one and sixty three hundreths in decimal form.

Answers

Answer 1

Answer:

1.63

Step-by-step explanation:

Answer 2

Answer:

1.63

Step-by-step explanation:

One And Sixty Three Hundreths In Decimal Form.

Related Questions

Devon’s tennis coach says that 72% of Devon’s serves are good serves. Devon thinks he has a higher proportion of good serves. To test this, 50 of his serves are randomly selected and 42 of them are good. To determine if these data provide convincing evidence that the proportion of Devon’s serves that are good is greater than 72%, 100 trials of a simulation are conducted. Devon’s hypotheses are: H0: p = 72% and Ha: p > 72%, where p = the true proportion of Devon’s serves that are good. Based on the results of the simulation, the estimated P-value is 0. 6. Using Alpha= 0. 05, what conclusion should Devon reach?




Because the P-value of 0. 06 > Alpha, Devon should reject Ha. There is convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should reject Ha. There is not convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should fail to reject H0. There is convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should fail to reject H0. There is not convincing evidence that the proportion of serves that are good is more than 72%

Answers

no lo sé Rick parece falso porfa

How do I set up this problem?

Nancy can paint a fence in 3 hours. It takes Ben 4 hours to do the same job. If they were to work together to paint a fence, approximately how many hours should it take?

Answers

If they work together, they would  work for 1 hour and 43 minutes

What do we do?

We know that the key step that we would have to take here is to convert the sentence that have been given to us to equations and that is how we can be able to obtain the parameters that we are looking for in the problem here.

As such;

Let x = time (hours) it takes for both

then;

x(1/3 + 1/4) = 1

If both of the sides can be multiplied by 12.

x(4 + 3) = 12

x(7) = 12

x = 12/7

x = 1.71 hours or 1 hour and 43 minutes

Learn more about equation:https://brainly.com/question/29657983

#SPJ1

If x i , i = 1, 2, 3, are independent exponential random variables with rates λi , i = 1, 2, 3, find (a) p{x1 < x2 < x3}, (b) p{x1 < x2| max(x1, x2, x3) = x3}, (c) e[maxxi|x1

Answers

If x i , i = 1, 2, 3, are independent exponential random variables with rates λi , i = 1, 2, 3, then

(a) P{x1 < x2 < x3} = P{x2 > x1} * P{x3 > x2} = (λ1 / (λ1 + λ2)) * (λ2 / (λ2 + λ3)) = λ1 / (λ1 + λ2) * λ2 / (λ2 + λ3)

(b) P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2} / e^(-(λ1+λ2)x3)

(c) E[max(xi) | x1 = a] = a + 1 / (λ1 + λ2 + λ3)

(a) To find the probability that x1 < x2 < x3, we can use the fact that the minimum of the three exponential random variables follows an exponential distribution with rate λ1 + λ2 + λ3. Therefore, we have:

P{x1 < x2 < x3} = P{x2 > x1} * P{x3 > x2} = (λ1 / (λ1 + λ2)) * (λ2 / (λ2 + λ3)) = λ1 / (λ1 + λ2) * λ2 / (λ2 + λ3)

(b) To find the probability that x1 < x2 given that max(x1, x2, x3) = x3, we can use Bayes' rule. We have:

P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2, x3 = max(x1, x2, x3)} / P{max(x1, x2, x3) = x3}

Since x3 is the maximum of the three variables, we have:

P{max(x1, x2, x3) = x3} = P{x1 ≤ x3} * P{x2 ≤ x3} = e^(-λ1x3) * e^(-λ2x3) = e^(-(λ1+λ2)x3)

Then, we can write:

P{x1 < x2, x3 = max(x1, x2, x3)} = P{x1 < x2, x3 = x3} = P{x1 < x2}

Therefore,

P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2} / e^(-(λ1+λ2)x3)

(c) To find the expected value of the maximum xi, given that x1 = a, we can use the fact that the maximum of the exponential random variables follows an Erlang distribution with shape parameter k=3 and rate parameter λ1 + λ2 + λ3. Therefore, we have:

E[max(xi) | x1 = a] = a + 1 / (λ1 + λ2 + λ3)

This is because the Erlang distribution has a mean of k/λ, and in this case k=3 and λ=λ1+λ2+λ3. So, the expected value of the maximum is a plus one over the sum of the rates.

To know more about probability, refer to the link below:

https://brainly.com/question/31476167#

#SPJ11

Mad Hatter Publishing specializes in genre fiction for young adults. Recently, several employees have left the company due to a salary dispute. What change to the graph would reflect this change? Production shifts from Q to R. Production shifts from V to T. The curve shifts left and inward. The curve shifts right and outward.

Answers

Mad Hatter Publishing is a publishing company that mainly focuses on genre fiction for young adults. Due to the salary disputes that the company has recently faced, several employees have left the company.

What change to the graph would reflect this change?The curve shifts left and inward. This is the answer that would reflect the change in the graph due to the salary disputes and employee exits from the company.Salary disputes are known to be the cause of employee exits in a company. This happens when employees are not satisfied with their salary levels and demand an increase.

When their demands are not met, they tend to leave the company for other opportunities. In this case, the same thing happened at Mad Hatter Publishing.This change in the employee base would be reflected in the demand and supply curve of the company.

To know more about Salary visit:

https://brainly.com/question/29105365

#SPJ11

Exercise 7.28. Let X1, X2, X3 be independent Exp(4) distributed random vari ables. Find the probability that P(XI < X2 < X3).

Answers

The probability that P(X1 < X2 < X3) is 1/8.

We can solve this problem using the fact that if X1, X2, X3 are independent exponential random variables with the same rate parameter λ, then the joint density function of the three variables is given by:

f(x1, x2, x3) = λ^3 e^(-λ(x1+x2+x3))

We want to find the probability that X1 < X2 < X3. We can express this event as the intersection of the following three events:

A: X1 < X2

B: X2 < X3

C: X1 < X3

Using the joint density function above, we can compute the probability of each of these events using integration. For example, the probability of A is:

P(X1 < X2) = ∫∫ f(x1, x2, x3) dx1 dx2 dx3

= ∫∫ λ^3 e^(-λ(x1+x2+x3)) dx1 dx2 dx3 (integration over the region where x1 < x2)

= ∫ 0^∞ ∫ x1^∞ λ^3 e^(-λ(x1+x2+x3)) dx2 dx3 dx1

= ∫ 0^∞ λ^2 e^(-2λx1) dx1 (integration by substitution)

= 1/2

Similarly, we can compute the probability of B and C as:

P(X2 < X3) = 1/2

P(X1 < X3) = 1/2

Note that these probabilities are equal because the three exponential random variables are identically distributed.

Now, to compute the probability of the intersection of these events, we can use the multiplication rule:

P(X1 < X2 < X3) = P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A∩B)

Since A, B, and C are independent, we have:

P(B|A) = P(B) = 1/2

P(C|A∩B) = P(C) = 1/2

Therefore:

P(X1 < X2 < X3) = (1/2)(1/2)(1/2) = 1/8

Thus, the probability that X1 < X2 < X3 is 1/8.

To learn more about Probability

https://brainly.com/question/24870672

#SPJ11

Find the domain of the function p(x)=square root 17/x+5

Answers

the domain of the function p(x) = √(17/(x + 5)) is all real numbers except x = -5.

In interval notation, the domain is (-∞, -5) U (-5, ∞).

To find the domain of the function p(x) = √(17/(x + 5)), we need to consider the values of x that make the expression inside the square root valid.

In this case, the expression inside the square root is 17/(x + 5). For the square root to be defined, the denominator (x + 5) cannot be zero because division by zero is undefined.

Therefore, we need to find the values of x that make the denominator zero and exclude them from the domain.

Setting the denominator (x + 5) equal to zero and solving for x:

x + 5 = 0

x = -5

So, x = -5 makes the denominator zero, which means it is not in the domain of the function.

To know more about function visit:

brainly.com/question/31062578

#SPJ11

correctly rounded, 20.0030 - 0.491 g =

Answers

The calculation for correctly rounded 20.0030 - 0.491 g is as follows:

20.0030
- 0.491
= 19.5120

To correctly round this answer, we need to consider the significant figures of the original values. The value 20.0030 has five significant figures, while 0.491 has only three. Therefore, the answer should be rounded to three significant figures, which gives us:

19.5 g


When subtracting values with different significant figures, the answer should be rounded to the least number of significant figures in either value. In this case, the value 0.491 has only three significant figures, so the answer should be rounded to three significant figures.


The correctly rounded answer for 20.0030 - 0.491 g is 19.5 g. It is important to consider the significant figures when rounding the answer, as this ensures that the result is accurate and precise.

Tyo know more about significant figures visit:

https://brainly.com/question/29153641

#SPJ11

determine if the function defines an inner product on r3, where u = (u1, u2, u3) and v = (v1, v2, v3). (select all that apply.) u, v = u12v12 u22v22 u32v32a) satisfies (u,v)=(v,u) b) does not satisfy (u, v)=(v,u) c) satisfies (u, v+w) = (u,v)+(u,w) d) does not satisfy (u, v+w) = (u,v)+(u,w) e)satisfies c (u,v) = (cu, v) f) does not satisfies c (u,v) = (cu, v) g) satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0 h) does not satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0

Answers

The function u,v = u1v1 + u2v2 + u3v3 satisfies properties a, c, and e, and g, so it defines an inner product on R3.

To determine if the function defines an inner product on R3, we need to check if the following properties hold:

Commutativity: (u,v) = (v,u)

Non-commutativity: (u,v) ≠ (v,u)

Additivity: (u,v+w) = (u,v)+(u,w)

Non-additivity: (u,v+w) ≠ (u,v)+(u,w)

Homogeneity: (cu,v) = c(u,v)

Non-homogeneity: (cu,v) ≠ c(u,v)

Positive-definiteness: (v,v) ≥ 0 and (v,v) = 0 if and only if v = 0

Non-positive-definiteness: (v,v) < 0 or (v,v) = 0 if and only if v ≠ 0

The function u,v = u1v1 + u2v2 + u3v3 satisfies properties a, c, and e, and g, so it defines an inner product on R3.

satisfies (u,v) = (v,u)

does not satisfy (u, v) = (v,u)

satisfies (u, v+w) = (u,v)+(u,w)

does not satisfy (u, v+w) = (u,v)+(u,w)

satisfies (cu, v) = c(u,v)

does not satisfy (cu, v) = c(u,v)

satisfies (v, v) ≥ 0 and (v,v) = 0 if and only if v=0

does not satisfy (v, v) ≥ 0 and (v,v) = 0 if and only if v=0

For similar questions on function

https://brainly.com/question/11624077

#SPJ11

The following functions define an inner product on ℝ³: a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃², b) (u, v) = (v, u), c) (u, v+w) = (u, v) + (u, w), e) c(u, v) = (cu, v), and g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0. These properties satisfy the requirements for an inner product on ℝ³.

How did we get the values?

To determine if the function defines an inner product on ℝ³, check if the given properties hold:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

b) (u, v) = (v, u)

c) (u, v+w) = (u, v) + (u, w)

d) (u, v+w) ≠ (u, v) + (u, w)

e) c(u, v) = (cu, v)

f) c(u, v) ≠ (cu, v)

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

h) (v, v) does not satisfy (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

Evaluate each property:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

This property satisfies the requirement for the inner product since it is a sum of squared terms.

b) (u, v) = (v, u)

The given function is symmetric since swapping u and v does not change the result. Therefore, it satisfies (u, v) = (v, u).

c) (u, v+w) = (u, v) + (u, w)

We need to check if the distributive property holds. Let's evaluate both sides:

(u, v+w) = u₁²(v₁+w₁)² + u₂²(v₂+w₂)² + u₃²(v₃+w₃)²

(u, v) + (u, w) = u₁²v₁² + u₂²v₂² + u₃²v₃² + u₁²w₁² + u₂²w₂² + u₃²w₃²

Expanding the squares and comparing the expressions, we can see that (u, v+w) = (u, v) + (u, w). Thus, it satisfies the property.

d) (u, v+w) ≠ (u, v) + (u, w)

Since we have already established that (c) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

e) c(u, v) = (cu, v)

We need to check if the given function is linear in the first argument. Let's evaluate both sides:

c(u, v) = c(u₁²v₁² + u₂²v₂² + u₃²v₃²) = cu₁²v₁² + cu₂²v₂² + cu₃²v₃²

(cu, v) = (cu)₁²v₁² + (cu)₂²v₂² + (cu)₃²v₃² = cu₁²v₁² + cu₂²v₂² + cu₃²v₃²

The expressions are equal, so it satisfies this property.

f) c(u, v) ≠ (cu, v)

Since we have already established that (e) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

For any vector v = (v₁, v₂, v₃), we can evaluate (v, v) as follows

(v, v) = v₁²v₁² + v₂²v₂² + v₃²v₃² = v₁⁴ + v₂⁴ + v₃⁴

The squared terms are always non-negative, so (v, v) ≥ 0 for any v. Additionally, (v, v) = 0 only when v₁ = v₂ = v₃ = 0. Therefore, this property holds.

h) (v, v) does not satisfy (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

Since we have already established that (g) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

In summary, the given function defines an inner product on ℝ³ for the following properties:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

b) (u, v) = (v, u)

c) (u, v+w) = (u, v) + (u, w)

e) c(u, v) = (cu, v)

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

These properties satisfy the requirements for an inner product on ℝ³.

learn more about symmetric: https://brainly.com/question/29545496

#SPJ4

Evaluate the integral using the indicated trigonometric substitution. (Use C for the constant of integration.) x3 x = 6 tan(6) dx, Vx2 36 Sketch and label the associated right triangle.

Answers

The associated right triangle has one angle θ whose tangent is x/6, and the adjacent side has length 6 while the opposite side has length x.

To evaluate the integral, we use the trigonometric substitution x = 6 tan(θ). Then, dx = 6 sec2(θ) dθ, and substituting in the integral we get:

∫(x^2)/(36+x^2) dx = ∫(36 tan^2(θ))/(36 + 36 tan^2(θ)) (6 sec^2(θ) dθ)

= ∫tan^2(θ) dθ

To solve this integral, we use the trigonometric identity tan^2(θ) = sec^2(θ) - 1, so we get:

∫tan^2(θ) dθ = ∫(sec^2(θ) - 1) dθ

= tan(θ) - θ + C

Substituting back x = 6 tan(θ) and simplifying, we get the final result:

∫(x^2)/(36+x^2) dx = 6(x/6 * √(1 + x^2/36) - atan(x/6) + C)

To know more about right triangle,

https://brainly.com/question/6322314

#SPJ11

evaluate the surface integral ∬s2xyz ds. where s is the cone with parametric equations x=ucos(v),y=usin(v),z=u and 0≤u≤4,0≤v≤π2.

Answers

To evaluate the surface integral ∬s2xyz ds, we first need to find the unit normal vector n and the magnitude of its cross product with the partial derivatives of x and y with respect to u and v. Using the given parametric equations, we can calculate n = (-2u cos(v), -2u sin(v), u), and the magnitude of the cross product to be 2u^2. Integrating over the surface of the cone, we get the final answer of 128/3π.

To evaluate the surface integral, we need to use the formula ∬s2F⋅dS = ∬D F(x(u,v),y(u,v),z(u,v))|ru×rv|dudv, where F(x,y,z) = (2xyz, 0, 0) and D is the region in the u-v plane that corresponds to the surface of the cone. We can find the unit normal vector n using the formula n = ru×rv/|ru×rv|. After simplifying the cross product, we get n = (-2u cos(v), -2u sin(v), u). The magnitude of the cross product is |ru×rv| = 2u^2. Integrating over the surface of the cone, we get ∬s2xyz ds = ∫0^π/2 ∫0^4 (2u^4 cos(v) sin(v))du dv = 128/3π.

Therefore, the surface integral ∬s2xyz ds over the cone with given parametric equations is equal to 128/3π.

To know more about surface integral visit:

https://brainly.com/question/15177673

#SPJ11

A proportional relationship is graphed
and goes through the point (3, 12).
Determine the y-coordinate of another
point that lies on the graph of the line if
the x-coordinate is 2.
A 5
B 6
C 7
D 8

Answers

Its B because if the point of the x cordinate is 2 then it would be (2,12), then you would divide that.

A particle moves along the curve defined by the parametric equations x(t) = 2t and y(t) = 36 - t^2 for time t, 0 lessthanorequalto t lessthanorequalto 6. A laser light on the particle points in the direction of motion and shines on the x-axis. (a) What is the velocity vector of the particle? (b) In terms of t. Write an equation of the line tangent to the graph of the curve at the point (2t, 36 - t^2). (c) Express the x-coordinate of the point on the x-axis that the laser light hits as a function of t. (d) At what speed is the laser light moving along the x-axis at lime t = 3 ? Justify your answer.

Answers

a) The velocity vector of the particle is [2, -2t].

b) The equation of the tangent line at[tex](2t, 36 - t^2) is y - (36 - t^2) = -t(x - 2t).[/tex]

c) The x-coordinate of the point on the x-axis that the laser light hits is [tex]x = 2t + (36 - t^2)/t.[/tex]

d) The speed of the laser light along the x-axis at time t = 3 is 1, as it is the absolute value of the derivative of x with respect to t at t = 3.

(a) The velocity vector of the particle is the derivative of the position vector with respect to time:

v(t) = [x'(t), y'(t)] = [2, -2t]

(b) The slope of the tangent line is the derivative of y with respect to x:

dy/dx = (dy/dt)/(dx/dt) = (-2t)/(2) = -t

Using the point-slope form of the equation of a line, the tangent line at [tex](2t, 36 - t^2)[/tex] is:

[tex]y - (36 - t^2) = -t(x - 2t)[/tex]

(c) To find the x-coordinate of the point on the x-axis that the laser light hits, we need to find the intersection of the tangent line and the x-axis. Setting y = 0, we get:

[tex]-t(x - 2t) + (36 - t^2) = 0[/tex]

Solving for x, we get:

[tex]x = 2t + (36 - t^2)/t[/tex]

(d) The speed of the laser light along the x-axis is the absolute value of the derivative of x with respect to t:

[tex]|dx/dt| = |2 - (36 - t^2)/t^2|[/tex]

At time t = 3, we have:

|dx/dt| = |2 - (36 - 9)/9| = |2 - 3| = 1

Therefore, the speed of the laser light along the x-axis at time t = 3 is 1. The justification is that the absolute value of the derivative gives the magnitude of the rate of change of x with respect to time, which represents the speed.

For similar question on velocity vector.

https://brainly.com/question/28501982

#SPJ11

use the fundamental theorem of calculus, part 2 to evaluate ∫1−1(t3−t2)dt.

Answers

Using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To use the fundamental theorem of calculus, part 2 to evaluate the integral ∫1−1(t3−t2)dt, we first need to find the antiderivative of the integrand. To do this, we can apply the power rule of calculus, which states that the antiderivative of x^n is (x^(n+1))/(n+1) + C, where C is the constant of integration. Using this rule, we can find the antiderivative of t^3 - t^2 as follows:
∫(t^3 - t^2)dt = ∫t^3 dt - ∫t^2 dt
= (t^4/4) - (t^3/3) + C
Now that we have found the antiderivative, we can use the fundamental theorem of calculus, part 2, which states that if F(x) is an antiderivative of f(x), then ∫a^b f(x)dx = F(b) - F(a). Applying this theorem to the integral ∫1−1(t3−t2)dt, we get:
∫1−1(t3−t2)dt = (1^4/4) - (1^3/3) - ((-1)^4/4) + ((-1)^3/3)
= (1/4) - (1/3) - (1/4) - (-1/3)
= -1/6
Therefore, using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To know more about calculus visit :

https://brainly.com/question/30761130

#SPJ11

River Racing is a company that provides inner tubes for children ond adults to float the river. The child lube has a diameter of 25 feet and the adult tube has a diameter of 3 feet. River Recing owns a total of 160 tubes ond the total diameter of all the tubes is 430 feet. Write o system to determine the number of child tubes, c, and number of adult tubes, a, Ino River Racing owns. ​

Answers

Let c represent the number of child tubes and a represent the number of adult tubes owned by River Racing. We can set up a system of equations based on the given information:

The total number of tubes: c + a = 160

The total diameter of all tubes: 25c + 3a = 430

The first equation represents the total number of tubes owned by River Racing, which is the sum of the child tubes (c) and adult tubes (a), and it equals 160.

The second equation represents the total diameter of all the tubes owned by River Racing. The diameter of each child tube is 25 feet, so the total diameter of the child tubes is 25c. The diameter of each adult tube is 3 feet, so the total diameter of the adult tubes is 3a. The sum of these two terms should equal 430 feet.

Therefore, the system of equations is:

c + a = 160

25c + 3a = 430

Solving this system of equations will give us the values for c (number of child tubes) and a (number of adult tubes) owned by River Racing.

Learn more about equations Visit : brainly.com/question/29174899

#SPJ11

a) if n-vectors x and y make an acute angle, then ∥x y∥ ≥ max{|x∥, ∥y∥}.

Answers

The statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

If two vectors x and y make an acute angle then it does not necessarily imply that the magnitude of their sum (represented as ∥x + y∥) is greater than or equal to the maximum magnitude between the individual vectors (represented as max{|x∥, ∥y∥}).

For illustrate this,

let's consider a counterexample. Suppose we have two vectors in two-dimensional space:

x = (1, 0)

y = (0, 1)

Both vectors, x and y, have a magnitude of 1 and are perpendicular to each other. Therefore, they form a right angle. However, the magnitude of their sum is:

[tex]∥x + y∥ = ∥(1, 0) + (0, 1)∥ = ∥(1, 1)∥ = \sqrt(2)[/tex]

On the other hand, the maximum magnitude between the individual vectors is

[tex]max{|x∥, ∥y∥} = max{|1|, |1|} = 1[/tex]

The magnitude of their sum (√2) is not greater than or equal to the maximum magnitude of the individual vectors (1).

Hence, the statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ4

The melting points of two alloys used in formulating solder were investigated by melting 21 samples of each material. The sample mean and standard deviation for alloy 1 was X1= 420. 48 and S1= 2. 34. And for alloy 2 they were X2= 425 and S2=32. 5a. Do the sample data support the claim that both alloys have the same melting point? Use a fixed-level test at alpha =. 05 and assume that both populations are normally distributed and have the same standard deviation. B. Find the P-Value for this test

Answers

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

To test the claim that both alloys have the same melting point, we can perform a two-sample t-test. Here's how we can approach it:

a. Hypotheses:

The null hypothesis (H0) is that the means of both alloys are equal.

The alternative hypothesis (Ha) is that the means of both alloys are not equal.

H0: μ1 = μ2

Ha: μ1 ≠ μ2

b. Test statistic:

Since the sample sizes are relatively small (n1 = n2 = 21) and the population standard deviation is unknown, we can use the two-sample t-test. The test statistic is given by:

t = (X1 - X2) / sqrt(Sp^2 * (1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp^2 is the pooled sample variance.

c. Pooled sample variance:

Sp^2 = ((n1 - 1) * S1^2 + (n2 - 1) * S2^2) / (n1 + n2 - 2)

d. Calculating the test statistic:

Substituting the given values:

X1 = 420.48, S1 = 2.34, X2 = 425, S2 = 32.5, n1 = n2 = 21

Sp^2 = ((21 - 1) * 2.34^2 + (21 - 1) * 32.5^2) / (21 + 21 - 2)

Sp^2 = 616.518

t = (420.48 - 425) / sqrt(616.518 * (1/21 + 1/21))

t ≈ -2.061

e. Degrees of freedom:

The degrees of freedom for the two-sample t-test is given by (n1 + n2 - 2), which in this case is (21 + 21 - 2) = 40.

f. Critical value:

With a significance level of α = 0.05 and 40 degrees of freedom, we find the critical t-value using a t-table or statistical software. Let's assume it to be ±2.021 for a two-tailed test.

g. Decision:

Since |t| = 2.061 > 2.021, we reject the null hypothesis.

h. P-value:

To find the p-value, we compare the absolute value of the test statistic (|t| = 2.061) with the critical t-value. If the p-value is less than the significance level (α = 0.05), we reject the null hypothesis. In this case, the p-value is approximately 0.045.

Therefore, the final answer is:

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

Visit here to learn more about p-value:

brainly.com/question/30461126

#SPJ11

p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

a) To test the hypothesis that both alloys have the same melting point, we can use a two-sample t-test with pooled variance since we are assuming equal variances. The null hypothesis is that the difference in mean melting points is zero:

H0: μ1 - μ2 = 0

Ha: μ1 - μ2 ≠ 0

where μ1 and μ2 are the true mean melting points of alloys 1 and 2, respectively.

The test statistic is calculated as:

t = (X1 - X2) / (Sp * sqrt(1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp is the pooled standard deviation:

Sp = sqrt(((n1 - 1)*S1^2 + (n2 - 1)*S2^2) / (n1 + n2 - 2))

Substituting the given values, we get:

Sp = sqrt(((21 - 1)*2.34^2 + (21 - 1)*32.5^2) / (21 + 21 - 2)) = 17.896

t = (420.48 - 425) / (17.896 * sqrt(1/21 + 1/21)) = -2.56

Using a t-table with 40 degrees of freedom (df = n1 + n2 - 2), the critical values for a two-tailed test at alpha = 0.05 are ±2.021. Since |-2.56| > 2.021, the test statistic falls in the rejection region. Therefore, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

b) The p-value for this test is the probability of observing a test statistic more extreme than the one we calculated, assuming the null hypothesis is true. Since this is a two-tailed test, we need to calculate the probability of observing a t-value less than -2.56 or greater than 2.56 with 40 degrees of freedom.

Using a t-table or a t-distribution calculator, we get a p-value of approximately 0.014.

Learn more about null hypothesis at: brainly.com/question/28098932

#SPJ11

how many possible phone numbers contain 2021 as a contiguous subsequence (e.g. 532-0219 or 202-1667 but not 230-6179 nor 227-5986)?

Answers

The total number of phone numbers that contain 2021 as a contiguous subsequence is:

7 * 1000 * 1000000 = 7,000,000,000

To count the number of phone numbers that contain 2021 as a contiguous subsequence, we can use the following approach:

First, we choose the position of the first digit of the subsequence, which can be any of the first 7 digits of the phone number (we exclude the last three digits because we need at least 4 digits to form the subsequence). There are 7 ways to choose this position.

Once we have chosen the position of the first digit, we need to choose the next three digits in order to form the subsequence 2021. Since there are 10 digits to choose from, and the digits can be repeated, there are 10^3 = 1000 ways to choose these digits.

Finally, we can choose the remaining 6 digits of the phone number arbitrarily, since we have already guaranteed that the phone number contains the subsequence 2021. There are 10^6 = 1000000 ways to choose these digits.

Know more about contiguous subsequence here:

https://brainly.com/question/6687211

#SPJ11

The stray dog population in a local city is currently estimated to be 1,000. The expected annual rate of increase is predicted to be 0. 7. What will the population be in 4 years? Round your answer to the nearest whole number

Answers

We have been given that the stray dog population in a local city is currently estimated to be 1,000. The expected annual rate of increase is predicted to be 0.7.

We are supposed to find out what the population will be in 4 years. We can calculate this using the exponential growth formula.The exponential growth formula is given by,P = P₀(1 + r)n

Where, P₀ is the initial population r is the annual rate of increase expressed as a decimal I

n is the number of years P is the population after n years

Substituting the given values, we get,P = 1000(1 + 0.7)⁴

On simplifying this expression, we get,

P = 1000(1.7)⁴

P = 1000 × 3.2856P

≈ 3286

Therefore, the population will be approximately 3286 in 4 years. Hence, option C is the correct answer.

To know more about growth visit :-

https://brainly.com/question/30611694

#SPJ11

Find the critical values (-Z Answer: ,Z ) pair that corresponds to a 90% (1-q=0.90) confidence level.

Answers

To find the critical values (-Z, Z) pair that corresponds to a 90% confidence level, we need to use the standard normal distribution table or a calculator that can calculate z-scores.

The critical values correspond to the z-scores that divide the area under the normal distribution curve into two equal parts, leaving a total of 10% of the area in the tails. Since the normal distribution is symmetric, the area in each tail is equal to 5%.

Using a standard normal distribution table or calculator, we can find the z-score that corresponds to the area of 0.05 in the right tail, which is denoted by Z. By symmetry, the z-score that corresponds to the area of 0.05 in the left tail is -Z.

For a 90% confidence level, the area in the middle of the curve (between -Z and Z) is equal to 0.90, so the area in each tail is equal to 0.05.

Using a standard normal distribution table or calculator, we find that Z = 1.645 (rounded to three decimal places). Therefore, the critical values (-Z, Z) pair that corresponds to a 90% confidence level is (-1.645, 1.645).

To know more about normal distribution refer here:

https://brainly.com/question/29509087

#SPJ11

The curved surface area of a cylinder is 1320cm2 and its volume is 2640cm2 find the radius

Answers

The radius of the cylinder is 2 cm.

Given, curved surface area of the cylinder = 1320 cm²,

Volume of the cylinder = 2640 cm³

We need to find the radius of the cylinder.

Let's denote it by r.

Let's first find the height of the cylinder.

Let's recall the formula for the curved surface area of the cylinder.

Curved surface area of the cylinder = 2πrhr = curved surface area / 2πh

= (curved surface area) / (2πr)

Substituting the values,

we get,

h = curved surface area / 2πr

= 1320 / (2πr) ------(1)

Let's now recall the formula for the volume of the cylinder.

Volume of the cylinder = πr²h

2640 = πr²h

Substituting the value of h from (1), we get,

2640 = πr² * (1320 / 2πr)

2640 = 660r

Canceling π, we get,

r² = 2640 / 660

r² = 4r = √4r

= 2 cm

Therefore, the radius of the cylinder is 2 cm.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

Two local ice cream shops are having promotions. The Tasty Cream is charging an $8 fee for their promotional card and $1. 50 per cone. The Ice Castle is charging a $3 fee for their promotional card and $2. 00 per cone. If you are planning on going to buy 7 ice cream cones for you and your friends, which ice cream shop should you choose and why?



A: Tasty Cream because they charge less per cone.


B: Ice castle because their promotional card is cheaper


C: Ice castle because they will charge you $1. 50 less than Tasty Cream for 7 cones


D: it doesn't matter which shop you go to because they will cost the same

Answers

Given below is the price list of two local ice cream shops: Tasty Cream is charging an $8 fee for their promotional card and $1.50 per cone Ice Castle is charging a $3 fee for their promotional card and $2.00 per cone.

The correct option is C: Ice castle because they will charge you $1. 50 less than Tasty Cream for 7 cones

According to the given information:

Now, if you want to buy 7 ice cream cones for you and your friends, then the total cost at Tasty Cream would be:

Cost of 7 cones = 7 × $1.50

= $10.50

Total cost = Cost of 7 cones + promotional card

= $10.50 + $8

= $18.50

Now, the total cost at Ice Castle would be:

Cost of 7 cones = 7 × $2.00

= $14.00

Total cost = Cost of 7 cones + promotional card

= $14.00 + $3.00

= $17.00

Thus, we can conclude that you should choose Ice Castle because they will charge you $1.50 less than Tasty Cream for 7 cones.

Hence, option (C) is the correct answer.

Note: Always remember that when comparing the prices of two shops, we must consider the total cost, not just the price per cone.

To know more about promotional card visit:

https://brainly.com/question/30093157

#SPJ11

(1 point) Consider the initial value problem
y′′+4y=−, y(0)=y0, y′(0)=y′0.y′′+4y=e−t, y(0)=y0, y′(0)=y0′.
Suppose we know that y()→0y(t)→0 as →[infinity]t→[infinity]. Determine the solution and the initial conditions.

Answers

The solution to the differential equation with the given initial conditions is: y(t) = y_0 cos(2t) + (y_0' + 1)/2 sin(2t) - [tex]e^{(-t)[/tex]

To solve the differential equation, we first find the homogeneous solution by setting the right-hand side to zero:

y'' + 4y = 0

The characteristic equation is [tex]r^2 + 4 = 0[/tex], which has roots r = ±2i. Therefore, the general solution to the homogeneous equation is:

y_h(t) = c_1 cos(2t) + c_2 sin(2t)

where c_1 and c_2 are constants determined by the initial conditions.

Next, we find the particular solution to the non-homogeneous equation. Since the right-hand side is e^(-t), we guess a particular solution of the form:

y_p(t) = A[tex]e^{(-t)[/tex]

where A is a constant to be determined. Substituting this into the differential equation, we have:

[tex]Ae^{(-t)} - 2Ae^{(-t) }+ 4Ae^{(-t) }= -e^{(-t)[/tex]

Simplifying, we get:

[tex]Ae^{(-t) }= -e^{(-t)[/tex]

which implies A = -1. Therefore, the particular solution is:

[tex]y_p(t) = -e^{(-t)[/tex]

The general solution to the non-homogeneous equation is the sum of the homogeneous and particular solutions:

y(t) = y_h(t) + y_p(t) = c_1 cos(2t) + c_2 sin(2t) -[tex]e^{(-t)[/tex]

Using the initial conditions y(0) = y_0 and y'(0) = y_0', we get:

y(0) = c_1 = y_0

y'(0) = 2c_2 - [tex]e^{(-0)[/tex] = y_0'

Therefore, we have:

c_1 = y_0

c_2 = (y_0' + 1)/2

for such more question on differential equation

https://brainly.com/question/25731911

#SPJ11

z=f(x,y)
x= r3 s
y= re2s
(a) Find ∂z/∂s (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y .
(b) Find ∂2z/∂s∂r (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y , ∂2z/∂x2, ∂2z/∂x∂y , and ∂2z/∂y2).
Expert A

Answers

(a) To find ∂z/∂s, we can use the chain rule. Let's start by finding the partial derivatives ∂x/∂s and ∂y/∂s:

∂x/∂s = ∂(r^3s)/∂s = r^3

∂y/∂s = ∂(re^2s)/∂s = re^2s * 2 = 2re^2s

Now, using the chain rule, we have:

∂z/∂s = (∂z/∂x) * (∂x/∂s) + (∂z/∂y) * (∂y/∂s)

So, ∂z/∂s = (∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s

(b) To find ∂2z/∂s∂r, we can differentiate ∂z/∂s with respect to r. Using the product rule, we have:

∂2z/∂s∂r = (∂/∂r)[(∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s]

Taking the derivative of (∂z/∂x) * r^3 with respect to r gives us:

(∂/∂r)[(∂z/∂x) * r^3] = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3

Taking the derivative of (∂z/∂y) * 2re^2s with respect to r gives us:

(∂/∂r)[(∂z/∂y) * 2re^2s] = (∂z/∂y) * 2e^2s

Therefore, ∂2z/∂s∂r = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3 + (∂z/∂y) * 2e^2s.

Note: The expressions (∂z/∂x), (∂z/∂y), (∂^2z/∂x^2), and (∂^2z/∂x∂y), (∂^2z/∂y^2) are not provided in the given information and would need to be given or calculated separately to obtain a specific numerical result.

Learn more about differentiate here: brainly.com/question/32388323

#SPJ11

The area of this trapezium is 240cm2. Work out x.

Answers

trapezium's area is 240 cm².Let's also say that the two parallel sides of the trapezium are A and B.The height of the trapezium is x, according to the question.which is 0.5357 cms.

we know that the area of the trapezium is equal to: `1/2 (A + B) x`.

We can rearrange this equation to solve for x, which is what we're looking for.

A formula for `x` is as follows: `x = (2A + 2B) / (AB)`

We can now use this formula to solve for `x`. We'll start by using the values from the given question to plug into the formula. Let's say that side A is 16 cm and side B is 28 cm.Substitute the given values into the formula: `x = (2(16) + 2(28)) / (16(28))`x is then equal to `240 / 448`, or 0.5357 (rounded to 4 decimal places). Therefore, x is approximately equal to 0.5357 centimeters.

to know more area,visit:

https://brainly.com/question/30307509

#SPJ11

While solving a standard form problem, we arrive at the following simplex tableau with basic variables 23, x4, x5. The entries α, β, γ,δ and η in the tableau are unknown parameters. For each one of the following statements, find the conditions of the parameter values that will make the statement true (sufficient condition is enough). (The first column indicates the current basis.) B|δ 2000110 3 -1 41α-4 0 1 0|1 5|γ 300-3 1. The optimization problem is unbounded (optimal value is -oo). 2. The current solution is feasible but not optimal 3. The current solution has the optimal objective value and there are multiple set of basis that achieve the same objective value.

Answers

In the given simplex tableau with basic variables 23, x4, and x5, the entries α, β, γ, δ, and η are unknown parameters. To find the conditions of the parameter values that will make the following statements true:

1. For the optimization problem to be unbounded, the objective function's coefficients corresponding to the non-basic variables in the tableau should be negative or zero. In this case, the non-basic variables are x1, x2, and x6. Therefore, we need to have 4α - 3δ ≤ 0 and -γ + 3η ≤ 0 for the problem to be unbounded.

2. For the current solution to be feasible but not optimal, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). Therefore, we need to have δ > 0 and 3γ < 0.

3. For the current solution to have the optimal objective value and multiple sets of basis that achieve the same objective value, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). In addition, we need to have at least two coefficients in the bottom row to be zero. Therefore, we need to have δ = 0 and 3γ ≥ 0, and at least one of the following conditions must hold: 4α - 3δ > 0, -γ + 3η > 0, or -4α + 3δ + γ - 3η = 0.

Explanation: The conditions for the given statements are based on the properties of the simplex method and the standard form of the linear programming problem. The simplex method seeks to maximize or minimize the objective function while satisfying the constraints of the problem. The standard form requires all variables to be non-negative and the constraints to be written as linear equations or inequalities. The simplex tableau is used to keep track of the current basic variables, their coefficients, and the objective function value. The conditions for the given statements are derived by analyzing the coefficients in the tableau and their relationships with the objective function value.

To know more about variable visit:

https://brainly.com/question/28248724

#SPJ11

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. How many commercials did Lee see last night?

Answers

Therefore, the number of commercials Lee saw last night is x + 20.

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. Let the number of commercials Lee watched last week be x.

Now we have to determine the number of commercials Lee watched last night when he saw 20 more commercials than he did on the night he watched the most TV last week. If we let the number of commercials Lee watched last week be x, then the number of commercials Lee saw last night can be written as:

x + 20

The above expression is equivalent to 20 more commercials than the number of commercials Lee saw last week. Therefore, the answer is x + 20.

Now we can calculate the value of x by using the information provided in the question. If we subtract 20 from the number of commercials Lee saw last night, we should get the number of commercials he saw last week, that is:

x = (x + 20) - 20x

= x

Therefore, we can see that there is no unique solution for the number of commercials Lee saw last night. It all depends on the value of x, the number of commercials Lee watched last week. If we know this value, we can easily calculate the number of commercials Lee saw last night.

To know more about marathon visit:

https://brainly.com/question/19869274

#SPJ11

Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. Which equation can she use to find g, the number of gallons of water she should add? Original (Gallons) Added (Gallons) New (Gallons) Amount of Detergent 1. 98 0 Amount of Solution 11 g StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100 EndFraction = 1 StartFraction 1. 98 Over 11 g EndFraction StartFraction 12 Over 100 EndFraction = 1 StartFraction 11 g Over 1. 98 EndFraction = StartFraction 12 Over 100 EndFraction StartFraction 1. 98 Over 11 g EndFraction = StartFraction 12 Over 100 EndFraction.

Answers

The final solution will be 11.16071428571429 gallons.Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution.

She can use the following equation to find the number of gallons of water she should add:

StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100

EndFraction = 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 12 Over 100 EndFraction + 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 112 Over 100

EndFractionStartFraction 1. 98 Over 11 g

EndFraction = 1.12

Now, cross-multiply to solve for g:1

1g = 1.98/1.1211g = 1.767857142857143g = 0.1607142857142857

So, Meryl needs to add 0.1607142857142857 gallons of water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. The final solution will be 11.16071428571429 gallons.

To know more about detergent solution visit:

https://brainly.com/question/31460481

#SPJ11

Ground Speed of a Plane A plane is flying at an airspeed of 340 miles per hour at a heading of 124°. A wind of 45 miles per hour is blowing from the west. Find the ground speed of the plane.

Answers

the ground speed of the plane is approximately 340.56 miles per hour.

To find the ground speed of the plane, we need to take into account the effect of the wind on the plane's motion. We can use vector addition to find the resultant velocity of the plane, which is the vector sum of its airspeed and the velocity of the wind.

First, we need to resolve the airspeed into its components, using trigonometry. The component of the airspeed in the eastward direction is given by:

340 cos(124°)

And the component in the northward direction is given by:

340 sin(124°)

The wind is blowing from the west, so its velocity has a magnitude of 45 miles per hour in the westward direction. Therefore, its components are:

-45 in the eastward direction

0 in the northward direction

Now, we can add the components of the airspeed and the wind to get the components of the resultant velocity. The eastward component of the resultant velocity is:

340 cos(124°) - 45

And the northward component is:

340 sin(124°) + 0

Using a calculator, we can evaluate these expressions as follows:

340 cos(124°) - 45 = -171.98

340 sin(124°) + 0 = 298.68

The negative sign on the eastward component indicates that the plane is flying in the westward direction, relative to the ground. Now, we can use the Pythagorean theorem to find the magnitude of the resultant velocity:

|v| = sqrt((-171.98)^2 + (298.68)^2) = 340.56

To learn more about trigonometry visit:

brainly.com/question/31896723

#SPJ11

he puritan colony of massachusetts bay was renowned for its high levels of religious toleration. group of answer choices true false

Answers

The given statement  "The Puritan colony of Massachusetts Bay was not known for its high levels of religious toleration." is False because, In fact, the Puritans who founded the colony in the early 17th century were known for their strict religious beliefs and practices.

They came to the New World seeking to establish a "city upon a hill" that would serve as a shining example of Christian virtue and piety. As a result, they were deeply suspicious of anyone who did not share their beliefs and sought to create a society that was strictly controlled by the church.

One of the most famous examples of the lack of religious tolerance in Massachusetts Bay was the case of Anne Hutchinson. Hutchinson was a Puritan woman who held religious meetings in her home where she preached her own interpretations of scripture. Her views were considered heretical by the Puritan leadership, and she was put on trial and ultimately banished from the colony.

Similarly, the Puritans were hostile to Quakers and other religious groups that they saw as a threat to their way of life. Quakers were often subjected to harsh punishments such as public whippings and banishment.

In short, while the Puritans of Massachusetts Bay may have believed in the importance of religious freedom, they did not practice it in a way that we would recognize today. Their society was highly regulated and tightly controlled by the church, and dissenters were not tolerated.

Know more about religious freedom here:

https://brainly.com/question/27982819

#SPJ11

Suppose two equally probable one-dimensional densities are of the form: p(x|ωi)∝e-|x-ai|/bi for i= 1,2 and b >0.
(a) Write an analytic expression for each density, that is, normalize each function for arbitrary ai, and positive bi.
(b) Calculate the likelihood ratio p(x|ω1)/p(x|ω2) as a function of your four variables.

Answers

The likelihood ratio can be expressed as:

p(x|ω1)/p(x|ω2) =

(b2/b1) * e^(-(x - a1) + (x - a2)/(b1*b2)) if x >= (a1+a2)/2

(b2/b1) * e^((x - a1) - (x

To normalize each density function, we need to find the appropriate normalization constants. Let's consider each density function separately:

For p(x|ω1):

p(x|ω1) ∝ e^(-|x-a1|/b1)

To normalize this function, we need to find the constant C1 such that the integral of p(x|ω1) over the entire range is equal to 1:

1 = ∫ p(x|ω1) dx

= C1 ∫ e^(-|x-a1|/b1) dx

Since the integral involves an absolute value, we can split it into two parts:

1 = C1 ∫[a1-∞] e^(-(x-a1)/b1) dx + C1 ∫[a1+∞] e^(-(a1-x)/b1) dx

Simplifying each integral separately:

1 = C1 ∫[a1-∞] e^(-x/b1) dx + C1 ∫[a1+∞] e^(-x/b1) dx

To evaluate these integrals, we can use the fact that the integral of e^(-x/b) dx from -∞ to ∞ is equal to 2b:

1 = C1 (2b1)

Therefore, the normalization constant C1 is 1/(2b1), and the normalized density function p(x|ω1) is:

p(x|ω1) = (1/(2b1)) * e^(-|x-a1|/b1)

Similarly, for p(x|ω2), we have:

p(x|ω2) ∝ e^(-|x-a2|/b2)

To normalize this function, we need to find the constant C2 such that the integral of p(x|ω2) over the entire range is equal to 1:

1 = C2 ∫ p(x|ω2) dx

= C2 ∫ e^(-|x-a2|/b2) dx

Following the same steps as before, we find that the normalization constant C2 is 1/(2b2), and the normalized density function p(x|ω2) is:

p(x|ω2) = (1/(2b2)) * e^(-|x-a2|/b2)

(b) The likelihood ratio p(x|ω1)/p(x|ω2) can be calculated as follows:

p(x|ω1)/p(x|ω2) = [(1/(2b1)) * e^(-|x-a1|/b1)] / [(1/(2b2)) * e^(-|x-a2|/b2)]

Simplifying:

p(x|ω1)/p(x|ω2) = (b2/b1) * e^((|x-a1| - |x-a2|)/(b1*b2))

We can further simplify the exponent term by considering the absolute value difference:

|x-a1| - |x-a2| =

(x - a1) + (x - a2) if x >= (a1+a2)/2

(x - a1) - (x - a2) if x < (a1+a2)/2

Know more about likelihood ratio here:

https://brainly.com/question/31539711

#SPJ11

Other Questions
Suppose that an airline quotes a flight time of 2 hours, 10 minutes between two cities. Furthermore, suppose that historical flight records indicate that the actual flight time between the two cities, x, is uniformly distributed between 2 hours and 2 hours, 20 minutes. Let the time unit be one minute.a. Write the formula for the probability curve of x.b. Graph the probability curve of x.c. Find P(125 < x < 135). show that every group g with identity e and such that x x = e for all x g is abelian. hint: consider (a b) (a b). Fill in the blank. ________were marked by total disregard of knowledge of motion and/or anatomical detail. evaluate the integral. (use c for the constant of integration.) 2x2 7x 2 (x2 1)2 dx Evaluate the integral. (Remember to use absolute values where appropriate. Use for the constant of integration.) x - 144 - 5 ax Need Help? Read it Talk to a Tutor 6. [-70.83 Points] DETAILS SCALC8 7.4.036. Evaluate the integral. (Remember to use absolute values where appropriate. Use for the constant of integration.) x + 21x + 3 dx x + 35x3 + 15x Need Help? Read It Talk to a Tutor pursuant to the usa patriot act, when the government requests confidential information from employers about their employees, the employer can choose not to cooperate An interpolation function, Plx), for sin(2x) is generated interval from = 0 to x = 7 by using the following points: (0, 0) , 1 , 0.38268) , (5,0.70711) , (33 ,0.92388) , (5,1.0000) What is the upper bound of the error at P(O.5)? Parallel light rays cross interfaces from air into two different media, 1 and 2, as shown in the figures below. In which of the media is the light traveling faster and why? what are ways executives illegally loot their companies to receive large financial benefits? An unknown substance has a mass of 21.7 g. The temperature of the substance increases from 27.3 C to 44.1 C when 85.7 J of heat is added to the substance. What is the most likely identity of the substance? The table lists the specific heats of select substances Substance Specific Heat (Jlgc) O copper O silver O aluminum O iron O water O lead 0.128 lead iwer 0.235 copper iron aluminum 0.903 0.385 0.449 water4.184 two identical capacitors with a capacitance of 0.10 f are first connected in series and then in parallel. calculate the equivalent capacitance of both. a) calculate the equivalent series capacitance.b) Calculate the equivalent parallel capacitance. whats the best practices for a cyber security agent ?? Which describes as a result of the military action shown in the map above Individually create a Personal Education Plan Calendar for this term. Demonstrate a balance of class time, study time, work, family time, personal time, and sleep. Discuss the adequacy of plans and decision-making to enhance success. Giuseppe Mazzini (18051872), the founder (1831) of Young Italy, was perhaps the leading figure in liberal nationalism. He saw the creation of a democratic Italian state as crucial to Italy's development. Europe no longer possesses unity of faith, of mission, or of aim. Such unity is a necessity in the world. Here, then, is the secret of the crisis. It is the duty of every one to examine and analyse calmly and carefully the probable elements of this new unity. But those who persist in perpetuating, by violence or by Jesuitical compromise, the extern observance of the old unity, only perpetuate the crisis, and render its issue more violent. There are in Europe two great questions; or, rather, the question of the transformation of authority, that is to say, of the Revolution, has assumed two forms; the question wh all have agreed to call social, and the question of nationalities. The first is more exclusively agitated in France, the second in the heart of the other peoples of Europe. I say, which all have agreed to call social, because, generally speaking, every great revolution is so far social, that it cannot be accomplished either in the religious, political, or any other sphere, without affecting social relations, the sources and the distribution of wealth, but that which is only a secondary consequence in political revolutions is now the cause and the banner of the movement in France. The question there is now, above all, to establish better relations between labour and capital, between production and consumption, between the workman and the employer. It is probable that the European initiative, that which will give a new impulse to intelligence and to events, will spring from the question of nationalities. The social question may, in effect, although with difficulty, be partly resolved by a single people; it is an internal question for each, and the French Republicans of 1848 so understood it, when, determinately abandoning the European initiative, they placed Lamartine's [Note: A French poet and politician] manifesto by the side of their aspirations towards the organisation of labour. The question of nationalit can only be resolved by destroying the treaties of 1815, and changing the map of Europe and its public Law. The question of Nationalities, rightly understood, is the Alliance the Peoples; the balance of powers based upon new foundations: the organisation of the work that Europe has to accomplish. 1. Think about the purpose of the source. What was the author's message or argument? W was he/she trying to get across? Is the message explicit, or are there implicit messages a well? 2. How does the author try to get the message across? What methods does he/she use? 3. What do you know about the author? Race, sex, class, occupation, religion, age, region, political beliefs? Does any of this matter? How? 4. Who constituted the intended audience? Was this source meant for one person's eyes, c for the public? How does that affect the source? 3 give an example of an invterval i and a differentiable fumction f:i which is uniiformly continuousand for which f' unbounded The owner of a business selling fresh oysters from Louisiana would likely be located near O a train station. an international port O a long-distance truck depot. O a UPS store. O an airport. On March 15, Summit Hawk declares a quarterly cash dividend of $0.050 per share payable on April 13 to all stockholders of record on March 30. Required: Record Summit Hawk's declaration and payment of cash dividends for its 225 million shares. (If no entry is required for a particular transaction/event, select "No Journal Entry Required" in the first account field. Enter your answers in dollars, not in millions (ie. $5.5 million should be entered as 5,500,000).) .Let Y1, Y2, . . . , Yn denote a random sample from a population having a Poisson distribution with mean .a) Find the form of the rejection region for a most powerful test of H0 : = 0 against Ha : = a , where a > 0.b) Recall that n i=1 Yi has a Poisson distribution with mean n. Indicate how this information can be used to find any constants associated with the rejection region derived in part (a).c) Is the test derived in part (a) uniformly most powerful for testing H0 : = 0 against Ha : > 0? Why?d) Find the form of the rejection region for a most powerful test of H0 : = 0 against Ha : = a , where a < 0. $16,000 is deposited into a savings account with an annual interest rate of 2% compounded continuously. How much will be in the account after 4 years? Round to the nearest cent. a basic solution is 1.35105m in calcium hydroxide, ca(oh)2. what is the ph of the solution at 25.0c?