Answer:
Explanation:
Have y’all seen steeleflag19 at all on here?
An object, initially at rest, is subject to an acceleration of 45 m/s^2. How long will it take that object to travel 1000m? Round to one decimal place.
Answer:
6.7 seconds
Explanation:
d=(1/2)at^2
equation
1000=(1/2)45t^2.
substitute
2000=45t^2.
multiply by 2 for both sides
44.44=t^2.
divide both sides by 45
6.7=t
take the square root of both sides
A car with a mass of 1500kg is traveling at a speed of 30m/s. What force must be applied to stop the car in 3 seconds?
Answer:
The answer is 15,000 NExplanation:
To find the force given the mass , velocity and time can be found by using the formula
[tex]f = \frac{m \times v}{t} \\ [/tex]
where
m is the mass
v is the velocity
t is the time
From the question
m = 1500 kg
v = 30 m/s
t = 3 s
We have
[tex]f = \frac{1500 \times 30}{3} = \frac{45000}{3} \\ [/tex]
We have the final answer as
15,000 NHope this helps you
A cyclist and his bicycle have a combined mass of 88 kg and a combined
weight of 862.4 N. The cyclist accelerates at 1.2 m/s2. After 2 seconds he
reaches a speed of 2.4 m/s. What is his momentum at this point?
A. 36.7 kg m/s
B. 359.3 kg:m/s
C. 105.6 kg-m/s
D. 211.2 kg:m/s
The cyclist accelerates at 1.2 m / s² after 2 seconds he reaches a speed of 2.4 m / s, then the momentum at this point would be 211.2 kg-m/s, therefore the correct answer is option D.
What is momentum?It can be defined as the product of the mass and the speed of the particle, it represents the combined effect of mass and the speed of any particle, and the momentum of any particle is expressed in Kg m/s unit.
As given in the problem a cyclist and his bicycle has a combined mass of 88 kg and a combined weight of 862.4 N. The cyclist accelerates at 1.2 m/s2. After 2 seconds he reaches a speed of 2.4 m/s.
The momentum of the cyclist = 88 × 2.4
= 211.0 kgm/s
Thus, the momentum of the cyclist would be 211.0 kgm/s.
To learn more about momentum from here, refer to the link given below;
brainly.com/question/17662202
#SPJ2
calculating light in physics
the radius of the earth social
Why do you feel that you are being thrown upward out of your seat when going over an arced hump on a roller coaster
Answer: The options are not given.
Here are the options.
a) There is an additional force lifting up on you.
(b) At the top you continue going straight and the seat moves out from under you.
(c) You press on the seat less than when the coaster is at rest.Thus the seat presses less on you. (
d) Both b and c are correct.
(e) a, b, and c are correct.
The correct option Is D.
B.At the top you continue going straight and the seat moves out from under you. C.At the same time, you press on the seat less than when the coaster is at rest because the normal force expirienced will be less.
Explanation:
At the top you continue going straight and the seat moves out from under you.At the same time, you press on the seat less than when the coaster is at rest because the normal force expirienced will be less because it is as a result of a phenomenon called Weightlessness. This occur when there is no force or little force is acting on your body. At the top you continue going straight and the seat moves out from under you because there is no force acting on your body and when the body is in free fall i.e acceleration due to gravity , the person is not supported by any thing at.
That is the scenarion that occur...
A fountain shoots a jetof water straight up. The nozzle is 1 cm in diameter and the speed of the water exiting the nozzle is 30 m/s. What is the force exerted by the water jet
Answer:
Explanation:
mass of water coming out per second = A x v where A is area of cross section of the nozzle and v is velocity of water
A = 3.14 x .005²
= 785 x 10⁻⁷ m²
mass of water coming out per second = 785 x 10⁻⁷ x 30 = 23.55 x 10⁻⁴ kg
momentum of this mass = 23.55 x 10⁻⁴ x 30 = 706.5 x 10⁻⁴ kg m /s .
Rate of change of momentum = 706.5 x 10⁻⁴
Let force be F
F - mg = 706.5 x 10⁻⁴
F = mg + 706.5 x 10⁻⁴
F = 23.55 x 10⁻⁴ x 9.8 + 706.5 x 10⁻⁴
= 937.3 x 10⁻⁴ N .
A ball is thrown at 20 m/s from the ground upwards at an angle of elevation of 30°. How far away does it land? 35.35 m
Answer:
35.35 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 20 m/s
Angle of projection (θ) = 30°
Acceleration due to gravity (g) = 9.8 m/s²
Range (R) =.?
The range (i.e how far away) of the ball can be obtained as follow:
R = u² Sine 2θ /g
R = 20² Sine (2×30) / 9.8
R = 400 Sine 60 / 9.8
R = (400 × 0866) / 9.8
R = 346.4 / 9.8
R = 35.35 m
Therefore, the range (i.e how far away) of the ball is 35.35 m
In the analytical method, we use the Pythagorean theorem to find the magnitude of the resultant because ____.
Answer:
it obeys the law of vector addition
Explanation:
In the analytical method, we use the Pythagorean theorem to find the magnitude of the resultant because it obeys the law of vector addition.
The resultant of two vectors A and B is given by;
R' = A' + B'
[tex]R = \sqrt{A^2 + B^2}[/tex]
Therefore, Pythagorean theorem is used if the two quantities are vectors and vector quantities obey the law of vector addition.
A person has a mass of 1000g and an acceleration of 20 m/s/s. What is the force on the person
Answer:
20000
Explanation:
Newtons Second law states that the force acting on an object is equal to its mass times its acceleration, f=ma. To solve for force, plug in your values for m and a, and then solve. f = (1000)*(20) = 20000
5. In Investigation 2, if everything stays the same, except the diameter of the outer ring is doubled, how does the electric field change?
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
There is a change in the electric field by this factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]
Explanation:
From the question we are told that
The electric field is [tex]E(r)_1 = [\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}[/tex]
Now when the outer diameter is doubled, the radius(b) is also doubled
So
[tex]E(r)_2 = [\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}[/tex]
Now
[tex]\frac{E(r)_2}{E(r)_1} = \frac{\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}}{\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}}[/tex]
=> [tex]\frac{E(r)_2}{E(r)_1} = \frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r} * \frac{ ln(2b) -ln(a)}{V_o} ] * \frac{r}{1}[/tex]
=> [tex]\frac{E(r)_2}{E(r)_1} =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]
[tex]=> E(r)_2 =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]} }{E(r)_1}[/tex]
Here we see that the electric field changes by the factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]
Peter is running laps around a circular track with a diameter of 100 meters. If it takes Peter 12 minutes to run 4 laps, how quickly is he running (in meters per second)?
Answer:
v = 1.74 m/s
Explanation:
Given that,
Diameter of a circular track, d = 100 m
Distance covered for the 4 laps,
[tex]D=4\pi d\\\\D=4\pi \times 100\\\\D=1256.63\ m[/tex]
Time, t = 12 minutes = 720 s
We need to find the velocity of the peter. It can be calculated as follows :
[tex]v=\dfrac{D}{t}\\\\v=\dfrac{1256.63\ m}{720\ s}\\\\v=1.74\ m/s[/tex]
So, the speed is running with a velocity of 1.74 m/s.
Peter is running at 1.7453 m/sec.
Given to us,
Diameter of the circular track, D = 100 meters,
Number of laps Peter run, L = 4 laps,
Time taken by Peter, t = 12 minutes,
1 lap = circumference of the circle,
4 laps = 4 x circumference of the circle,
As we know, the circumference of a circle is given by πD.
So, 4 laps = 4 x circumference of the circle,
[tex]\begin{aligned}4 laps &= 4\times \pi \times D\\&= 4 \times \pi \times 100\\& = 1,256.6370\ meters\\\end{aligned}[/tex]
Also, we know that 1 minute has 60 sec.
so, 4 minutes = (4 x 60) seconds
Further, speed is given [tex]\bold{(\dfrac{Distance}{Time} )}[/tex]
Thus,
[tex]\begin{aligned}speed &= \dfrac{Distance\ coverd\ by\ Peter}{Time\ taken\ by\ Peter}\\&=\dfrac{1,256.6370}{12\times 60}\\&=1.7453\ m/sec \end{aligned}[/tex]
Hence, Peter is running at 1.7453 m/sec.
To know more visit:
https://brainly.com/question/7359669
In each of the given pairs, choose which element will have the bigger atom. Give reasons for your choice. (a) Mg (atomic number 12) or Cl (atomic number 17) (b) Na (atomic number 11) or K (atomic number 19)
Answer:
Mg (atomic number 12)
K (atomic number 19)
Explanation:
The size of an atom is estimated in terms of its atomic radius.
The atomic radius is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance (d) between two nuclei in the solid - state of metals.
Across a period, atomic radii decrease progressively from left to right. This is due to the progressive increase in the nuclear charge without increase in the number of electronic shells. Down a group, atomic radii increase progressively due to the successive shells of electrons being added which have been compensated for by the increase in nuclear charge.Cl is further right of Mg in the third period
K is below Na in the first group
What is the approximate weight of a 400 kg object?
Answer:
881.84905 LBS
Explanation:
ThErE :p
3922.66 newtons.
This is an exact amount, to get newtons form kg, multiply by 9.8, or in this case, 10.
This gives you 4000 newtons
How far will a 600 kg boat travel in 12 s if there is a constant 900 N force on it and it starts from rest?
Answer:
108 metres
Explanation:
Given
[tex]Force = 900N[/tex]
[tex]Mass = 600kg[/tex]
[tex]Time = 12s[/tex]
Required
Determine the distance moved
First, we need to determine the acceleration.
[tex]Force = Mass * Acceleration[/tex]
[tex]900N = 600kg * a[/tex]
Solve for a
[tex]a = 900/600[/tex]
[tex]a = 1.5m/s^2[/tex]
Next, we determine the distance using:
[tex]S = ut + \frac{1}{2}at^2[/tex]
Since it starts from rest,
[tex]u = 0[/tex]
[tex]t = 12[/tex]
[tex]a = 1.5[/tex]
So:
[tex]S = 0 * 12 + \frac{1}{2} * 1.5 * 12^2[/tex]
[tex]S = \frac{1}{2} * 1.5 * 144[/tex]
[tex]S = \frac{1}{2} * 216[/tex]
[tex]S = 108m[/tex]
if a ramp is 12 meters long has a mechanical advantage of 6 whats its height brainly HELPP!
Answer:
h = 2 m
Explanation:
Mechanical advantage of a ramp is given by :
MA = length of incline/height of incline
Length of the ramp, l = 12 m
MA = 6
We need to find the height of the ramp.
So,
height of ramp = length of incline/MA
h = 12/6
h = 2 m
So, the height of the ramp is 2 m.
why do some athletes get injuries before and after the game?
Answer:
they don't strech so they tear a muscle when they perform
Explanation:
Magnets are usually made up of which material
A. plastic
B. iron ore
C. copper
D. gold
Answer:
B. iron ore
Explanation:
Hope this helps
plz mark as brainliest!!!!!!
1. According to its computer, a rocket launched
traveled 1200 m, had an average speed of 100.0
m/s. How-long did the trip take?
Answer:
I think it's = 12 seconds
Explanation:
the formula for speed is:
speed=[tex]\frac{distance}{time}[/tex] SO, time is equal to:
time=[tex]\frac{distance}{speed}[/tex]
(sub the numbers in the formula)
distance=1200m, speed=100m/s
time=[tex]\frac{1200}{100}[/tex]
=12 seconds
correct me if im wrong
Thanks to me, you can see straight through the wall. What am I?
Answer:
A window
Explanation:
Answer:
a window.. duh
Explanation:
An object is rolled at 12 m/s down a table. It stops
after 15s. What was its acceleration?
Variables:
Equation and Solve:
Answer:
We are given:
initial velocity (u) = 12 m/s
final velocity (v) = 0 m/s
time taken (t) = 15 seconds
acceleration (a) = a m/s²
Solving for acceleration:
from the first equation of motion
v = u + at
replacing the variables
0 = 12 + (a)(15)
0 = 15a + 12
a = -12 / 15
a = -4 / 5 m/s²
A car with a mass of 2,000 kg travels a distance of 400m as it moves from one stoplight to the next. At its fastest , the car travels 18m/s. What is the kinetic energy at this point ?
Answer: KE= 324,000
Explanation: I hope that this helps! -_-
Answer:
324,000
Explanation:
One student runs with a velocity of +10 m/s while a second student runs with a velocity of –10 m/s. Which student has the faster velocity? Why?
Answer:
The one with the faster velocity is the one with a velocity of -10m/s
What is the force of a 12 kg object that is accelerating 6 m/s
We are given:
Mass of object (m) = 12 kg
acceleration (a) = 6 m/s²
Solving for the Force:
From newton's second law of motion:
F = ma
replacing the variables
F = 12*6
F = 72N
A hiker walks 11 km due north from camp and then turns and walks 11 km due east.
What is the total distance walked by the hiker?
What is the displacement (on a straight line) of the hiker from the camp?
please answer all questions
The car alarm on a stationary car emits sound waves with a frequency of 450 Hz. If you are moving away from the stationary car at 20 m/s, what alarm frequency do you perceive
Answer:
Explanation:
The frequency of wave is directly proportional to velocity
f = kV
k = f/V
f1/V1 = f2/V2
Given
f1 = 450Hz
V1 = 343m/s
f2 = ?
V2 = 20m/s
Substitute into the formula
450/343 = f2/20
Cross multiply
343f2 = 450×20
343f2 = 9000
f2 = 9000/343
f2 = 26.24Hz
The volume of water in a water bottle, is about 398
g
cm
km/hr
Kg
g/mL
ml
km
m/s
Answer:
milliliters (ml)
Explanation:
millileters is the correct measurement for liquids
A car traveling at 32.4 m/s skids to a stop in 4.55 s. Determine the skidding distance of the car (assume uniform acceleration).
Answer:
x = 73.71 [m]
Explanation:
In order to solve this problem we must use two formulas of kinematics. It is important to make it clear that these formulate are for uniformly accelerated motion, i.e. with constant acceleration.
[tex]v_{f }= v_{i}-(a*t)[/tex]
where:
Vf = fnal velocity = 0
Vi = initial velocity = 32.4 [m/s]
t = time = 4,55 [s]
a = acceleration or desacceleration [m/s^2]
0 = 32.4 - (a*4.55)
a = 7.12 [m/s^2]
Note: it is important to clarify that the negative sign in the above equation is because the car stops and decreases its speed to zero, thus its final velocity is equal to zero.
Now using the following equation:
[tex]x = x_{o} + (v_{i}*t)-(\frac{1}{2} )*a*t^{2}[/tex]
where:
xo = initial distance = 0
x = final distance [m]
Therefore we have:
x = 0 + (32.4*4.55) - (0.5*7.12*4.55^2)
x = 73.71 [m]
In a spy movie, the hero, James, stands on a scale that is positioned horizontally on the floor. It registers his weight as 810 N . Unknown to our hero, the floor is actually a trap door, and when the door suddenly disappears, James and the scale fall at the acceleration of gravity, down towards an unknown fate. As James falls, he looks at the scale to see his weight. What does he see
Answer:
His weight would be zero on the scale i.e he is weightless at that instance.
Explanation:
weight = mg
where m is the mass of the object, and g is the acceleration of gravity.
⇒ 810 = mg
During free fall, the weight of an object can be determined by:
W = mg - ma (provided that acceleration of gravity is greater than acceleration of the object)
where a is the acceleration of the object.
But since James fall at the acceleration of gravity, then:
g = a
mg = ma = 810 N
So that;
W = 810 - 810
= 0 N
Therefore though the weight of James is 810 N, but the scale reads 0 N. this condition is referred to as weightlessness.