Phase Change Enthalpy (Question 3)
Tucson uses natural gas to power TEP. If it takes 14,000 g of
water per 1 kWh (unit of electricity) in the steam power
generator, how much energy must be made to convert the
originally 45°C water into 400° C steam for the turbines?

Answers

Answer 1

The energy required to convert 14,000 g of water from 45°C to 400°C is 3.15 × 10⁸ J.

The energy required to convert water from one phase to another is called phase change enthalpy. In this question, we need to calculate the energy required to convert water from the liquid phase (45°C) to the gaseous phase (400°C) at a constant pressure.

Energy required to raise the temperature of 14,000 g of water from 45°C to 100°C:

Energy = 14,000 g × 4.18 J/g·°C × (100°C - 45°C)

Energy = 3.89 × 10⁶ J

Energy required to convert 14,000 g of water from 100°C to 400°C:

Energy = 14,000 g × 2.26 × 10⁶ J/kg

Energy = 3.16 × 10⁷ J

Total energy = 3.89 × 10⁶ J + 3.16 × 10⁷ J + 3.89 × 10⁶ J

Total energy = 3.15 × 10⁸ J

learn more about phase change enthalpy here:

https://brainly.com/question/8558817

#SPJ1


Related Questions

Tagamet Elixir is available 300 mg/5mL. Dose is 180 mg tid X 10 days. How many mL's should be dispensed

Answers

90 mL of Tagamet Elixir should be dispensed to complete the 10-day treatment with a dose of 180 mg tid.

To calculate the amount of Tagamet Elixir that should be dispensed, we need to use the following formula:
Amount to be dispensed = (dose per day) x (number of days) / (concentration)
First, let's calculate the total dose per day:

180 mg tid = 180 mg x 3 = 540 mg/day

Next, let's substitute the values into the formula:
Amount to be dispensed = (540 mg/day) x (10 days) / (300 mg/5mL)

Simplifying the equation:
Amount to be dispensed = (5400 mg) / (300 mg/5mL)

Amount to be dispensed = 90 mL
Therefore, 90 mL of Tagamet Elixir should be dispensed to complete the 10-day treatment with a dose of 180 mg tid.

Learn more about dose here:

https://brainly.com/question/28502558


#SPJ11

The net effect of the proton-proton chain is that four hydrogen nuclei are converted to one helium nucleus and _________ are released.

Answers

The net effect of the proton-proton chain, which is the primary fusion reaction that occurs in stars like our sun, is the conversion of four hydrogen nuclei into one helium nucleus. This process releases a large amount of energy in the form of gamma rays and neutrinos.

To be more specific, the proton-proton chain is a series of nuclear reactions that occur in the core of the star. It starts with two protons coming together to form a deuterium nucleus, which is a type of hydrogen with one proton and one neutron. This reaction releases a positron and a neutrino. The positron quickly collides with an electron and both particles annihilate each other, releasing more energy in the form of gamma rays.

The next step in the chain involves the deuterium nucleus combining with another proton to form a helium-3 nucleus. This reaction releases a gamma ray. Two helium-3 nuclei can then combine to form a helium-4 nucleus, which is stable and has two protons and two neutrons. This final step releases two protons and two neutrons, which can then go on to participate in more fusion reactions.

The net effect of the proton-proton chain is the conversion of four hydrogen nuclei into one helium nucleus and the release of a large amount of energy in the form of gamma rays and neutrinos. This energy is what powers the sun and other stars, allowing them to shine for billions of years.

To know more about proton-proton chain, refer

https://brainly.com/question/11736501

#SPJ11

A.) The value of Ka1 and Ka2 for carbonic acid are 4.20×10-7 and 4.80×10-11 , respectively.

(Use H3O+ instead of H+.)

Write the equation for the reaction that goes with Ka1:

Write the equation for the reaction that goes with Ka2:

B.) Write the equations that represent the first and second ionization steps for telluric acid(H2TeO4) in water.

(Use H3O+ instead of H+.)

First ionization step:

Second ionization step:

C.) Write the equations that represent the second and third ionization steps for arsenic acid(H3AsO4) in water.

(Use H3O+ instead of H+.)

second ionization step:

third ionization step:

Answers

Ionization refers to the process in which an atom or molecule loses or gains electrons, resulting in the formation of ions.

A) The equation for the reaction that goes with Ka1 for carbonic acid is: [tex]H_2CO_3 + H_2O <--> HCO_3^- + H_3O^+[/tex]
The equation for the reaction that goes with Ka2 for carbonic acid is: [tex]HCO_3^- + H_2O <--> CO_3^{2-} + H_3O^+[/tex]

B) The equations that represent the first and second ionization steps for telluric acid ([tex]H_2TeO_4[/tex]) in water are:
First ionization step:
[tex]H2TeO_4 + H_2O <--> H_3TeO_4^+ + OH^-[/tex]
Second ionization step:
[tex]H_3TeO_4^+ + H_2O <--> H_2TeO_4^{2+} + H_3O^+[/tex]

C) The equations that represent the second and third ionization steps for arsenic acid ([tex]H_3AsO_4[/tex]) in water are:
Second ionization step:
[tex]H_2AsO_4^- + H_2O <--> HAsO_4^{2-} + H_3O^+[/tex]
Third ionization step:
[tex]HAsO_4^{2-} + H_2O <--> AsO_4^{3-} + H_3O^+[/tex]
In these reactions, water acts as an acid or a base, donating or accepting protons (H+ ions) to form [tex]H_3O^+[/tex] ions. The Ka values represent the acid dissociation constant, which measures the strength of an acid in solution. The higher the Ka value, the stronger the acid.

To learn more about Ionization click here https://brainly.com/question/28385102

#SPJ11

The molecular shape of SiCl4 is Group of answer choices trigonal planar bent pyramidal linear tetrahedral

Answers

The answer to the question is tetrahedral. SiCl4 has a central silicon atom surrounded by four chlorine atoms, which leads to a tetrahedral shape due to the arrangement of electron pairs around the central atom.

The tetrahedral shape of SiCl4 is a result of the valence shell electron pair repulsion (VSEPR) theory. According to this theory, the electrons around the central atom will try to minimize their repulsion by arranging themselves as far apart from each other as possible. In the case of SiCl4, the central silicon atom has four bonding pairs of electrons (each shared with a chlorine atom) and no lone pairs of electrons. The arrangement of these bonding pairs leads to a tetrahedral shape.

Learn more about tetrahedral: https://brainly.com/question/18612295

#SPJ11

what chemical properties would be important to consider when choosing a material to make a safe baking dish

Answers

When selecting a material for a safe baking dish, consider its thermal stability, non-reactivity, inertness, resistance to corrosion, and food-grade safety. These chemical properties will help ensure that the baking dish is safe and durable for use in a cooking environment.

How to select a material to make safe baking dish?

When choosing a material to make a safe baking dish, it is important to consider the following chemical properties:

1. Thermal stability: The material should be able to withstand high temperatures without breaking down or releasing harmful substances.

2. Non-reactivity: The material should not react with the food or other substances in the oven, ensuring that the dish remains safe for use and does not affect the taste or quality of the food.

3. Inertness: The material should be inert, meaning it does not participate in any chemical reactions with the food or oven environment.

4. Resistance to corrosion: The material should resist corrosion from food acids, salts, and moisture present in the baking environment.

5. Food-grade safety: The material should be certified as food-grade, ensuring that it is safe for contact with food and does not pose any health risks.

To know more about Baking:

https://brainly.com/question/6765985

#SPJ11

What kind of attractige forces, including chemical bonds, would be present between the particles in-H20 (l)-CCl4 (l)-CH3OH (l)-BrCl (l)-NaCl (s)-Na2SO4 (s)Multiple answers allowed a) dipole-dipoleb) H-Bondingc) covalent bondingd) London forcese) ionic bonding

Answers

In liquid water (H2O), there are a number of attractive forces between the particles, including chemical bonds and intermolecular forces Covalent bonds Within each water molecule, there are Covalent  bond between the oxygen atom and the two hydrogen atoms.

These bonds result from the sharing of electrons between the atoms. Hydrogen bonds: Hydrogen bonds are the intermolecular forces that hold water molecules together. These bonds form between the positively charged hydrogen atoms of one molecule and the negatively charged oxygen atoms of neighboring molecules. The attraction between the partial positive charge on the hydrogen and the partial negative charge on the oxygen creates a relatively strong bond that gives water its unique properties. Van der Waals forces These are weak intermolecular forces that arise from temporary fluctuations in the electron density around atoms or molecules. Van der Waals forces contribute to the overall attraction between water molecules, although they are much weaker than hydrogen bonds. Dipole-dipole interactions: These are intermolecular forces that arise from the interaction between the partial charges on polar molecules. In water, the dipole-dipole interactions between neighboring water molecules contribute to the overall attractive forces between the particles. Overall, the combination of covalent bonds and intermolecular forces in water results in a complex network of attractive forces that give water its unique physical and chemical properties.

To know more about Van der Waals forces click here:

brainly.com/question/13201335

#SPJ11

A buffer solution is prepared by mixing 250 mL of 1.00 M nitrous acid with 50 mL of 1.00 M sodium hydroxide. Is the resulting solution a buffer solution

Answers

The resulting solution of buffer solution is prepared by mixing 250 mL of 1.00 M nitrous acid with 50 mL of 1.00 M sodium hydroxide is a buffer solution. Thus, the correct answer is "Yes, the resulting solution is a buffer solution".

The resulting solution is a buffer solution because it contains both a weak acid (nitrous acid) and its conjugate base (the nitrite ion formed from the reaction with sodium hydroxide). The addition of sodium hydroxide does not significantly change the pH of the solution due to the presence of the buffer system.

Learn more about buffer solution: https://brainly.com/question/24262133

#SPJ11

In an electrolytic cell, the cathode is where _____ A) anions are attracted to B) a graphite electrode is used C) oxidation occurs D) reduction occurs E) electrons are created

Answers

In an electrolytic cell, the cathode is where (D) reduction occurs.

Reduction is the gain of electrons, and the cathode is the electrode where electrons are supplied to the system. The cathode is connected to the negative terminal of the power supply and is thus negatively charged. When the positively charged cations in the electrolyte solution migrate towards the cathode, they gain electrons and are reduced.

The reduction reaction at the cathode is the half-reaction that consumes electrons, and it is the opposite reaction to the oxidation reaction that occurs at the anode.

Therefore, option D ("reduction occurs") is the correct answer. Option A is incorrect because anions are attracted to the anode, which is connected to the positive terminal of the power supply, and option E is incorrect because electrons are not created but rather supplied from the external power source. Option B is irrelevant to the function of the cathode in an electrolytic cell.

To know more about the electrolytic cell refer here :

https://brainly.com/question/861659#

#SPJ11

Set the temperature to 450 Kelvins (450 K) and select atomic hydrogen (A = 1) for gas type. What is the likeliest particle speed (in m/s) to be found in a sample of atomic hydrogen at 450 K?

Answers

The likeliest particle speed for atomic hydrogen at 450 K is approximately 1.97 x [tex]10^4[/tex]m/s.

f(v) = 4π(v² / (2πkT)³/2) * exp(-mv²/ 2kT)

f(v) = 4π(v²/ (2πk(450 K))³/2) * exp(-1.00794 * (v²)/ (2k(450 K)))

To find the likeliest particle speed, we need to find the peak of the probability density function. This occurs when the derivative of the function with respect to velocity is equal to zero. Solving for v, we get:

v = (2kT/m)1/2

Substituting the values, we get:

v = (2 * 1.38 x [tex]10^{-23[/tex]J/K * 450 K / 1.67 x [tex]10^{-27[/tex] kg)1/2

v = 1.97 x [tex]10^4[/tex] m/s

Hydrogen is a chemical element with the symbol H and atomic number 1. It is the lightest and most abundant element in the universe, making up about 75% of its elemental mass. In physics, hydrogen plays a crucial role in several areas of study.

In atomic physics, hydrogen is used as a model system to understand the behavior of other atoms. The hydrogen atom consists of a single proton in the nucleus and one electron orbiting it, making it the simplest atom to study. The properties of the electron in the hydrogen atom can be calculated using the principles of quantum mechanics, which has implications for our understanding of the behavior of other atoms and molecules.

To learn more about Hydrogen  visit here:

brainly.com/question/30886690

#SPJ4

The lead-containing reactant(s) consumed during recharging of a lead-acid battery is/are ________. PbSO4 (s) only PbO2 (s) only Pb (s) only both Pb O2 (s) and PbSO4 (s) both Pb (s) and PbO2 (s)

Answers

The lead-containing reactant(s) consumed during recharging of a lead-acid battery are both Pb (s) and PbO₂ (s). During recharging of a lead-acid battery, the lead-containing reactant consumed is PbSO₄ (lead sulfate) that was formed on the negative electrode during discharge.

A lead-acid battery consists of two electrodes: a negative electrode made of lead and a positive electrode made of lead dioxide. These electrodes are immersed in an electrolyte solution of dilute sulfuric acid (H₂SO₄). During discharge, the battery converts the chemical energy stored in the electrodes and electrolyte into electrical energy.

During discharge, the negative electrode undergoes the following reaction:

Pb(s) + HSO₄⁻(aq) → PbSO₄(s) + H⁺(aq) + 2e⁻

The lead metal (Pb) reacts with sulfate ions (HSO₄⁻) in the electrolyte to form lead sulfate (PbSO₄) and releases hydrogen ions (H⁺) and electrons (e⁻).

At the same time, the positive electrode undergoes the following reaction:

PbO₂(s) + HSO₄⁻(aq) + 3H⁺(aq) + 2e⁻ → PbSO₄(s) + 2H₂O(l)

Lead dioxide (PbO₂) reacts with sulfate ions (HSO₄⁻), hydrogen ions (H⁺), and electrons (e⁻) to form lead sulfate (PbSO₄) and water (H₂O).

As a result of these reactions, both electrodes are converted to lead sulfate (PbSO₄), and the battery becomes discharged.

During recharging of a lead-acid battery, an external electric current is passed through the battery in the opposite direction to the discharge current. This process converts the lead sulfate back into lead (Pb) and lead dioxide (PbO₂) on the negative and positive electrodes, respectively. The reactions are reversed as follows:

Negative electrode (Pb):

PbSO₄(s) + 2e⁻ → Pb(s) + SO4²⁻(aq)

Positive electrode (PbO₂):

PbSO₄(s) + 2H₂O(l) → PbO₂(s) + HSO₄⁻(aq) + 3H⁺(aq) + 2e⁻

As a result of these reactions, the lead sulfate on both electrodes is consumed, and the electrodes are converted back to their original forms of lead and lead dioxide. Therefore, the correct answer is "both Pb (s) and PbO₂ (s)".

To know more about the lead-acid battery refer here :

https://brainly.com/question/11646521#

#SPJ11

g Pairs of amino acids are connected together by____________. A. an ether linkage B. a peptide linkage C. an ester linkage D. an amide linkage both B and D

Answers

Pairs of amino acids are connected together by B. a. peptide linkage and D. an amide linkage

Peptide linkages, also known as peptide bonds, are formed through a dehydration reaction, in which a molecule of water is released as the carboxyl group of one amino acid reacts with the amino group of another. This results in a covalent bond between the two amino acids, creating a dipeptide.

Amide linkages refer to the same bond formed between amino acids, as the peptide bond is a type of amide bond. Both terms, peptide linkage and amide linkage, describe the same chemical bond that holds amino acids together in proteins, allowing them to perform a wide range of functions within living organisms. So Pairs of amino acids are connected together by B. a. peptide linkage and D. an amide linkage

To learn more about amide linkage here

https://brainly.com/question/17481492

#SPJ11

If the concentration of tin(II) chloride is doubled, how much will the initial rate of the reaction change relative to the original initial rate of reaction

Answers

If the concentration of tin(II) chloride is doubled, four times will the initial rate of the reaction change relative to the original initial rate of reaction.

The initial rate of a reaction is directly proportional to the concentration of the reactants raised to their respective stoichiometric coefficients in the balanced chemical equation. For the reaction:

SnCl₂(aq) + 2HCl(aq) → SnCl₄(aq) + H₂(g)

the rate law can be written as:

Rate = k[SnCl2][HCl]²

where k is the rate constant.

If the concentration of SnCl₂ is doubled, the new rate can be calculated as:

New rate = k[2[SnCl₂]][HCl]² = 4k[SnCl₂][HCl]²

Therefore, the new rate is four times the original rate. In other words, if the concentration of SnCl₂ is doubled, the initial rate of the reaction will increase by a factor of four relative to the original initial rate of reaction.

To know more about the tin(II) chloride refer here :

https://brainly.com/question/13799747#

#SPJ11

The equivalence point on a weak base/ strong acid titration curves occurs at a pH: a) greater than 7 b) equal to 7 c) less than 7

Answers

The equivalence point on a weak base/ strong acid titration curves occurs at a pH c) less than 7

The equivalence point on a weak base/strong acid titration curve occurs when the number of moles of the strong acid added is equal to the number of moles of the weak base in the solution. At the equivalence point, all the weak base has been converted to its conjugate acid. The pH at the equivalence point depends on the strength of the weak base and the strong acid used.

In general, weak bases have a pH greater than 7 because they produce solutions with lower concentrations of H+ ions. When a strong acid is added to a weak base, the pH decreases as the solution becomes more acidic. However, at the equivalence point, all the weak base has been converted to its conjugate acid, which is acidic. Therefore, the pH at the equivalence point for a weak base/strong acid titration is less than 7.

So the answer is (c) less than 7.

Learn more about number of moles

https://brainly.com/question/31039725

#SPJ4

A thin film of acetone (n = 1.25) coats a thick glass plate (n = 1.50). White light is incident normal to the film. In the reflections, fully destructive interference occurs at 530 nm and fully constructive interference at 583 nm. Calculate the thickness of the acetone film.

Answers

The thickness of the acetone film is approximately 79.5 nm.

When light waves reflect off a thin film, interference can occur between the waves that reflect from the top and bottom of the film. This interference depends on the thickness of the film, the indices of refraction of the film and the surrounding media, and the wavelength of the light.

Let the thickness of the acetone film be denoted by t, and let the wavelength of the light be denoted by λ. The phase shift between the waves that reflect from the top and bottom of the film is given by:

Δφ = 2πnt/λ

where n is the index of refraction of the acetone film. For fully destructive interference, the phase shift must be an odd multiple of π:

Δφ = (2n + 1)π

Substituting the given values for n and λ at 530 nm, we have:

(2.5) (530 x [tex]10^{-9[/tex]  m) = (2t)

Simplifying this equation, we get:

t = 265 nm

Similarly, for fully constructive interference at 583 nm, we have:

(2.5) (583 x  [tex]10^{-9[/tex] m) = (2t) + λ/2

Substituting the value of t from the previous calculation, we can solve for λ/2 and then for t:

λ/2 = (2.5) (583 x [tex]10^{-9[/tex] m) - (2t) = 159 x  [tex]10^{-9[/tex] m

t = (159 x  [tex]10^{-9[/tex]  m)/2 = 79.5 nm

Learn more about acetone film visit: brainly.com/question/10179927

#SPJ4

which document along with the initial capabilities document guys the material solution analysis and Technology integration and risk-reduction phases

Answers

The document along with the initial capabilities document is Materiel Solution Analysis phase, Technology Maturation and Risk Reduction, the Engineering and Manufacturing, Production and Deployment, and finally Operations.

In order to close a particular capability gap, the Initial Capabilities Document (ICD) outlines the requirement for a material strategy or an approach that combines materiel and non-materiel.  An operational user's first examination of material methods and, if necessary, a separate analysis of material alternatives are used to determine a capability gap.

It outlines the capacity gap with respect to the functional domain, the applicable military operations' scope, intended outcomes, and time. The Doctrine, Organisation, Training, Materiel, Leadership, and Education, Personnel, and Facilities (DOTMLPF) study is summarised in the ICD, which also explains why it was determined that non-material improvements alone were insufficient to completely provide the capacity.  A Materiel Development Decision (MDD) entry requirement is a verified ICD.

Learn more about Initial capabilities document:

https://brainly.com/question/14316604

#SPJ4

. calculate the number average molar mass for the sample of poly(ethylene oxide) given that each molecule has two hydroxyl end groups.

Answers

In order to calculate the number average molar mass of poly(ethylene oxide), we need to know the degree of polymerization, which is the number of repeating units in the polymer chain.

Let's assume that the average degree of polymerization for poly(ethylene oxide) is n. Since each molecule has two hydroxyl end groups, we can write n = (total number of monomer units) / 2 The molecular weight of each monomer unit of ethylene oxide is 44.05 g/mol. Therefore, the molecular weight of the repeating unit in poly(ethylene oxide) is 44.05 g/mol. The number average molar mass is given by the formula Mn = (total mass of polymer) / (total number of polymer chains) Let's assume that we have a mass of 1 g of poly(ethylene oxide). The number of polymer chains is given by (total mass of polymer) / (average molecular weight of polymer) The average molecular weight of poly(ethylene oxide) is 44.05 x n Therefore,  the number of polymer chains is 1 g / (44.05 x n) g/mol = 0.0227 n The total mass of the polymer is 1 g, and each polymer chain has a mass of 44.05 x n g/mol Therefore, the number average molar mass is Mn = (1 g) / (0.0227 n) = 44.0 n So, if the degree of polymerization is, for example, 100, the number average molar mass would be, Mn = 44.0 x 100 = 4400 g/mol

To know more about degree of polymerization click here:

brainly.com/question/15874145

#SPJ11

the rate constant for a certain reaction is 5.10x10-3 s-1. If the initial reactant concentration was 0.550 M, what will the concentratoin be after 12 min

Answers

If the initial reactant concentration was 0.550 M, the concentration of the reactant after 12 minutes will be approximately 0.0139 M.

To calculate the concentration after 12 minutes for a first-order reaction with a given rate constant and initial reactant concentration, we can use the first-order integrated rate law equation:
Ct = C0 * e^(-kt)
where Ct is the concentration at time t, C0 is the initial reactant concentration, k is the rate constant, and t is the time in seconds.
Given:
- Rate constant (k) = 5.10 x 10^-3 s^-1
- Initial reactant concentration (C0) = 0.550 M
- Time (t) = 12 min = 12 * 60 = 720 s
Now, plug these values into the equation:
Ct = 0.550 M * e^(-5.10 x 10^-3 s^-1 * 720 s)
Ct = 0.550 M * e^(-3.672)
Ct ≈ 0.550 M * 0.0253
Ct ≈ 0.0139 M

So, the concentration of the reactant after 12 minutes will be approximately 0.0139 M.

Learn more about rate constant : https://brainly.com/question/26127112

#SPJ11

Potassium will react with white phosphorus (P4) at high temperatures to yield potassium phosphide, and no other products. How many molecules of P4 will react completely with 600 atoms of potassium

Answers

300 molecules of P4 will react completely with 600 atoms of potassium.

The balanced chemical equation for the reaction between potassium and white phosphorus is:

4K + P4 → 4KP

From the equation, we can see that 4 moles of potassium (which is equivalent to 4 x 6.022 x 10^23 atoms of potassium) react with 1 mole of P4 (which is equivalent to 6.022 x 10^23 molecules of P4) to produce 4 moles of KP.

So, for 600 atoms of potassium, we have:

600 atoms K x (1 mol K/6.022 x 10^23 atoms K) = 0.00995 mol K

To find out how many molecules of P4 will react completely with 0.00995 mol of K, we can use the mole ratio from the balanced equation:

1 mol P4 / 4 mol K = x mol P4 / 0.00995 mol K

x mol P4 = 0.0024875 mol P4

Finally, we can convert from moles to molecules of P4:

0.0024875 mol P4 x (6.022 x 10^23 molecules P4/mol) = 1.498 x 10^21 molecules P4

Know more about potassium here:

https://brainly.com/question/13321031

#SPJ11

A race car is driven by a professional driver at 99
miles
hour
. What is this speed in
kilometers
hour
and
kilometers
minute
?

Answers

The speed of the race car in kilometers per minute is approximately 2.66 km/min.

To convert miles per hour to kilometers per hour, we can use the conversion factor;

1 mile = 1.61 kilometers

So, multiplying both sides by 1.61 gives;

1 mile/hour = 1.61 kilometers/hour

Therefore, we can convert 99 miles/hour to kilometers/hour as follows:

99 miles/hour × 1.61 kilometers/mile = 159.39 kilometers/hour

So, the speed of the race car in kilometers per hour is 159.39 km/h.

To convert kilometers per hour to kilometers per minute, we can use the fact that there are 60 minutes in an hour. So;

159.39 kilometers/hour ÷ 60 minutes/hour

= 2.66 kilometers/minute

Therefore, the speed of the car is 2.66 km/min.

To know more about speed here

https://brainly.com/question/17661499

#SPJ1

what is the ph of 0.41 m acetic acid to 1.00 l of which 1.17 g of sodium acetate, , has been added? ( for acetic acid is .) ph =

Answers

To calculate the pH of a solution containing acetic acid and sodium acetate, we need to use the Henderson-Hasselbalch equation pH = pKa + log([A-]/[HA])

where pKa is the dissociation constant of acetic acid, [A-] is the concentration of the acetate ion, and [HA] is the concentration of undissociated acetic acid. The pKa of acetic acid is 4.76.First, we need to calculate the concentrations of [A-] and [HA]. We can use the dissociation reaction of acetic acid to do this CH3COOH + Na+ → CH3COO- + NaH From the balanced equation, we know that 1 mole of sodium acetate reacts with 1 mole of acetic acid to produce 1 mole of acetate ion and 1 mole of undissociated acetic acid. Therefore, the concentration of [A-] is equal to the molarity of the sodium acetate solution, which is [A-] = 1.17 g / (82.03 g/mol x 1 L) = 0.0143 M The concentration of [HA] can be calculated by subtracting [A-] from the initial molarity of the acetic acid solution, which is [HA] = 0.41 M - 0.0143 M = 0.3957 M Now we can plug these values into the Henderson-Hasselbalch equation,pH = 4.76 + log(0.0143/0.3957) = 4.76 - 1.30 = 3.46 Therefore, the pH of the solution is 3.46.

To know more about Henderson-Hasselbalch equation click here:

brainly.com/question/13423434

#SPJ11


A gas mixture contains Ne at a partial pressure of 326 mm Hg and N2 gas at 0.650 atm. What is the total pressure of the gas mixture

Answers

The mixture consists of Ne gas with a partial pressure of 326 mm Hg and N₂ gas with a partial pressure of 0.650 atm.

To find the total pressure of the gas mixture, we need to add the partial pressures of the two gases:

Partial pressure of Ne = 326 mm Hg

Partial pressure of N₂ = 0.650 atm

Total pressure = partial pressure of Ne + partial pressure of N₂

Total pressure = (326 mm Hg / 760 mm Hg/atm) + 0.650 atm

Total pressure = 0.429 atm + 0.650 atm

Total pressure = 1.08 atm

Therefore, the total pressure of the gas mixture is 1.08 atm.

To know more about the total pressure refer here :

https://brainly.com/question/2405466#

#SPJ11

Which cofactor would most likely carry the e⁻ necessary for a reaction which converts acetaldehyde to ethanol?1.coenzyme A2.NADPH3.NADH4.FADH₂

Answers

The cofactor that would most likely carry the electrons necessary for a reaction converting acetaldehyde to ethanol is 3. NADH. This is because NADH is involved in various redox reactions and serves as an electron carrier, providing the necessary electrons for the reduction of acetaldehyde to ethanol.

A cofactor is a non-protein chemical compound that is required for the activity of certain enzymes. Enzymes are proteins that catalyze chemical reactions, and some of them require the presence of a cofactor to function properly.

Cofactors can be divided into two main types: inorganic cofactors and organic cofactors, also known as coenzymes. Inorganic cofactors include metal ions such as iron, copper, and zinc, which are involved in redox reactions and electron transfer processes. Organic cofactors are usually derived from vitamins and are often involved in reactions that transfer chemical groups between molecules, such as acetyl, methyl, and phosphate groups.

To learn more about Cofactor Here:

https://brainly.com/question/13004767

#SPJ11

If the combustion of 59.10 g of C4H10 produces 99.71 g of CO2. What is the percent yield of the reaction

Answers

The percent yield of the combustion reaction of C4H10 is 61.9%, indicating that 61.9% of the theoretical yield of CO2 was obtained. The actual yield of CO2 was 99.71 g, while the theoretical yield was calculated to be 161.1 g.

To calculate the percent yield of the reaction, we need to compare the actual yield (99.71 g CO2) to the theoretical yield, which is the amount of CO2 that would be produced if all of the C4H10 reacted completely.
First, we need to balance the chemical equation for the combustion of C4H10:
C4H10 + 13/2 O2 → 4 CO2 + 5 H2O
From this equation, we can see that 4 moles of CO2 are produced for every 1 mole of C4H10 that reacts.
Next, we need to calculate the theoretical yield of CO2 based on the amount of C4H10 that was burned:
59.10 g C4H10 * (1 mol C4H10/58.12 g C4H10) * (4 mol CO2/1 mol C4H10) * (44.01 g CO2/1 mol CO2) = 161.1 g CO2
So the theoretical yield of CO2 is 161.1 g.
Now we can calculate the percent yield:
Percent yield = (actual yield/theoretical yield) x 100%
Percent yield = (99.71 g/161.1 g) x 100% = 61.9%
Therefore, the percent yield of the reaction is 61.9%.

Learn more about reaction: https://brainly.com/question/28984750

#SPJ11

what type of reaction is this?
NaOH + H2SO4 -> H2O + Na2SO4 ​

Answers

The reaction between NaOH (sodium hydroxide) and H₂SO₄ (sulfuric acid) is a double displacement or acid-base neutralization reaction.

How to determine type of reaction?

In this reaction, the sodium hydroxide (NaOH) acts as a base and the sulfuric acid (H₂SO₄) acts as an acid. The hydroxide ion (OH⁻) from the sodium hydroxide reacts with the hydrogen ion (H⁺) from the sulfuric acid to form water (H²O), which is a neutral molecule. The remaining ions, sodium (Na+) and sulfate (SO₄²⁻), combine to form sodium sulfate (Na₂SO₄), which is a salt.

The balanced chemical equation for the reaction is:

2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O

Overall, this reaction results in the formation of a salt and water, and the acid and base cancel each other out.

Find out more on type of reaction here: https://brainly.com/question/30322663

#SPJ1

A doctor adds 4 mL of water to 6 g of a powdered aspirin. The final volume of the solution is 5 mL. What is the mass-volume percentage of the solution

Answers

The mass-volume percentage of the solution is 60%.

Since the doctor added 4 mL of water to the aspirin powder, the total volume of the solution is now 4 mL + 6 mL = 10 mL.

To calculate the mass of the aspirin in the solution, we need to use the concentration formula: mass of solute (aspirin) / volume of solution = concentration

Rearranging the formula, we get: mass of solute = concentration x volume of solution, We can use the mass and volume information to calculate the concentration: concentration = mass of solute / volume of solution = 6 g / 10 mL = 0.6 g/mL

Now we can calculate the mass-volume percentage: mass-volume percentage = (mass of solute / volume of solution) x 100% = 0.6 g/mL x 100% = 60%

To know more about mass-volume here

https://brainly.com/question/28853889

#SPJ1

In what way can isotopes of carbon (specifically C12 and C13) be used to discover the presence of past biological activity in ancient rocks

Answers

Isotopes of carbon, specifically C₁₂ and C₁₃, can be used to discover the presence of past biological activity in ancient rocks through a process called carbon isotope analysis. Carbon is an important element in biological processes and carbon atoms have different isotopes, such as C₁₂ and C₁₃,, which differ in the number of neutrons in their nuclei.

During photosynthesis, plants preferentially take up the lighter isotope, C₁₂ , over the heavier isotope, C₁₃,. This results in a characteristic ratio of C₁₂ to C₁₃, in organic matter that is produced by photosynthesis. When organisms die and their organic matter is buried and preserved in sedimentary rocks, the ratio of C₁₂ to C₁₃, can be used to infer the presence of past biological activity.

By analyzing the isotopic ratios of carbon in ancient rocks, scientists can determine whether the rocks contain organic matter produced by biological processes. This information can be used to study the evolution of life on Earth and to understand the past environments in which life existed.

Learn more about Isotopes

https://brainly.com/question/21536220

#SPJ4

Initially, only H2S is present at a pressure of 0.229 atm in a closed container. What is the total pressure in the container at equilibrium

Answers

The total pressure in the closed container at equilibrium is approximately equal to the initial pressure of H₂S, which is 0.229 atm. To answer your question, we first need to understand the concept of equilibrium in a closed container, as well as the properties of hydrogen sulfide (H₂S) gas.

Equilibrium refers to the state in a chemical reaction when the rate of the forward reaction equals the rate of the reverse reaction. This means that the concentrations of reactants and products remain constant over time, although the reaction is still occurring at a molecular level. In a closed container, the total pressure remains constant throughout the system.

Hydrogen sulfide (H₂S) is a polar, toxic gas that can exist in equilibrium with its dissociated components, hydrogen (H₂) and sulfur (S). However, the dissociation of H₂S is negligible at typical temperatures and pressures, so we can assume that the majority of the molecules remain as H₂S in the closed container.

Since the initial pressure of H₂S in the closed container is 0.229 atm, and no other gases are mentioned, we can assume that the total pressure in the container at equilibrium remains the same as the initial pressure. The reason for this is that the dissociation of H₂S into its components is negligible, and even if it occurs, the pressure contribution by the dissociation will be very small.

Thus, the total pressure in the closed container at equilibrium is approximately equal to the initial pressure of H₂S, which is 0.229 atm.

Learn more about Equilibrium here:

https://brainly.com/question/30807709

#SPJ11

A current of 3.80 A is passed through a Pb(NO3)2 solution. How long, in hours, would this current have to be applied to plate out 5.70 g of lead

Answers

A current of 3.80 A would need to be applied for 0.24 hours to plate out 5.70 g of lead from a [tex]Pb(NO_3)_2[/tex] solution.

Q = I × t

moles Pb = (5.70 g)/(331.2 g/mol) = 0.0172 mol

Q = 2 × F × moles Pb

Q = 2 × 96,485 C/mol e- × 0.0172 mol = 3,320 C

t = Q/I = 3,320 C / 3.80 A = 874 seconds

Finally, we convert the time to hours:

t = 874 s / (60 s/min × 60 min/h) = 0.24 hours

A solution typically refers to a homogeneous mixture of two or more substances that are uniformly dispersed throughout each other. The substance that is present in the largest quantity is known as the solvent, while the other substances present in smaller quantities are known as solutes.

Solutions play a crucial role in many areas of physics, including chemistry, material science, and engineering. They can be used to study the properties and behavior of substances, as well as to design and develop new materials with specific properties. The behavior of solutions is governed by several physical laws and principles, including thermodynamics, kinetics, and colloidal chemistry. These laws help us understand phenomena such as osmosis, diffusion, and solubility.

To learn more about Solution visit here:

brainly.com/question/1416865

#SPJ4

What mass of water will be produced when water is formed in the reaction between 15.00 grams of oxygen gas and 20.00 grams of hydrogen gas if the reaction only has a 78.67% yield

Answers

The mass of water produced in the reaction between 15.00 grams of oxygen gas and 20.00 grams of hydrogen gas with a 78.67% yield is 22.82 grams.

1. First, we need to find the limiting reactant. The balanced equation for the formation of water is:

[tex]2H_{2} (g) + O_{2} (g) = 2 H_{2} O(l)[/tex]

2. Calculate the moles of each reactant:

  - Moles of hydrogen: 20.00 g / (2.02 g/mol) = 9.90 mol

  - Moles of oxygen: 15.00 g / (32.00 g/mol) = 0.469 mol

3. Determine the limiting reactant:

  - Moles of hydrogen required for 1 mole of oxygen: 0.469 mol * 2 = 0.938 mol

  - Since 9.90 mol > 0.938 mol, oxygen is the limiting reactant.

4. Calculate the theoretical yield of water:

  - Moles of water produced: 0.469 mol * 2 = 0.938 mol

  - Mass of water produced: 0.938 mol * (18.02 g/mol) = 16.90 g

5. Calculate the actual yield:

  - Actual yield = Theoretical yield * Percentage yield

  - Actual yield = 16.90 g * 0.7867 = 13.30 g

The mass of water produced when water is formed in the reaction between 15.00 grams of oxygen gas and 20.00 grams of hydrogen gas with a 78.67% yield is 13.30 grams.

For more information on percentage yield kindly visit to

https://brainly.com/question/29208033

#SPJ11

A 295-mL flask contains pure helium at a pressure of 757 torr. A second flask with a volume of 465 mL contains pure argon at a pressure of 712 torr. You Part A: If we connect the two flasks through a stopcock and we open the stopcock, what is the partial pressure of helium? Express the partial pressure in torr to three significant figures. Part B: If we connect the two flasks through a stopcock and we open the stopcock, what is the partial pressure of argon? Express the partial pressure in torr to three significant figures. Part C: If we connect the two flasks through a stopcock and we open the stopcock, what is the total pressure? Express the total pressure in torr to three significant figures.

Answers

If we connect the two flasks through a stopcock and we open the stopcock, the partial pressure of helium is 760mL, the partial pressure of argon is 712mL and the total pressure is 1469mL.

Part A: When the two flasks are connected, the total volume becomes 295 mL + 465 mL = 760 mL. Since the first flask contains pure helium at a pressure of 757 torr, the partial pressure of helium after the stopcock is opened is still 757 torr.
Part B: Similarly, the total volume is 760 mL and the second flask contains pure argon at a pressure of 712 torr. Therefore, the partial pressure of argon after the stopcock is opened is still 712 torr.
Part C: The total pressure is the sum of the partial pressures of helium and argon, which is 757 torr + 712 torr = 1469 torr. Therefore, the total pressure after the stopcock is opened is 1469 torr.

To learn more about volume click here https://brainly.com/question/25252629

#SPJ11

Other Questions
Sometimes a product needs to be downgraded because it does not meet its specification. The downgrading costs would most likely be classified as Your heart gets its very own muscle tissue type -- [_______________] muscle, looks striped, or striated, and functions involuntarily to keep your blood pumping What are the polar coordinates of the point A shown below?A point plotted on a polar coordinate plane.Select the correct answer below:(2,34)(1,4)(1,74)(2,4)(2,4)(1,34) The capital allocation line provided by one-month T-bills and a broad index of common stocks is called the How does the last sentence of Passage 2 contribute to the development of the plot?a. It shows that Soorpanaka is not finished trying to destroy Sita.b. It helps the reader understand that Lakshman is a better protector than Rama.c. It helps the reader understand that Lakshman kept Sita safe.d. It shows that Lakshman solved the problem Soorpanaka caused. Wolves and coyotes are very closely related and live in many of the same areas, but they feed mostly on differently prey. What best explains why this happens If the annual sales are 20,000 units per store, determine whether the direct shipping network or milk runs of 2 stores per truck or milk runs of 4 stores per truck are optimal. If the annual sales were 10,000 units per store; what would be your optimal solution _____ are a group of separate but integrated human resource (HR) practices that aim to increase employee efficiency and organizational productivity. McDonald's restaurants are involved in a long-term, worldwide movement to change consumers' perceptions of its products by selling food that is healthier. McDonald's is engaged in: Describe three different climate factors that can create a desert climate. Explain the process by which each factor produces an arid climate. Finally identify three different deserts that have each been created because of one of these factors (one desert for each climate factor). What water issues would these locations have and how would one get water at these location People sometimes confuse schizophrenia with dissociative identity disorder (DID). Explain a significant characteristic that differentiates DID from schizophrenia. A client scheduled for an exploratory laparoscopy has been prescribed an anticholinergic agent. Why is it important to administer the anticholinergic agent in the preoperative phase g assume that the government is currently balancing the national budget so that outlays equal tax revenues. then the economy starts to expand, and the government decides to decrease govenrment spending by $50 billion. as a result, the federal budget will A company that manufactures laptops estimates that 0.7% of their laptops will fail after the original warranty period but within 2 years of the purchase, with a replacement cost of $500. If they offer a 2 year extended warranty for $154, what is the company's expected value of each warranty sold Ford uses a(n) ________, whereby the company licenses dealers in North America to sell Ford automobiles subject to various sales and service conditions. Imagine the kernel sends a SIGINT to a suspended process C, which adds SIGINT into its signal mask. At the same time, both process A and process B send the signal SIGUSR1 to C. How many signal(s) does C receive (without blocking) when resuming execution During fall 2010, the US national saving rate has steadily climbed to near 10%, thus the MPC for the nation should be ____. According to the simple Keynesian model the value of the expenditure multiplier should be ____, assuming we ignore the impacts from automatic stabilizers A 0.148 M solution of a monoprotic acid has a percent ionization of 1.55%. Determine the acid ionization constant (Ka) for the acid. The debris method involves examination of a scene for multiple items such as: (Select all that apply, no partial credit) An unknown compound has a density in the gas phase of 1.14 g/L at 125 0C and 175 Torr pressure. What is the molar mass of this compound