PLEASE HELP ASAP!
Triangle CAT has vertices C (2,3), A(-2,6) and T(-1,-4). A translation maps the point A to A' (-1,4). What are the coordinates of C' under this translation?
A. (1, -3)
B. (3, 1)
C. (1, 8)
D. (-8, 1)

Answers

Answer 1

you add 1 and subtracted 2

so 2 + 1 = 3

3 - 2 = 1

answer: b. (3, 1)


Related Questions

(a) You are given the point (3,0) in polar coordinates. (i) Find another pair of polar coordinates for this point such that r>0 and 2π≤θ<4π. (ii) Find another pair of polar coordinates for this point such that r<0 and 0≤θ<2π.

Answers

The new pairs of polar coordinates are (3,2π) for r>0 and 2π≤θ<4π, and (-3,π) for r<0 and 0≤θ<2π.



(a) You are given the point (3,0) in polar coordinates.

(i) To find another pair of polar coordinates for this point such that r>0 and 2π≤θ<4π, follow these steps:

1. Start with the given coordinates (3,0).
2. Since we want to keep r>0, r remains 3.
3. To find a new angle θ that is between 2π and 4π, we can add 2π to the current angle (0 + 2π = 2π).
4. The new pair of polar coordinates is (3,2π).

(ii) To find another pair of polar coordinates for this point such that r<0 and 0≤θ<2π, follow these steps:

1. Start with the given coordinates (3,0).
2. To make r<0, we can multiply the current r by -1: (-3).
3. To find a new angle θ that is between 0 and 2π, we can add π to the current angle (0 + π = π).
4. The new pair of polar coordinates is (-3,π).

So, the new pairs of polar coordinates are (3,2π) for r>0 and 2π≤θ<4π, and (-3,π) for r<0 and 0≤θ<2π.

Learn more about polar coordinates:

https://brainly.com/question/11657509

#SPJ11

let f be a quasiconcave function. argue that the set of maximizers of f is convex.

Answers

We have shown that any point on the line segment connecting two maximizers of f is also a maximizer. This implies that the set of maximizers is convex.

If f is a quasiconcave function, it means that for any two points in the domain of f, the set of points lying above the curve formed by f is a convex set. This implies that the set of maximizers of f is also convex.

To see why, suppose there are two maximizers of f, say x and y. Since f is quasiconcave, any point on the line segment connecting x and y lies above the curve formed by f.

Now, if there exists a point z on this line segment that is not a maximizer, we can construct a new point by moving slightly towards the maximizer. By the definition of quasiconcavity, this new point will also lie above the curve formed by f.
To learn more about : maximizer

https://brainly.com/question/18521060

#SPJ11

A function is quasiconcave if its upper level sets are convex. Let's assume that f is a quasiconcave function and let M be the set of maximizers of f. To show that M is convex, we need to show that if x and y are in M, then any point on the line segment between them is also in M.

A quasiconcave function f has the property that for any two points x, y in its domain, f(min(x, y)) ≥ min(f(x), f(y)). The set of maximizers contains all points in the domain where f achieves its maximum value.

To show that this set is convex, consider any two points x, y within the set of maximizers. Let z be any point on the line segment connecting x and y, such that z = tx + (1-t)y for t ∈ [0,1]. Since f is quasiconcave, f(z) ≥ min(f(x), f(y)). However, both f(x) and f(y) are maximum values, so f(z) must also be a maximum value.

Suppose x and y are in M, which means that f(x) = f(y) = c, where c is the maximum value of f. Since f is quasiconcave, its upper level set {z | f(z) ≥ c} is convex. Therefore, any point on the line segment between x and y is also in this set, which means that it maximizes f as well. Therefore, z is in the set of maximizers, proving the set is convex. Hence, M is convex.

Learn more about quasiconcave here: brainly.com/question/29641786

#SPJ11

two point charges are located on an x axis; one is at the -1 cm mark and the other is at the 2 cm mark. what is the direction of the net electric field of these two charges at x=0?

Answers

The net electric field will point to the left, in the direction of E2.

To find the direction of the net electric field of two point charges at the origin, we need to consider the direction of the electric fields due to each charge and add them as vectors.

Assuming both charges are positive (or both negative), the electric field due to each charge points away from it. The magnitude of the electric field due to a point charge Q at a distance r from it is given by Coulomb's law:

E = kQ/r^2,

where k is the Coulomb constant (k = 9 × 10^9 N·m^2/C^2).

At x = 0, the electric field due to the charge at -1 cm (which we'll call Q1) points to the right and has a magnitude of:

E1 = kQ1/(-0.01)^2

At x = 0, the electric field due to the charge at 2 cm (which we'll call Q2) points to the left and has a magnitude of:

E2 = kQ2/(0.02)^2

To find the net electric field at x = 0, we need to add the electric fields due to each charge as vectors. Since the electric fields due to the two charges have equal magnitude, we can simply subtract them as vectors. The direction of the net electric field will be the direction of the resulting vector.

The vector subtraction of the two electric fields can be represented as:

E_net = E2 - E1

where the positive sign of E1 implies that its direction is opposite to E2.

Substituting  values of E1 and E2, we get:

E_net = k[(Q2/0.02^2) - (Q1/0.01^2)]

Since Q2 is farther from the origin than Q1, its electric field has a greater magnitude. Therefore, the net electric field will point to the left, in the direction of E2.

To know more about net electric field refer here:

https://brainly.com/question/11974397

#SPJ11

A unit vector normal to the surface 2x² – 2xy + yx at (2,4) is: a. 1/√5 ( i-2j) . b.1/√5 ( i+2j) c.1/√5 ( 2i+j) d. 1/√5 ( 2i-j)

Answers

The answer is (a) 1/√5 ( i-2j).

We can find the normal vector to the surface by computing the gradient of the surface and evaluating it at the given point.

The surface is given by the equation:

f(x, y) = 2x² - 2xy + yx

Taking the partial derivatives with respect to x and y:

fx = 4x - 2y

fy = x + 2

So the gradient vector is:

∇f(x, y) = (4x - 2y)i + (x + 2)j

Evaluating this at the point (2, 4):

∇f(2, 4) = (4(2) - 2(4))i + (2 + 2)j = 4i + 4j

To get a unit normal vector, we divide this by its magnitude:

|∇f(2, 4)| = √(4² + 4²) = 4√2

n = (4i + 4j)/[4√2] = 1/√2 (i + j)

To find a normal vector that is also a unit vector, we divide by its magnitude again:

|n| = √2

n/|n| = 1/√2 (i + j)

So the answer is (a) 1/√5 ( i-2j).

To know more about vector refer here:

https://brainly.com/question/29740341

#SPJ11

Question

Find the surface area of the prism. The surface area is

square feet

Answers

To find the surface area of a prism, we need to calculate the sum of the areas of all its faces.

For a general prism, the surface area can be found by adding the areas of the lateral faces and the base faces.

If we assume that the prism has a rectangular base, the surface area can be calculated using the following formula:

Surface Area = 2lw + 2lh + 2wh

Where:

l = length of the prism

w = width of the prism

h = height of the prism

the specific dimensions (length, width, and height) of the prism so that I can calculate the surface area for you.

Learn more about prism area here:

https://brainly.com/question/1297098

#SPJ11

The motion of a particle is given by x=Asin^3(wt). a) What is the amplitude of the particles's motion? b)What is the expression for the particle's velocity? c) What is the expression for the particle's acceleration?

Answers

The amplitude of the particle's motion is A.

The expression for the particle's velocity can be found by taking the time derivative of x with respect to t:

v = [tex]dx/dt = 3A(w sin(wt))^2[/tex] [tex]cos(wt)c)[/tex]

The expression for the particle's acceleration can be found by taking the time derivative of v with respect to t:

[tex]a = dv/dt = -3A(w^2 sin^2(wt) - 2w^2 sin^4(wt)) sin(wt) - 6A(w sin(wt))^3[/tex] [tex]cos(wt)[/tex]

a) The amplitude of the particle's motion is the maximum displacement from its equilibrium position, which can be found by taking the absolute value of the maximum value of x. In this case, the maximum value of x is A, so the amplitude of the particle's motion is A.

b) The expression for the particle's velocity can be found by taking the time derivative of x with respect to t:

v = [tex]dx/dt = 3A(w sin(wt))^2[/tex] [tex]cos(wt)c)[/tex] The expression for the particle's acceleration can be found by taking the time derivative of v with respect to t:

[tex]a = dv/dt = -3A(w^2 sin^2(wt) - 2w^2 sin^4(wt)) sin(wt) - 6A(w sin(wt))^3[/tex] [tex]cos(wt)[/tex]

Simplifying this expression gives:

[tex]a = -3Aw^2 sin(wt) [1 - 2sin^2(wt)] - 6Aw^3 sin^3(wt) cos(wt)[/tex]

For such more questions on acceleration

https://brainly.com/question/26408808

#SPJ11

The amplitude of the particle's motion is A, the expression for the particle's velocity is v = 3Awcos(wt) * w, and the expression for the particle's acceleration is a = -3Aw^2sin(wt).

These expressions describe the behavior of the particle in terms of its position, velocity, and acceleration as a function of time.

a) The amplitude of the particle's motion can be determined from the equation x = Asin^3(wt). In this equation, A represents the amplitude. Therefore, the amplitude of the particle's motion is A.

b) To find the expression for the particle's velocity, we need to differentiate the equation x = Asin^3(wt) with respect to time. Taking the derivative, we get:

v = d/dt (Asin^3(wt))

Using the chain rule and the derivative of sine function, we can simplify the expression as follows:

v = 3Awcos(wt) * w

Therefore, the expression for the particle's velocity is v = 3Awcos(wt) * w.

c) To find the expression for the particle's acceleration, we need to differentiate the velocity equation with respect to time. Taking the derivative, we get:

a = d/dt (3Awcos(wt) * w)

Using the chain rule and the derivative of cosine function, we can simplify the expression as follows:

a = -3Aw^2sin(wt)

Therefore, the expression for the particle's acceleration is a = -3Aw^2sin(wt).

To learn more about velocity, click here: https://brainly.com/question/10425898

#SPJ11

The position of a particle moving in the xy-plane is given by the parametric equations x(t) = cos(2') and y(t) = sin(2) for time t 2 0. What is the speed of the particle when t = 2.3 ? (A) 1.000 (B) 2.014 (C) 3.413 (D) 11.652

Answers

The speed of the particle when t = 2.3 is approximately 2.014, which corresponds to option (B).


1. We are given the parametric equations x(t) = cos(2t) and y(t) = sin(2t).
2. To find the speed, we need to find the magnitude of the velocity vector, which is given by the derivative of the position vector with respect to time.
3. Differentiate x(t) and y(t) with respect to time, t:

  dx/dt = -2sin(2t)
  dy/dt = 2cos(2t)

4. Now, find the magnitude of the velocity vector, which is the speed:

  Speed = √((dx/dt)^2 + (dy/dt)^2)

5. Substitute the values of dx/dt and dy/dt, and plug in t = 2.3:

  Speed = √((-2sin(2*2.3))^2 + (2cos(2*2.3))^2)

6. Calculate the speed:

  Speed ≈ 2.014

The speed of the particle when t = 2.3 is approximately 2.014, which is option (B).

To learn more about equations visit:

https://brainly.com/question/10413253

#SPJ11

The correct option is (B) 2.014 .  The speed of particle when t = 2.3 is approximately 2.014,

To find the speed of the particle when t = 2.3, we need to calculate the derivative of the parametric equations with respect to time and then find the magnitude of the velocity vector.

The given parametric equations are x(t) = cos(2t) and y(t) = sin(2t).

First, find the derivatives with respect to time t:
dx/dt = -2sin(2t) and dy/dt = 2cos(2t).

Next, we'll find the magnitude of the velocity vector at t = 2.3:
|v(t)| = √((dx/dt)^2 + (dy/dt)^2).

Substitute t = 2.3 into the derivatives:
dx/dt = -2sin(2*2.3) and dy/dt = 2cos(2*2.3).

Now, find the magnitude:
|v(2.3)| = √((-2sin(4.6))^2 + (2cos(4.6))^2).

Calculate the values:
|v(2.3)| = √(((-2sin(4.6))^2 + (2cos(4.6))^2) ≈ 2.014.

Therefore, the speed of the particle when t = 2.3 is approximately 2.014, which corresponds to option (B).

Know more about the parametric equations

https://brainly.com/question/30451972

#SPJ11

use the derivative f′(x)=(x−2)(x 1)(x 4) to determine the local maxima and minima of f and the intervals of increase and decrease. sketch a possible graph of f (f is not unique).

Answers

The graph will generally exhibit a local maximum at x = 2 and local minima at x = -1 and x = -4

To determine the local maxima and minima of the function f(x) = (x-2)(x+1)(x+4), we can analyze the derivative f'(x). By setting f'(x) equal to zero and solving for x, we can find the critical points of f. The intervals of increase and decrease can be determined by examining the sign of f'(x) in different intervals. Sketching a graph of f can provide a visual representation of its behavior, but it's important to note that the specific shape of the graph may vary.

To find the critical points of f(x), we set f'(x) = 0 and solve for x. In this case, f'(x) = (x-2)(x+1)(x+4). Setting this equal to zero, we find that the critical points are x = 2, x = -1, and x = -4. These are the points where f(x) may have local maxima or minima.

To determine the intervals of increase and decrease, we can examine the sign of f'(x) in different intervals. We can choose test points within each interval and evaluate f'(x) to determine its sign. For example, in the interval (-∞, -4), we can choose x = -5 as a test point. Evaluating f'(-5), we find that f'(-5) < 0, indicating that f(x) is decreasing in this interval. By applying a similar process to the other intervals (-4, -1) and (-1, 2), we can determine the intervals of increase and decrease for f(x).

Sketching a graph of f(x) can help visualize the behavior of the function. However, it's important to note that the specific shape of the graph may vary. The graph will generally exhibit a local maximum at x = 2 and local minima at x = -1 and x = -4, but the curvature and overall shape of the graph will depend on factors such as the scale of the axes and the positioning of the critical points.

Learn more about critical points here;

https://brainly.com/question/32077588

#SPJ11

Use a protractor to measure the angles shown for each given write whether the angleis acute right obtuse or straight

Answers

Right angles are angles that measure 90 degrees. Angle 2 is a right angle. Obtuse angles are angles that measure greater than 90 degrees but less than 180 degrees. Angle 3 is an obtuse angle. It measures approximately 130 degrees.

To measure the angles shown for each given, we need a protractor. A protractor is an instrument used to measure angles. It is a semicircular transparent sheet of plastic or glass with the edges marked from 0 to 180 degrees. To measure the angles, place the center of the protractor on the vertex of the angle.

Align the base line of the protractor with one of the sides of the angle. Determine the size of the angle by reading the number of degrees between the two sides of the angle. Using the angle measurements, we can categorize the angles as acute, right, obtuse or straight angles. Acute angles are angles that measure less than 90 degrees. In the given angles, angles 1 and 4 are acute angles. Angle 1 measures approximately 60 degrees and angle 4 measures approximately 45 degrees.

Right angles are angles that measure 90 degrees. Angle 2 is a right angle. Obtuse angles are angles that measure greater than 90 degrees but less than 180 degrees. Angle 3 is an obtuse angle. It measures approximately 130 degrees. Straight angles are angles that measure 180 degrees. There is no straight angle in the given angles. The measures of the angles using the protractor and the category of each angle are summarized in the table below. Angle Measurement

Category Angle 160 degrees

Acute Angle 290 degrees

Right Angle 3130 degrees

Obtuse Angle 445 degrees

To know more about obtuse angle visit:

https://brainly.com/question/30813354

#SPJ11

to compute the probability of having a loaded die turn up six, the theory of probability that would normally be used is the:

Answers

To compute the probability of a loaded die turning up six, the theory of probability that would typically be used is the Classical Probability Theory.

In this theory, we assume that each outcome of an experiment has an equal chance of occurring.

For a fair six-sided die, there are six possible outcomes (1, 2, 3, 4, 5, and 6), and each outcome has a probability of 1/6.

However, for a loaded die, the probabilities of the outcomes may be different.

To determine the probability of a loaded die turning up six, we need to know the specific probabilities assigned to each outcome. Once we have that information, we can compute the probability of a loaded die turning up six using the given probabilities.

Learn more about probability at https://brainly.com/question/20631009

#SPJ11

A triangular parcel of land has borders of lengths 60 meters, 70 meters, and 82 meters. Find the area of the parcel of land.

Answers

Answer:

The area of the triangular parcel of land is approximately 5039.55 square meters. To find the area of the triangular parcel of land, we can use Heron's formula.

Heron's formula states that the area of a triangle with sides of length a, b, and c is Area = √(s(s-a)(s-b)(s-c))
where s is the semiperimeter, defined as:
s = (a + b + c)/2
In this case, we have a = 60 meters, b = 70 meters, and c = 82 meters. So, we can first calculate the semiperimeter:
s = (60 + 70 + 82)/2 = 106
Then, we can use Heron's formula to find the area:
Area = √(106(106-60)(106-70)(106-82)) = √(106(46)(36)(24)) = √(25397184) ≈ 5039.55 square meters.

Learn more about Heron's formula here:

https://brainly.com/question/29184159

#SPJ11

Let x,x2,.... X10 be distinct Boolean random variables that are inputs into some logical circuit. How many distinct sets of inputs are there such that Xi + 32 +..29 + 210 = n=1 In = 4?

Answers

There are 210 distinct sets of inputs for the given logical circuit where the sum of the Boolean random variables equals 4.

Since x1, x2, ..., x10 are distinct Boolean random variables, they can only take the values 0 or 1. In order to satisfy the given condition, we need to find the number of distinct sets of inputs such that exactly four of the variables are 1 and the rest are 0.

This can be viewed as selecting 4 variables out of 10 to be equal to 1. The number of distinct sets can be determined by calculating the combinations: C(10,4) = 10! / (4! * 6!) = 210. Therefore, there are 210 distinct sets of inputs that satisfy the given condition.

To know more about logical circuit click on below link:

https://brainly.com/question/30111371#

#SPJ11

Let R be the region in the xy-plane bounded by the lines x + y = 2, x + y = 4, y − x = 3, y − x = 5. Use the change of variables u = y + x, v = y − x to set up (but do not evaluate) an iterated integral in terms of u and v that represents the integral below. Double integral sub R (y−x) e^ (y^ 2−x ^2) dA

Answers

The iterated integral in terms of u and v that represents the given integral is 1/2 times the integral over the region R in the uv-plane of (v) e^((u^2 - v^2)/4) dv du, where R is bounded by the lines u=3^5 and v=2^4.

We are given the region R in the xy-plane bounded by the lines x + y = 2, x + y = 4, y − x = 3, y − x = 5. We need to use the change of variables u = y + x, v = y − x to set up an iterated integral in terms of u and v that represents the integral of (y-x) e^(y^2-x^2) over R.

Using the given change of variables, we have:

x = (u - v)/2

y = (u + v)/2

The Jacobian of the transformation is given by:

|∂(x,y)/∂(u,v)| = |1/2 1/2| = 1/2

Using the change of variables, we can express the integral as:

∫∫(y-x)e^(y^2-x^2) dA = 1/2 ∫u=3^5 ∫v=2^4 (v) e^((u^2 - v^2)/4) dv du

Thus, the iterated integral in terms of u and v that represents the given integral is 1/2 times the integral over the region R in the uv-plane of (v) e^((u^2 - v^2)/4) dv du, where R is bounded by the lines u=3^5 and v=2^4.

Learn more about iterated integral here

https://brainly.com/question/30216057

#SPJ11

Factor 25x2 10x 1. (5x 1)² (25x 1)(x 1) (5x 1)(5x - 1)

Answers

The answer is (5x + 1)².

The answer to the given question is (5x + 1)(5x + 1) which can be written as (5x + 1)². This can be solved by using the below method:Solve the equation by looking for two numbers that multiply to give you 25x2 and add up to give you 10x. To solve the equation, find factors of 25 that multiply to give you 25x2 and factors of 1 that multiply to give you 1. The expression that will be factored is 25x2 10x 1 and the factors that multiply to give 25x2 are 25x and x.

The factors that multiply to give 1 are 1 and 1. Thus, the factors of 25x2 10x 1 are (25x 1)(x 1).To factor the expression, first multiply 25x by 1 and add this result to the product of x and 1, which gives 25x + x = 26x. Next, set this sum equal to the middle coefficient of the original expression, which is 10x. Since 26x does not equal 10x, try different pairs of factors of the constant term 1 until one works. In this case, the pair that works is 5 and 1, since 5 + 5 + 1 + 1 = 12 and 5(1) + 5(1) = 10. Therefore, factor 25x2 10x 1 as (5x + 1)(5x + 1), which can be written as (5x + 1)².Hence, the answer is (5x + 1)².

Learn more about Multiply here,the product that results from multiplying the same number over and over is a blank of that number

https://brainly.com/question/10873737

#SPJ11

If z is a complex number, prove that there exists an r ≥0 and a complex number w with |w|= 1 such that z = rw. are w and r always uniquely determined by z?

Answers

Given a complex number z = a + bi, where a and b are real numbers and i is the imaginary unit, we can write z in polar form as z = r(cosθ + i sinθ), where r and θ are the modulus and argument of z, respectively.

We have r = |z| = sqrt(a^2 + b^2) and θ = arg(z) = tan^-1(b/a), provided that a is not equal to 0.

Let w = cosθ + i sinθ. Then |w| = sqrt(cos^2θ + sin^2θ) = sqrt(1) = 1. Hence, if we let r = |z| and w = cosθ + i sinθ, then z = rw.

Note that w is not uniquely determined by z. For example, if z = 1 + i, then we can write z in polar form as z = sqrt(2)(cos(pi/4) + i sin(pi/4)). Thus, we can take r = sqrt(2) and w = cos(pi/4) + i sin(pi/4).

However, we can also take w = cos(9pi/4) + i sin(9pi/4) = -1/sqrt(2) - i/sqrt(2). Then z = rw for r = sqrt(2) and w = -1/sqrt(2) - i/sqrt(2).

Therefore complex number z = rw for r = sqrt(2) and w = -1/sqrt(2) - i/sqrt(2).

To know more about complex number, visit:

https://brainly.com/question/20566728

#SPJ11

The equation of a circle is given below. Identify the radius and the center. Then graph the circle.

Answers

The radius of the circle is 4 units, and the graph can be seen in the image at the end.

How to identify the radius of the circle?

The equation for a circle whose center is (a, b) and the radius is R, is:

(x - a)² + (y - b)² = R²

Here we have the circle equation:

2x² + 14x + 2y² - 4y = 11/2

Divide the whole equation by 2 to get:

x² + 7x + y² - 2y = 11/4

Now we can complete squares, we need to add:

3.5² and (-1)² in both sides, so we will get:

(x² + 2*3.5*x + 3.5²) + (y² - 2y +  (-1)²) = 11/4 + 3.5² + (-1)²

(x + 3.5)² + (y - 1)² = 16 = 4²

So the radius is 4, and the graph is on the image below.

Learn more about circles at:

https://brainly.com/question/25871159

#SPJ1

(1) Given two complex numbers z,-r1(cosa + 1 sin a) and z2-r2(cos θ2 + sin θ(2), prove the following formula for the division of complex numbers without using the Quotient Theorem stated in the text equal to the square of the modulus.

Answers

The formula for the division of complex numbers is:

z1/z2 = [(r1 cos a - r2 cos θ2) + i(r1 sin a - r2 sin θ2)] / [r2^2 + r1r2(cos(a - θ2) + i sin(a - θ2))]

To divide two complex numbers, we need to multiply the numerator and denominator by the complex conjugate of the denominator. That is, we multiply z1 by r2(cos θ2 - i sin θ2) and z2 by r2(cos θ2 - i sin θ2). This gives us:

z1/z2 = [(r1/r2)cos a - cos θ2 + i((r1/r2)sin a - sin θ2)] / [(r2 cos θ2 - i sin θ2)(cos a + i sin a)]

Next, we simplify the denominator using the identity cos^2θ + sin^2θ = 1:

z1/z2 = [(r1/r2)cos a - cos θ2 + i((r1/r2)sin a - sin θ2)] / [r2(cos a cos θ2 + sin a sin θ2) + i(r2 sin a cos θ2 - r2 cos a sin θ2)]

Now, we multiply the numerator and denominator by the conjugate of the denominator:

z1/z2 = [(r1/r2)cos a - cos θ2 + i((r1/r2)sin a - sin θ2)] / [r2(cos a cos θ2 + sin a sin θ2) + i(r2 sin a cos θ2 - r2 cos a sin θ2)] * [r2(cos a cos θ2 + sin a sin θ2) - i(r2 sin a cos θ2 - r2 cos a sin θ2)] / [r2(cos a cos θ2 + sin a sin θ2) - i(r2 sin a cos θ2 - r2 cos a sin θ2)]After simplifying, we get:

z1/z2 = [(r1 cos a - r2 cos θ2) + i(r1 sin a - r2 sin θ2)] / [r2^2 + r1r2(cos(a - θ2) + i sin(a - θ2))].

For such more questions on Complex numbers:

https://brainly.com/question/29747482

#SPJ11

We have proved the formula for the division of complex numbers without using the Quotient Theorem, which states that:

z1/z2 = |z1|/|z2| * (cos (θ1 - θ2) + i sin (θ1 - θ2))

To prove the formula for the division of complex numbers without using the Quotient Theorem, we can use the polar form of complex numbers and some trigonometric identities.

Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2) be two complex numbers in polar form.

Then, we can write the division of z1 by z2 as:

z1/z2 = r1(cos θ1 + i sin θ1) / r2(cos θ2 + i sin θ2)

Multiplying the numerator and denominator by the conjugate of z2, we get:

z1/z2 = r1(cos θ1 + i sin θ1) / r2(cos θ2 + i sin θ2) * r2(cos θ2 - i sin θ2) / r2(cos θ2 - i sin θ2)

Simplifying the numerator, we get:

z1/z2 = r1r2(cos θ1 cos θ2 + sin θ1 sin θ2 + i(sin θ1 cos θ2 - cos θ1 sin θ2))

Using the identities cos (θ1 - θ2) = cos θ1 cos θ2 + sin θ1 sin θ2 and sin (θ1 - θ2) = sin θ1 cos θ2 - cos θ1 sin θ2, we can write:

z1/z2 = r1r2(cos (θ1 - θ2) + i sin (θ1 - θ2))

Now, we can write z1/z2 in polar form as:

z1/z2 = |z1/z2| (cos φ + i sin φ)

where |z1/z2| = r1/r2 and φ = θ1 - θ2.

We can also see that the relation R does not have the comparability property, since for some complex numbers z1 and z2, it is not true that either z1 R z2 or z2 R z1. For example, if z1 = 1 + i and z2 = -1 - i, then z1 R z2 since |z1| < |z2|, but z2 does not R z1 since |z2| < |z1|. Therefore, R is not a total order on the set of complex numbers.

Know more about Quotient Theorem here:

https://brainly.com/question/29046143

#SPJ11

150. G of aluminum chloride in 0. 450 liters of solution, what is the concentration? (any examples are helpful, thank you)

Answers

The concentration of a solution can be defined as the quantity of solute per unit volume of the solution. It can be represented in various units such as molarity (moles of solute per liter of solution), normality (number of equivalent weights of solute per liter of solution), and molality (moles of solute per kilogram of solvent).

The concentration of a solution can be defined as the quantity of solute per unit volume of the solution. It can be represented in various units such as molarity (moles of solute per liter of solution), normality (number of equivalent weights of solute per liter of solution), and molality (moles of solute per kilogram of solvent). Here, we have been given 150 g of aluminum chloride in 0.450 liters of solution and we need to find its concentration. The first step in finding the concentration of a solution is to determine the number of moles of solute present in it. The molar mass of aluminum chloride is 133.34 g/mol. Hence, the number of moles of aluminum chloride present in the given solution is: 150 g / 133.34 g/mol = 1.125 mol

Now, we can calculate the concentration of the solution using the formula: Concentration = Number of moles of solute / Volume of solution in liters= 1.125 mol / 0.450 L= 2.50 M

Therefore, the concentration of the given solution of aluminum chloride is 2.50 M. The solution to the given problem is as follows. We have been given 150 g of aluminum chloride in 0.450 liters of solution, and we need to find its concentration. The concentration of a solution is defined as the amount of solute per unit volume of the solution, and it can be expressed in different units such as molarity, molality, and normality. The molarity of a solution is the number of moles of solute per liter of solution. Hence, the first step in finding the concentration of the given solution is to determine the number of moles of aluminum chloride present in it. We can do this by dividing the given mass of aluminum chloride by its molar mass. The molar mass of aluminum chloride is the sum of the atomic masses of aluminum and chlorine, which is 26.98 + 2 x 35.45 = 133.34 g/mol.

Therefore, the number of moles of aluminum chloride present in the given solution is: 150 g / 133.34 g/mol = 1.125 mol. Now, we can calculate the molarity of the solution using the formula: Molarity = Number of moles of solute / Volume of solution in liters. Hence, the molarity of the given solution is: 1.125 mol / 0.450 L = 2.50 M. Therefore, the concentration of the given solution of aluminum chloride is 2.50 M.

To know more about molality visit:

https://brainly.com/question/30640726

#SPJ11

the confidence interval formula for p _____ include(s) the sample proportion.

Answers

Yes, the confidence interval formula for p includes the sample proportion. In statistical inference, a confidence interval is a range of values that is used to estimate an unknown population parameter.

In the case of a proportion, such as the proportion of individuals in a population who have a certain characteristic, the confidence interval formula involves using the sample proportion as an estimate of the population proportion.

The formula for a confidence interval for a proportion is given by:

p ± z*sqrt((p(1-p))/n)

where p is the sample proportion, n is the sample size, and z is the z-score corresponding to the desired level of confidence. The sample proportion is used as an estimate of the population proportion, and the formula uses the sample size and the level of confidence to calculate a range of values within which the true population proportion is likely to fall.

It is important to note that the sample proportion is just an estimate, and the actual population proportion may differ from it. The confidence interval provides a range of values within which the true population proportion is likely to fall, based on the available data and the chosen level of confidence.

Learn more about confidence interval here:

https://brainly.com/question/24131141

#SPJ11

Evaluasi integral garis F · dr, C di mana C diberikan oleh fungsi vektor r(t). f(x,y,z) = (x y^2)i xz(j) (y z)k, r(t)=t^2i t^3j-2tj, 0<=t<=2

Answers

The line integral evaluates to 1792/3. The integral was solved using the parametric equations of the given vector function and applying the line integral formula.

The line integral of F · dr over C, where C is given by the vector function r(t) = t²i + t³j - 2tj, 0 ≤ t ≤ 2, and F(x, y, z) = (xy²)i + xz(j) + (yz)k is to be evaluated.

To solve this, first, we need to parameterize the curve C by finding the values of r(t) at t = 0 and t = 2.

At t = 0, r(0) = (0)i + (0)j + (0)k = 0

At t = 2, r(2) = (4i) + (8j) - (2k)

Next, we need to calculate the line integral using the parameterization of the curve C.

∫ F · dr = ∫ [f(r(t))] · [r'(t) dt] from t=0 to t=2

where r'(t) is the derivative of r(t) with respect to t.

Substituting the given values of F and r(t), we get

∫ F · dr = ∫ [(t²)(t⁶)²i + (t²)(-2t)j + (t³)(-2t)(t²)k] · [2ti + 3t²j - 2j dt] from t=0 to t=2

On simplifying and integrating, we get

∫ F · dr = ∫ [(t¹⁰)i + (-4t³)j + (-2t⁵)k] · [2ti + 3t²j - 2j dt] from t=0 to t=2

∫ F · dr = ∫ [(2t¹¹) + (-12t⁵) + (-2t⁵)] dt from t=0 to t=2

∫ F · dr = [1/6 (2t¹²) - 2t⁶ - 1/3 (2t⁶)] from t=0 to t=2

∫ F · dr = [(2/3)(2¹²) - 2(2⁶) - (2/3)(2⁶)] - [0]

∫ F · dr = 2048/3 - 128 - 64/3

∫ F · dr = 1792/3

Therefore, the value of the line integral is 1792/3.

To know more about line integral:

https://brainly.com/question/29850528

#SPJ4

what is the probability of a goal given that wayne took the shot?

Answers

The probability of a goal given that Wayne took the shot would depend on various factors,

To determine the probability of a goal given that Wayne took the shot, we would need to know the success rate of Wayne's shots.

If we have that information, we can use it to calculate the conditional probability of a goal.

For example,

If we know that Wayne has a 20% success rate on his shots, then the probability of a goal given that Wayne took the shot would be 0.2 (or 20%).

The probability of a goal given that Wayne took the shot would depend on various factors, such as Wayne's skill level, the position he took the shot from, the opposition team's defense, the weather conditions, and many other factors.

If you have more information about these factors or any other relevant details, please provide them, and I will try my best to help you with the calculation.

However,

If we don't have any information on Wayne's success rate, it would be difficult to calculate the probability accurately.

For similar question on probability:

https://brainly.com/question/32004014

#SPJ11

What is the probability that the mean salary of random sample of 100 workers is no more than $54,215?

Answers

Using the normal distribution calculator, the probability that the mean salary of random sample of 100 workers is no more than $54,215 is  0.5171 or 51.71%.

What is the probability?

Probability refers to the chance or likelihood that an expected event occurs out of many possible events.

Probability gives a value that lies between 0 and 1, depending on the degree of certainty.

Mean annual salary = $54,000

Standard deviation = $5,000

Sample size = 100 workers

Mean not above $54,215

Thus, the probability that the mean salary of random sample of 100 workers is no more than $54,215 is 0.5171.

Learn more about normal distribution probabilities at brainly.com/question/4079902.

#SPJ1

Complete Question:

The annual salary for a certain job has a normal distribution with a mean of $54,000 and a standard deviation of $5000. What is the probability that the mean salary of a random sample of 100 workers is no more than $54,215?

Evaluate the integral
∫10∫1ysin(x2) dxdy
by reversing the order of integration.
With order reversed,
∫ba∫dcsin(x2) dydx
where a= , b= , c= , and d= .
Evaluating the integral, ∫10∫1ysin(x2) dxdy=

Answers

Reversing the order of integration for the given double integral ∫10∫1ysin(x^2)[tex]dxdy[/tex] leads to the integral ∫1^0∫√y^−1y sin(x^2) dxdy. Evaluating this integral gives the value approximately equal to -0.225.

To reverse the order of integration, we need to visualize the region of integration in the x y -plane. The limits of x are from y to 1 and limits of y are from 0 to 1. So, the region of integration is a triangle with vertices at (1,0), (1,1), and (y, y) for y ranging from 0 to 1.

Now, to reverse the order of integration, we integrate with respect to x first, then y. So, the limits of x will be from √[tex]y^-1[/tex] to y , and limits of y will be from 1 to 0. Therefore, the new integral becomes ∫1^0∫√y^−1y sin(x^2) dxdy.

Evaluating this integral, we have ∫1^0∫√[tex]y^-1y sin(x^2)[/tex][tex]dxdy[/tex] = ∫1^0 [−1/2cos[tex](y^-(1/2))[/tex] + 1/2cos(y)[tex]] dy[/tex] ≈ -0.225. Therefore, the value of the given double integral is approximately -0.225.

Learn more about integral here:

https://brainly.com/question/31109342

#SPJ11

Divide 6 sqrt5cis (11pi/6) by 3 sqrt6cis (pi/2)

Answers

The quotient of the expression is (√30 / 3) cis (4π / 3).

Let's break down the given expressions into their magnitude and angle components:

Expression 1: 6√5cis(11π/6)

Magnitude: 6√5

Angle: 11π/6

Expression 2: 3√6cis(π/2)

Magnitude: 3√6

Angle: π/2

Now, let's apply the division rule:

Step 1: Divide the magnitudes:

6√5 ÷ 3√6

To divide the magnitudes, we divide the values under the square roots:

(6/3) * (√5/√6) = 2 * (√5/√6)

We can simplify this expression further by rationalizing the denominator. To rationalize, we multiply both the numerator and the denominator by the conjugate of the denominator (√6):

(2 * (√5/√6)) * (√6/√6) = (2√5 * √6) / (√6 * √6)

= (2√30) / 6

= √30 / 3

So, the magnitude component of the quotient is √30 / 3.

Step 2: Subtract the angles:

(11π/6) - (π/2)

To subtract the angles, we need a common denominator:

(11π/6) - (3π/6) = (11π - 3π) / 6 = 8π / 6

To simplify the angle, we divide the numerator and denominator by their greatest common divisor (2):

(8π / 6) ÷ (2/2) = (4π / 3)

So, the angle component of the quotient is 4π / 3.

Step 3: Combine the magnitude and angle components:

The quotient is given by (√30 / 3) cis (4π / 3).

To know more about expression here

https://brainly.com/question/14083225

#SPJ4

Consider the infinite series sigma_n=3^infinity (-1)^n+1 a_n = 1/3 ln 3 - 1/4 ln 4 + 1/5 ln 5- ellipsis, identify properties of this series that guarantee the series converges. Explain why the sum of this series is less than 1/3. Find the interval of convergence of the power series sigma_n=3^infinity (x - 2)^n+1/n ln n. Show the analysis that leads to your answer.

Answers

x = 1 and x = 3 are not included in the interval of convergence because the power series diverges at these points.

The properties that guarantee the convergence of the series [tex]sigma_n=3^{infinity}(-1)^{n+1} a_n[/tex], we can use the alternating series test  states that if the terms of an infinite series alternate in sign and decrease in absolute value then the series converges.

In this series the terms alternate in sign and the absolute value of each term decreases as n increases.

This is because ln(n) increases at a slower rate than n, so 1/n ln(n) decreases as n increases.

The alternating series test guarantees that the series converges.

The sum of the series is less than 1/3 can group the terms in pairs as follows:

(1/3 ln 3) - (1/4 ln 4) + (1/5 ln 5) - (1/6 ln 6) + ...

= (1/3 ln 3 - 1/4 ln 4) + (1/5 ln 5 - 1/6 ln 6) + ...

= [tex]ln(3^{(1/3)}/4^{(1/4)}) + ln(5^{(1/5)}/6^{(1/6)}) + ...[/tex]

= [tex]ln(3^{(1/3)}/4^{(1/4)} \times 5^{(1/5)}/6^{(1/6)} \times ...)[/tex]

The parentheses is less than 1 since [tex]3^{(1/3)} < 4^{(1/4)}, 5^{(1/5)} < 6^{(1/6)[/tex] and so on.

The product inside the parentheses is less than 1.

Taking the natural logarithm of a number less than 1 gives a negative value, so ln[tex](3^{(1/3)}/4^{(1/4)} \times 5^{(1/5)}/6^{(1/6)} \times ...)[/tex] is negative.

Thus, the sum of the series is less than 1/3.

The interval of convergence of the power series [tex]sigma_n[/tex]=[tex]3^{infinity} (x - 2)^{n+1}/n[/tex] ln n can use the ratio test states that if the limit of the absolute value of the ratio of successive terms is less than 1 then the series converges absolutely.

Applying the ratio test we have:

|((x - 2)⁽ⁿ⁺¹⁾/(n+1) ln(n+1))/((x - 2)ⁿ/n ln(n))|

= |(x - 2) (n ln(n+1))/(n+1) ln(n)|

Taking the limit as n approaches infinity we get:

lim n→∞ |(x - 2) (n ln(n+1))/(n+1) ln(n)|

= |x - 2| lim n→∞ (ln(n+1)/ln(n))

= |x - 2|

The series converges absolutely if |x - 2| < 1 and diverges if |x - 2| > 1.

|x - 2| = 1 the ratio test is inconclusive and we need to use another test such as the alternating series test to determine convergence.

The interval of convergence of the series is:

1 < x < 3

For similar questions on series

https://brainly.com/question/24295771

#SPJ11

use the binomial series to find (6)(0)f(6)(0) term for the ()=1−2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√.
(Use decimal notation. Give your answer as whole or exact number.)

Answers

The correct answer is 1/64.The 6th term in the binomial series expansion of f(x) is:(6 choose 6)(-2x^(1/2))^6 = 1/64So.

We can use the binomial series to expand the function f(x) = (1 - 2x^(1/2))^6 as:

f(x) = ∑(k=0 to 6) (6 choose k)(-2x^(1/2))^k

To find the 6th derivative of f(x) with respect to x, we only need to consider the term with k = 0 in this series. All other terms will have a power of x greater than 0, so they will evaluate to 0 when we take the 6th derivative.

So, we have:

f^(6)(x) = (6 choose 0)(-2x^(1/2))^0 = 1

Now, we can evaluate this expression at x = 0 to get the 6th derivative of f(x) at x = 0:

f^(6)(0) = 1.

For such more questions on Binomial series expansion:

https://brainly.com/question/13602562

#SPJ11

The (6)(0) term is the coefficient of x^6, which is 0 since there is no x^6 term in the expansion. Therefore, the answer is 0.

The binomial series for (1+x)^n, where n is a positive integer, is given by:

(1+x)^n = 1 + nx + (n(n-1)/2!) x^2 + (n(n-1)(n-2)/3!) x^3 + ... + (n choose k) x^k + ...

where (n choose k) is the binomial coefficient.

In this case, we have:

f(x) = (1-2x)^(-1/2)

n = -1/2

Using the binomial series, we can expand f(x) as:

f(x) = 1 + (n choose 1) (-2x) + (n+1 choose 2) (-2x)^2 + (n+2 choose 3) (-2x)^3 + ...

f(x) = 1 + (-1/2) (-2x) + (-1/2+1/2)(-2x)^2 + (-1/2+2/2)(-2x)^3 + ...

f(x) = 1 + x + (3/8) x^2 + (15/16) x^3 + ...

Know more about binomial series here:

https://brainly.com/question/30177068

#SPJ11

evaluate the triple integral of f(e, 0, ¢) = sin o in spherical coordinates over the region 0 < 0 < 27, 0<¢<, 3

Answers

The triple integral of f(e, 0, ¢) = sin o in spherical coordinates over the region 0 < 0 < 27, 0<¢<, 3 is 54π. Spherical coordinates are a system of coordinates used to locate a point in 3-dimensional space.

To evaluate the triple integral of f(e, 0, ¢) = sin o in spherical coordinates over the region 0 < 0 < 27, 0<¢<, 3, we need to express the integral in terms of spherical coordinates and then evaluate it.

The triple integral in spherical coordinates is given by:

∫∫∫ f(e, 0, ¢)ρ²sin(φ) dρ dφ dθ

where ρ is the radial distance, φ is the polar angle, and θ is the azimuthal angle.

Substituting the given function and limits, we get:

∫∫∫ sin(φ)ρ²sin(φ) dρ dφ dθ

Integrating with respect to ρ from 0 to 3, we get:

∫∫ 1/3 [ρ²sin(φ)]dφ dθ

Integrating with respect to φ from 0 to π/2, we get:

∫ 1/3 [(3³) - (0³)] dθ

Simplifying the integral, we get:

∫ 27 dθ

Integrating with respect to θ from 0 to 2π, we get:

54π

Therefore, the triple integral of f(e, 0, ¢) = sin o in spherical coordinates over the region 0 < 0 < 27, 0<¢<, 3 is 54π.

To learn more about spherical coordinates : https://brainly.com/question/29555384

#SPJ11

Find dy/dx by implicit differentiation, where 2x^5 + 7x^2y-6xy^5 = -2. dy/dx =

Answers

The value of dy/dx by implicit differentiation is:

[tex](-10x^4 - 14xy^2 + 6y^5)/(7x^2 - 30xy^4).[/tex]

To find dy/dx by implicit differentiation, we differentiate both sides of the given equation with respect to x, treating y as a function of x.

Step-by-step solution:

Differentiating [tex]2x^5 + 7x^2y - 6xy^5 = -2[/tex] with respect to x:

[tex]10x^4 + 14xy^2 + 7x^2(dy/dx) - 6y^5 - 30xy^4(dy/dx) = 0[/tex]

Now, let's isolate the term containing dy/dx:

[tex]7x^2(dy/dx) - 30xy^4(dy/dx) = -10x^4 - 14xy^2 + 6y^5[/tex]

Factoring out dy/dx:

[tex](dy/dx)(7x^2 - 30xy^4) = -10x^4 - 14xy^2 + 6y^5[/tex]

Finally, we can solve for dy/dx by dividing both sides by [tex](7x^2 - 30xy^4):[/tex]

[tex]dy/dx = (-10x^4 - 14xy^2 + 6y^5)/(7x^2 - 30xy^4)[/tex]

Therefore, dy/dx is equal to [tex](-10x^4 - 14xy^2 + 6y^5)/(7x^2 - 30xy^4).[/tex]

To know more about implicit differentiation refer here:

https://brainly.com/question/11887805

#SPJ11

Dalvin conducted a scientific experiment. For a certain time, the temperature of a compound rose 1 3/4 degrees every 2 1/3 hours. How much did the temperature of the compound rise in one hour? Enter your answer as a whole number, proper fraction, or mixed number in simplest form. ​

Answers

The temperature of the compound increased by 3/4 of a degree in one hour. Conversion of 2 1/3 hours into a mixed number: 2 1/3 = 7/3 hours.

To find the rate of increase in temperature per hour, we will convert 1 hour into 3/7 hours as follows;

1 hour = 3/7 hours.

Thus, the temperature of the compound rose by 1 3/4 degrees every 2 1/3 hours or 7/3 hours:

= (1 3/4) / (7/3)

= (7/4) x (3/7)

= 21/28

= 3/4 of a degree per hour.

We are given that for a certain time, the temperature of a compound increased by 1 3/4 degrees every 2 1/3 hours. We are required to find how much the temperature of the compound rose in one hour. Let's begin by converting 2 1/3 hours into a mixed number.2 1/3 = 7/3 hours.

Now, to find the rate of increase in temperature per hour, we will convert 1 hour into 3/7 hours. Thus,

1 hour = 3/7 hours.

We can now find the temperature of the compound that rose per hour by dividing the temperature that rose in 7/3 hours by 7/3 hours and multiplying the result by 3/7. Let's substitute the temperature into the formula:

= (1 3/4) / (7/3)

= (7/4) x (3/7)

= 21/28

= 3/4 of a degree per hour.

Therefore, the temperature of the compound increased by 3/4 of a degree in one hour.

To know more about the mixed number, visit:

brainly.com/question/29176042

#SPJ11

Find the y-intercept of the median-median line for the dataset. x 2,3,4,5,7,8,10,12,16,18,21 Y 1,4,6,3,7,6,10,17,20,21,3

Answers

The y-intercept of the median-median line for the given dataset is -2.25.

The median-median line is a line of best fit that is calculated by dividing the given data set into smaller groups of three points, computing the median of the x and y values in each group, and then finding the line that passes through the two median points. The y-intercept of the median-median line is the value of y when x is zero, which can be found by plugging in x = 0 into the equation of the line.

To know more about median-median line,

https://brainly.com/question/23566540

#SPJ11

Other Questions
The spaceship Enterprise, traveling through the galaxy, sends out a smaller explorer craft that travels to a nearby planet and signals its findings back. The proper time for the trip from the Enterprise to the planet is measured. On board of the Enterprise On board of the explorer craft On Earth Outside both the Enterprise and the explorer craft. At the center of the galaxy The women's movement of the 1960s grew out of women's frustration with men... Which of the following mechanisms will increase the rate of return that can be earned by inventors of new technology?A. intellectual property rightsB. government research and development grantsC. cooperative research ventures between companiesD. patents, copyrights, and each of the above astronomers proved that quasar 2c 856 contains a supermassive black hole when they discovered that its center is completely dark. T/F? ales promotion activities multiple choice all of these alternatives about sales promotion activities are correct. are usually focused on long-term results. T/F 7. Harley Company has provided the following selected financial information. 2018 2019 Total assets $ 3,600,000 $ 3,900,000 Net sales $ 7,200,000 $ 9,000,000 Net income $ 640,000 $ 480,000 What is Harley's 2019 return on assets (rounded) A bar magnet falls towards a metallic plate along the dashed line shown. How do the eddy currents move in the plate underneath it? Why?Current moves radially away from the magnet.Current moves radially toward the magnet.Current will swirl clockwise under the magnet.Current will swirl counterclockwise under the magnet.No current will flow.As the bar magnet approaches the plate, how does it move?It accelerates atLaTeX: gg as usual.It accelerates faster thanLaTeX: gg.It accelerates slower thanLaTeX: gg.It moves at constant velocity. You decide to form a partnership with another business. Your business determines that the demand x for your product is inversely proportional to the square of the price for x 5.(a) The price is $1000 and the demand is 16 units. Find the demand function.(b) Your partner determines that the product costs $250 per unit and the fixed cost is $10,000. Find the cost function.(c) Find the profit function and use a graphing utility to graph it. From the graph, what price would you negotiate with your partner for this product? Explain your reasoning. I need a summary about the DEFERRED ACTION FOR CHILDHOOD ARRIVALS (DACA) (2012) identify the type of depression that originates from within an individual and may not be linked to easily identifiable causes. To calculate the changes in diffusion, for each cell in the grid, calculations are applied to ______ in the grid. a. boundaries b. neighbors of each cell c. transitions between cells d. all the cells at the same tim At the end of the twentieth century, the Christian Coalition:a) was a major force in Republican Party politics.b) reversed its long-standing opposition to abortion.c) declined in numbers but grew more vocal at the same time.d) campaigned for the introduction of a national tax funding community churches.e) dominated the Democratic Party. Suppose that a car is initially moving at a speed of 100 m / s to the right. Take right a positive. The driver hits the brakes, and the car comes to a stop in a time of 20 s. What is the acceleration of the car? 50 Points! Multiple choice geometry question. Photo attached. Thank you! A very long conducting tube (hollow cylinder) has inner radius A and outer radius b. It carries charge per unit length +, where is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +. (a) Calculate the electric field in terms of and the distance r from the axis of the tube for (ii) a < r < b A company originally had 6,200 gallons of ice cream in their storage facility. The amount of ice cream in the company's storage facility decreased at a rate of 8% per week. Write a function, f(x), that models the number of gallons of ice cream left x weeks after the company first stocked their storage facility A uniform bar, of mass M, with seven evenly spaced holes is held by sliding the bar over a horizontal peg through one of the seven holes. The peg passes through hole C, and a cylinder hangs from a hook placed through hole B as shown above. The mass of the bar is equal to the mass of the cylinder, and the location of the center of mass of the bar is at the center of hole D. In this configuration, the bar-cylinder system remains motionless but is free to rotate around the peg in hole C. Frictional forces acting on the bar are negligible. In a clear, coherent paragraph-length response that may also contain equations, explain why the bar does not rotate in this configuration. Describe your most meaningful achievements and how they relate to your field of study and your future goals. accordinng to sander's chart of normal cinnsinant develpment, these are examples of early devoping sound FILL THE BLANK.a(n) _____ is a written institutional rule or plan of action that addresses a specific need and requires compliance within that institution.