly.com/question/30310598
#SPJ11
The solutions to the Schrodinger equation for a harmonic oscillator can be applied to diatomic molecules. For atoms with mass mA and mB joined by a bond with a force constant kf, the vibrational frequency is
The solution to the Schrodinger equation for a harmonic oscillator can be used to determine the energy levels and wave functions of the vibrational motion of a diatomic molecule.
The vibrational frequency (ν) of a diatomic molecule with atoms of masses mA and mB joined by a bond with a force constant kf can be calculated using the formula:
ν = (1/2π) * √(kf / μ)
where μ is the reduced mass of the system, given by:
μ = (mA * mB) / (mA + mB)
The vibrational frequency is related to the energy spacing between the vibrational levels, and can be used to interpret the infrared spectra of diatomic molecules.
For more question on Schrodinger equation click on
https://brainly.com/question/17750570
#SPJ11
(0/2pts) Concentration of Ca2 (M) 0.01971 Saved (0/2pts) Value of Ksp 3.063e-5 Saved (0/2pts) What is the molar solubility of Ca(OH)2 in pure water
The molar solubility of [tex]Ca(OH)_2[/tex] in pure water is 0.00414 M.
To find the molar solubility of the [tex]Ca(OH)_2[/tex] in pure water, we can use the Ksp expression:
Ksp =[tex][Ca_2+][OH-]^2[/tex]
Since [tex]Ca(OH)_2[/tex] dissociates to form one [tex]Ca_2+[/tex]ion and two OH- ions, we can write:
Ksp =[tex][Ca_2+][OH-]^2 = (s)(2s)^2 = 4s^3[/tex]
where s is the molar solubility of [tex]Ca(OH)_2[/tex].
Substituting the given value of Ksp and solving for s, we get:
3.063e-5 = [tex]4s^3[/tex]
s = 0.00414 M
Therefore, the molar solubility of [tex]Ca(OH)_2[/tex] in the pure water is 0.00414 M. This means that at equilibrium, the concentration of [tex]Ca_2+[/tex] ion and OH- ion will be 0.00414 M, while the remaining [tex]Ca(OH)_2[/tex] will be in the solid state.
To know more about molar solubility, here
brainly.com/question/28170449
#SPJ4
The molar solubility of Ca(OH)₂ in pure water is approximately 0.00726 M.
What is solubility product?The solubility product is a type of equilibrium constant whose value varies with temperature. Ksp typically rises as temperature rises due to greater solubility.
The solubility product constant (Ksp) expression for calcium hydroxide (Ca(OH)₂) in water is:
Ksp = [Ca²⁺][OH⁻]²
Where [Ca²⁺] is the molar concentration of dissolved Ca²⁺ ions, and [OH⁻]] is the molar concentration of dissolved OH⁻] ions.
Since calcium hydroxide dissociates into one calcium ion and two hydroxide ions in water, we can write:
Ca(OH)2 (s) ⇌ Ca²⁺ (aq) + 2 OH⁻] (aq)
At equilibrium, the concentrations of Ca²⁺ and OH⁻] are related to the molar solubility (S) of Ca(OH)₂ as follows:
[Ca²⁺] = S
[OH⁻]] = 2S
Substituting these expressions into the Ksp expression gives:
Ksp = S * (2S)²
Simplifying this expression gives:
Ksp = 4S³
Solving for S gives:
S = [tex](Ksp/4)^{(1/3)[/tex]
Substituting the given values for Ca²⁺ concentration and Ksp, we get:
S = [tex]((3.063e-5)/4)^{(1/3)[/tex]
S = 0.00726 M
Therefore, the molar solubility of Ca(OH)₂ in pure water is approximately 0.00726 M.
Learn more about solubility product on:
https://brainly.com/question/1419865
#SPJ4
What is the net ionic equation for the reaction between aqueous solutions of Sr(NO3)2 and K2SO4? a Sr(NO3)2(aq) + K2SO4(aq) → SrSO4(s) + 2 KNO3(aq) b. sr2+(aq) + S042 (aq) → Srs04(aq) c. k*(aq) + NO3 (aq) → KNO3(s) d. sr2*(aq) + S04?(aq) + Sr804(s) e. k*(aq) + NO3- (aq) → KNO3(aq)
The below equation shows only the ions that are directly involved in the reaction and ignores the spectator ions (K+ and NO3-) that do not participate in the reaction.
The correct answer is a. Sr(NO3)2(aq) + K2SO4(aq) → SrSO4(s) + 2 KNO3(aq). This is because in aqueous solution, Sr(NO3)2 and K2SO4 dissociate into their respective ions: Sr2+, 2 NO3-, 2 K+, and SO42-. When mixed together, the Sr2+ and SO42- ions combine to form a solid precipitate of SrSO4, while the remaining ions (2 K+ and 2 NO3-) remain in solution. The net ionic equation for this reaction is:
Sr2+(aq) + SO42-(aq) → SrSO4(s)
To learn more about Reaction Here:
https://brainly.com/question/28984750
#SPJ11
he density of an aqueous solution containing 10.0 percent of ethanol (C2H5OH, molar mass 46.07 g/mol) by mass is 0.984 g/mL. Calculate the molality and molarity respectively. (MTS 12/1/2018) Group of answer choices 2.41 m 2.13 M 3.71 m 3.64 M 2.35 m 2.33 M 4.27 m 4.13 M 2.41 m 3.64 M 2.41 m 4.13 M 2.41 m 2.33 M 2.35 m 2.41 M 2.35 m 4.13 M 3.71 m 2.41 M
The molality and molarity of an aqueous solution containing 10% ethanol by mass are 2.41 m and 2.13 M, respectively. Option A is the correct answer.
First, we need to calculate the mass of ethanol in 100 g of the solution:
Mass of ethanol = 10.0 g
Mass of water = 90.0 g
Next, we need to calculate the moles of ethanol present:
Moles of ethanol = 10.0 g / 46.07 g/mol = 0.217 mol
Now we can calculate the molality of the solution:
Molality = moles of solute/mass of solvent (in kg)
Mass of solvent = 90.0 g / 1000 = 0.090 kg
Molality = 0.217 mol / 0.090 kg = 2.41 m
To calculate the molarity, we need to convert the density to mass per volume:
Density = mass/volume
mass = density x volume
mass = 0.984 g/mL x 100 mL = 98.4 g
The molarity can now be calculated:
Molarity = moles of solute/volume of solution (in L)
Moles of solute = 10.0 g / 46.07 g/mol = 0.217 mol
Volume of solution = 100 mL / 1000 = 0.100 L
Molarity = 0.217 mol / 0.100 L = 2.13 M
Therefore, the answer is option A: 2.41 m and 2.13 M.
Learn more about the molality and molarity at
https://brainly.com/question/30909953
#SPJ4
The question is -
The density of an aqueous solution containing 10.0 percent of ethanol (C_2H_5OH, molar mass 46.07 g/mol) by mass is 0.984 g/mL. Calculate the molality and molarity respectively.
A. 2.41 m 2.13 M
B. 2.35 m 2.33 M
C. 3.71 m 3.64 M
D. 4.27 m 4.13 M
Explain in terms of Coulomb's law why a polar molecule is attracted to both positive and negative charges.
Coulomb's law states that the force of attraction or repulsion between two charged particles is directly proportional to the product of their charges and inversely proportional to the distance between them squared.
A polar molecule has a partial positive charge on one end and a partial negative charge on the other end due to the uneven distribution of electrons within the molecule. These partial charges create an electric dipole moment. When the polar molecule approaches a positively charged particle, the negative end of the molecule is attracted to the positive charge, and vice versa when it approaches a negatively charged particle. The force of attraction between the partial charges on the polar molecule and the opposite charges on the particle is governed by Coulomb's law. Therefore, a polar molecule is attracted to both positive and negative charges because of the electrostatic force of attraction that exists between them.
Coulomb's Law states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. A polar molecule has a partial positive charge on one end and a partial negative charge on the other end due to the unequal distribution of electrons.
When a polar molecule is near a positive charge, the negative end of the molecule is attracted to the positive charge, while the positive end is repelled. Conversely, when the polar molecule is near a negative charge, the positive end is attracted to the negative charge, and the negative end is repelled. This attraction between the polar molecule and both positive and negative charges is due to the interaction of the charges according to Coulomb's Law.
For more information on Coulomb's law visit:
brainly.com/question/506926
#SPJ11
A 1.65 g sample of an unknown gas at 352 K and 1.00 atm is stored in a 1.95 L flask. What is the density of the gas
The density of the unknown gas is approximately 0.846 g/L, calculated using its mass, volume, temperature, and pressure, and the ideal gas law. The molar mass of the gas was also calculated to be approximately 43.74 g/mol.
To calculate the density of the unknown gas, we can use the following formula:
Density = mass / volume
Given:
Mass = 1.65 g
Volume = 1.95 L
Temperature = 352 K
Pressure = 1.00 atmFirst, we need to convert the mass to moles using the Ideal Gas Law:PV = nRT
Where:
P = pressure (1.00 atm)
V = volume (1.95 L)
n = number of moles (unknown)
R = gas constant (0.0821 L·atm/mol·K)
T = temperature (352 K)
1.00 atm * 1.95 L = n * 0.0821 L·atm/mol·K * 352 K
n = 1.65 g / molar mass (unknown)Rearranging the equation for molar mass:
Molar mass = (1.65 g) / (1.00 atm * 1.95 L) * (0.0821 L·atm/mol·K * 352 K)
Molar mass ≈ 43.74 g/mol
Now, we can find the density:
Density = (1.65 g) / (1.95 L)
Density ≈ 0.846 g/L
The density of the unknown gas is approximately 0.846 g/L.
Learn more about density: https://brainly.com/question/29775886
#SPJ11
How many milliliters of water must be added to 318 mL of 2.30 M H2SO4 to make a solution that is 0.500 M H2SO4
Therefore, we need to add 1144.8 mL of water to 318 mL of 2.30 M H2SO4 to make a solution that is 0.500 M [tex]H_{2}SO_{4}[/tex].
How much volume to be added to dilute a solution?To determine how many milliliters of water must be added to 318 mL of 2.30 M [tex]H_{2}SO_{4}[/tex] to make a solution that is 0.500 M [tex]H_{2}SO_{4}[/tex]., follow these steps:
1. Calculate the moles of [tex]H_{2}SO_{4}[/tex]. in the initial solution:
moles = Molarity × Volume
moles = 2.30 M × 0.318 L (convert mL to L by dividing by 1000)
moles = 0.7314 mol [tex]H_{2}SO_{4}[/tex].
2. Calculate the final volume of the solution:
Volume = moles / final molarity
Volume = 0.7314 mol / 0.500 M
Volume = 1.4628 L
3. Convert the final volume to milliliters:
Final volume = 1.4628 L × 1000
Final volume = 1462.8 mL
4. Calculate the amount of water to be added:
Water to be added = Final volume - Initial volume
Water to be added = 1462.8 mL - 318 mL
Water to be added = 1144.8 mL
To know more about Dilution:
https://brainly.com/question/30064049
#SPJ11
the solubility of pbi2 varies with the composition of the solvent in which it was dissolved. in which solvent mixture would pbi2 have the lowest solubility at identical temperatures
PbI₂ would have the lowest solubility in a solvent mixture containing 1.0 M Pb(NO₃)₂ (aq) (option b)
The solubility of PbI₂ is affected by the common ion effect, which states that the presence of a common ion in the solution can decrease the solubility of a salt. Pb(NO)₂ and MgI₂ both contain ions that are common to PbI₂ , so their presence in the solution would decrease the solubility of PbI₂.
Option c contains the ion I- which is a part of PbI₂ and would lead to an increase in solubility.
Option e contains the ion Cl- which is not a part of PbI₂ and would not have any effect on its solubility. Pure water does not contain any common ions, but its solubility would still be higher than that of options b and d due to the low solubility product constant (Ksp) of PbI₂.
Therefore, options b and d would result in the lowest solubility of PbI₂ at identical temperatures.
To know more about solubility click on below link :
https://brainly.com/question/28165549#
#SPJ11
Complete question:
The solubility of PbI₂ (Ksp = 9.8 x 10-9) varies with the composition of the solvent in which it was dissolved. In which solvent mixture would PbI₂ peratureshave the lowest solubility at identical tem?
a. pure water b. 1.0 M Pb(NO₃)₂ (aq)
c. 1.5 M KI(aq) d. 0.8 M MgI₂(aq)
e. 1.0 M HCl(aq)
an unlisted radioactive substance has a half-life of 10,000 years. in 20,000 years, how much (percentage) of the original substance will remain
If the half-life of the radioactive substance is 10,000 years, then in 10,000 years half of the original substance will have decayed.
This means that after 20,000 years, two half-lives will have passed, and only 25% of the original substance will remain (50% after the first half-life, and 50% of that remaining 50% after the second half-life). So, 25% of the original substance will remain after 20,000 years.
Here's a step-by-step explanation to find the percentage of the original substance remaining after 20,000 years:
1. Determine the half-life of the radioactive substance: In this case, the half-life is 10,000 years.
2. Calculate how many half-lives have passed in the given time period: 20,000 years / 10,000 years per half-life = 2 half-lives.
3. Determine the fraction of the original substance remaining after each half-life: Since half of the substance decays after each half-life, the fraction remaining after one half-life is 1/2 (50%).
4. Calculate the fraction of the original substance remaining after the given number of half-lives: (1/2) ^ 2 (two half-lives) = 1/4 (25%).
So after 20,000 years, 25% of the original radioactive substance will remain.
Learn more about radioactive here: brainly.com/question/1770619
#SPJ11
A sample of C2H4O at 957.57 K experiences a change in volume from 9.063 L to 4921.9 mL. If its new pressure is 17575 torr at 621.25 K, what was its original pressure in atmospheres
Answer:
14711.6 torr
Explanation:
the volume in the question is incorrect I think, it should be 9063L
anyways
P1V1/T1 = P2V2/T2
P1 = 17575 × 4921.9 × 957 57/ 9063 × 621.25
P1 = 14711.6
The original pressure of the sample of C2H4O was approximately 9.105 atm.
To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas. The equation is:
P1V1/T1 = P2V2/T2
where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.
First, we need to convert the final volume from milliliters (mL) to liters (L):
V2 = 4921.9 mL = 4.9219 L
Next, we can plug in the values we know and solve for the initial pressure (P1):
P1(9.063 L)/(957.57 K) = (17575 torr)(4.9219 L)/(621.25 K)
P1 = (17575 torr)(4.9219 L)/(621.25 K)(9.063 L/957.57 K)
P1 ≈ 9.105 atm
to know more about combined gas law refer here:
https://brainly.com/question/30458409#
#SPJ11
In a particular electroplating process, the metal being plated has a 3 charge. If 648.2 C of charge pass through the cell, how many moles of metal should be plated
0.006711 moles of metal should be plated in the given electroplating process.
To determine how many moles of metal should be plated in the given electroplating process, we need to use Faraday's law of electrolysis.
Faraday's law states that the amount of substance produced at an electrode during electrolysis is directly proportional to the amount of electrical charge passed through the cell. This can be expressed by the following equation:
mol of substance = (charge passed / Faraday's constant) x oxidation state of substance
where,
- charge passed is the electrical charge in Coulombs (C)
- Faraday's constant is the charge per mole of electrons (96485 C/mol)
- oxidation state is the charge on the metal being plated
Using the given values, we can plug them into the equation as follows:
mol of metal = (648.2 C / 96485 C/mol) x 3
mol of metal = 0.006711 mol
learn more about Faraday's law
https://brainly.com/question/17012638
#SPJ11
The work functions of four different metals M1, M2, M3, and M4 are 3.1 eV, 3.5 eV, 3.8 eV, and 4.2 eV respectively. Ultraviolet light of energy E shines on all metals, creating photoelectrons. Which metal has the largest stopping potential
The stopping potential is the minimum voltage required to stop the emission of photoelectrons from a metal surface when illuminated by light of energy E. It depends on the work function of the metal, which is the minimum energy needed to remove an electron from the surface.
Among the four metals M1, M2, M3, and M4, their work functions are 3.1 eV, 3.5 eV, 3.8 eV, and 4.2 eV respectively. The largest stopping potential will correspond to the metal that has the greatest difference between the energy of the ultraviolet light (E) and its work function. This is because a larger energy difference implies that more energy is required to counteract the emission of photoelectrons.
Assuming the energy E of the ultraviolet light is constant for all metals, the metal with the lowest work function will have the largest energy difference. In this case, M1 has the lowest work function (3.1 eV) and therefore, will have the largest stopping potential among the four metals.
TO KNOW MORE ABOUT stopping potential is the minimum voltage CLICK THIS LINK -
brainly.com/question/3157069
#SPJ11
Order levofloxacin 500 mg IVPB in 100 mL NS q12h to infuse over 1 hour. Drop factor is 10 gtt/mL. Determine the rate in gtt/min. Round answer to nearest whole number.
The rate in gtt/min for levofloxacin 500 mg IVPB in 100 mL NS q12h to infuse over 1 hour is 17 gtt/min.
To determine the rate in gtt/min for levofloxacin 500 mg IVPB in 100 mL NS q12h to infuse over 1 hour, we need to first calculate the infusion rate in mL/min.
Since the total volume to be infused is 100 mL over 60 minutes, the infusion rate is 100 mL/60 min, which simplifies to 1.67 mL/min. Next, we need to convert the infusion rate from mL/min to gtt/min using the drop factor of 10 gtt/mL.
Therefore, the rate in gtt/min is calculated as 1.67 mL/min x 10 gtt/mL, which equals 16.7 gtt/min. Rounding the answer to the nearest whole number, the rate in gtt/min is 17 gtt/min.
To know more about the levofloxacin refer here :
https://brainly.com/question/19525445#
#SPJ11
what is the major product isolated when hex-1-yne is reacted with 2 molar equivalents of cl2?
A 2-chloro-1-hexene
B 2,2-dichlorohexane
C 1,1,2,2-tetrachlorohexane
D (E)-1,2-dichloro-1-hexene
The major product isolated when hex-1-yne is reacted with 2 molar equivalents of [tex]Cl_2[/tex] is (C) 1,1,2,2-tetrachlorohexane.
This is because the reaction of hex-1-yne with [tex]Cl_2[/tex] produces a mixture of products, including 1-chlorohex-1-ene, 2-chlorohex-2-ene, 2,2-dichlorohexane, and 1,1,2,2-tetrachlorohexane. However, when 2 molar equivalents of [tex]Cl_2[/tex] are used, the tetrachlorohexane product becomes the major product due to the excess of [tex]Cl_2[/tex] available for reaction. Tetrachlorohexane is a symmetrical molecule with four chlorine atoms attached to the carbon chain, making it the most stable product of the reaction. Therefore, the major product isolated from the reaction of hex-1-yne with 2 molar equivalents of [tex]Cl_2[/tex] is 1,1,2,2-tetrachlorohexane.
To learn more about Tetrachlorohexane click here https://brainly.com/question/31757341
#SPJ11