Mention four importance of writing the physical quantities as vectors.​

Answers

Answer 1

Answer:

Explanation:

Knowledge of vectors is important because many quantities used in physics are vectors. If you try to add together vector quantities without taking into account their direction you'll get results that are incorrect.

Some of the key vector quantities in physics: force, displacement, velocity, and acceleration.

An example of the importance of vector addition could be the following:

Two cars are involved in a collision. At the time of the collision car A was travelling at 40 mph, car B was travelling at 60 mph. Until I tell you in which directions the cars were travelling you don't know how serious the collision was.

The cars could have been travelling in the same direction, in which case car B crashed into the back of car A, and the relative velocity between them was 20 mph. Or the cars could have been travelling in opposite directions, in which case it was a head on collision with a relative velocity between the cars of 100 mph!

Answer 2

Vector is defined as a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another

What is vector quantity?

Vector is defined as a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another

Knowledge of vectors is important because many quantities used in physics are vectors. If you try to add together vector quantities without taking into account their direction you'll get results that are incorrect.

Some of the key vector quantities in physics: force, displacement, velocity, and acceleration.

An example of the importance of vector addition could be the following:

Two cars are involved in a collision. At the time of the collision car A was travelling at 40 mph, car B was travelling at 60 mph. Until I tell you in which directions the cars were travelling you don't know how serious the collision was.

The cars could have been travelling in the same direction, in which case car B crashed into the back of car A, and the relative velocity between them was 20 mph. Or the cars could have been travelling in opposite directions, in which case it was a head on collision with a relative velocity between the cars of 100 mph!

To know more about vectors follow

https://brainly.com/question/25705666


Related Questions

Estimate the distance (in cm) between the central bright region and the third dark fringe on a screen 5.00 m from two double slits 0.500 mm apart illuminated by 500-nm light.

Answers

Answer:

y = 1.75 cm

Explanation:

In the double-slit experiment the equation for destructive interference is

           d sin tea = (m + ½)

λ

let's use trigonometry to find the angle

         tan θ = y / L

as all the experiment does not occur at small angles

          tan θ = sin θ / cos θ = sin θ = y / L

we substitute

        y = (m + 1/2 ) λ  L / d

we calculate

         y = (3 + ½) 500 10⁻⁹ 5.00 / 0.5 10⁻³

         y = 1.75 10⁻² m

         y = 1.75 cm

The 2-kg collar is attached to a spring that has an un-stretched length of 3.0 m. If the collar is drawn to point B and releases from rest, what is the speed when it arrives at point A. Note that k = 3.0 N/m and neglect friction.

Answers

Complete Question

The image for this question is shown on the first uploaded image

Answer:

[tex]v = 3.4 \ m/s[/tex]

Explanation:

From the question we are told that

   The mass of the collar is  [tex]m = 2 \ kg[/tex]

    The original length is  [tex]L = 3.0 \ m[/tex]

     The spring constant is  [tex]k = 3.0 \ N/m[/tex]

     

Generally the extension of the spring  is  mathematically evaluated as

        [tex]e = 4 -3 = 1 \ m[/tex]

Now with Pythagoras theorem we can obtain the length from A to B as

        [tex]AB = \sqrt{5 ^2 + 4^2}[/tex]

       [tex]AB = 6.4 \ m[/tex]

The  extension of the spring at B is  

     [tex]e_b = 6.4 - 3 = 3.4 \ m[/tex]

According to the law of energy conservation

   The energy stored in the spring at point A +  the kinetic energy of the  spring =  The  energy stored on the spring at B

So

     [tex]\frac{1}{2} * k * e + \frac{1}{2} * m* v^2 = \frac{1}{2} * k * e_b[/tex]

substituting values

    [tex]\frac{1}{2} * 3 * 1^2 + \frac{1}{2} * 2* v^2 = \frac{1}{2} * 3 * 3.4^2[/tex]

=>   [tex]v = 3.4 \ m/s[/tex]

A liquid of density 1250 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.93 m/s and the pipe diameter d1 is 11.1 cm. At Location 2, the pipe diameter d2 is 16.7 cm. At Location 1, the pipe is Δy=8.89 m higher than it is at Location 2. Ignoring viscosity, calculate the difference ΔP between the fluid pressure at Location 2 and the fluid pressure at Location 1.

Answers

Answer:

The  pressure difference is  [tex]\Delta P = 1.46 *10^{5}\ Pa[/tex]

Explanation:

From the question we are told that

   The  density is  [tex]\rho = 1250 \ kg/m^3[/tex]

   The  speed at location 1  is  [tex]v_1 = 9.93 \ m/s[/tex]

    The  diameter at location 1 is  [tex]d_1 = 11.1\ cm = 0.111 \ m[/tex]

     The  diameter at location 2 is  [tex]d_1 = 16.7\ cm = 0.167 \ m[/tex]

     The  height at location 1 is  [tex]h_1 = 8.89 \ m[/tex]

       The  height at location 2  is  [tex]h_2 = 1 \ m[/tex]

Generally the cross- sectional area at location 1 is mathematically represented as

       [tex]A_1 = \pi * \frac{d^2}{4}[/tex]

=>     [tex]A_1 = 3.142 * \frac{ 0.111^2}{4}[/tex]

=>     [tex]A_1 = 0.0097 \ m^2[/tex]

Generally the cross- sectional area at location 2 is mathematically represented as

           [tex]A_2 = \pi * \frac{d_1^2}{4}[/tex]

=>     [tex]A_2= 3.142 * \frac{ 0.167^2}{4}[/tex]

=>     [tex]A_2 =0.0219 \ m^2[/tex]

From continuity formula

       [tex]v_1 * A_1 = v_2 * A_2[/tex]

=>     [tex]v_2 = \frac{A_1 * v_1}{A_2 }[/tex]

=>      [tex]v_2 = \frac{0.0097 * 9.93}{0.0219 }[/tex]

=>      [tex]v_2 = 4.398 \ m/s[/tex]

Generally according to Bernoulli's theorem

     [tex]P_1 + \rho * g * h_1 + \frac{1}{2} \rho * v_1^2 = P_2 + \rho * g * h_2 + \frac{1}{2} \rho * v_2^2[/tex]

=>   [tex]P_2 - P_1 = \frac{1}{2} \rho (v_1 ^2 - v_2^2 ) + \rho* g (h_1 - h_2)[/tex]

=> [tex]\Delta P = \frac{1}{2}* 1250* (9.93 ^2 - 4.398^2 ) + 1250* 9.8 (8.89- 1)[/tex]

=> [tex]\Delta P = 1.46 *10^{5}\ Pa[/tex]

Please answer the following questions about uniform circular motion.?
Part (a) A planet orbits a star in a circular orbit at a constant orbital speed, which of the following statements is true?
All of these are correct.
The magnitude of the orbital velocity of the planet is unchanged, thus there is no acceleration and therefore no force action on the planet.
None of these are correct.
The planet experiences a centripetal force pulling towards its star.
The planet experiences no centripetal force.
The planet experiences a centripetal force pushing it away from its star.
Part (b) When a planet is orbiting a star, which force plays the role of the centripetal force?
The force resulting from the planets’ velocity around the star.
The force resulting from the centripetal acceleration.
The gravitational force
Part (c) Which of the following are true statements about uniform circular motion?
An object in uniform circular motion experiences a tangential force.
An object in uniform circular motion experiences a centripetal force, an equal and opposite centrifugal force, and a tangential force.
An object in uniform circular motion experiences a centripetal force and a tangential force.
An object in uniform circular motion experiences a centripetal force.
None of these choices are true.
An object in uniform circular motion experiences no forces.

Answers

Answer:

a) The planet experiences a centripetal force towards its star

b) The universal attractive force (Gravitational force)

c)None of these choices are true.

Explanation:

This problem raise several claims, let's review some aspects of circular motion

            F = m a

the centripetal acceleration is

            a = v² / r

where v is the speed (modulus of velocity) that is constant and r is the radius

 

The direction of the acceleration is perpendicular to the motion.

Let's review the different claims

Part a) the orbital velocity is constant

The correct statement is: The planet experiences a centripetal force towards its star

Part b) what is the centripetal force

The correct statement: The universal attractive force (Gravitational force)

Part c) which statement is true

1) False. There can be no tangential force

2) False. There is a centripetal force that creates the movement, but there is no centrifugal force because the system is accelerated and there is no tangential force because the movement is circular.

3) False. There is no tangential force

4) True none is true

5) False. There is a force because movement has acceleration

If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from the color of the light), the power input, the Stefan-Boltzmann constant, and what property of the filament

Answers

Answer:

To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and Emissivity of the Filament.

Explanation:

The emissive power of a light bulb can be given by the following formula:

E = σεAT⁴

where,

E = Power Input or Emissive Power

σ = Stefan-Boltzmann constant

ε = Emissivity

A = Area

T = Absolute Temperature

Therefore,

A = E/σεT⁴

So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and Emissivity of the Filament.

The allowed energies of a simple atom are 0.0 eV, 4.0 eV, and 6.0 eV. Part A What wavelength(s) appear(s) in the atom's emission spectrum

Answers

Answer:

3.1 × 10^- 7 m and 2.1 × 10^-7 m

Explanation:

First we must convert each value of energy to Joules by multiplying its value by 1.6 ×10^-19. After that, we can now obtain the wavelength from E= hc/λ

Where;

h= planks constant

c= speed of light

λ= wavelength of light

For 6.0ev;

E= 6.0 × 1.6 ×10^-19

E= 9.6 × 10^-19 J

From

E= hc/λ

λ= hc/E

λ= 6.6 × 10^-34 × 3 × 10^8/9.6 × 10^-19

λ= 2.1 × 10^-7 m

For 4.0 eV

4.0 × 1.6 × 10^-19 = 6.4 × 10^-19 J

E= hc/λ

λ= hc/E

λ= 6.6 × 10^-34 × 3 × 10^8/6.4 × 10^-19

λ= 3.1 × 10^- 7 m

(a) The wavelength of the atom's emission spectrum when the energy is 4 eV is [tex]3.1 \times 10^{-7} \ m[/tex]

(b) The wavelength of the atom's emission spectrum when the energy is 6 eV is

[tex]2.1 \times 10^{-7} \ m[/tex]

The wavelength of the atom's emission spectrum is calculated as follows;

[tex]E = hf\\\\E = \frac{hc}{\lambda}[/tex]

where;

λ is the wavelengthh is Planck's constant

For 4 eV;

[tex]\lambda = \frac{hc}{E} \\\\\lambda = \frac{(6.626 \times 10^{-34}) \times 3\times 10^8}{4 \times 1.602 \times 10^{-19}} \\\\\lambda = 3.1 \times 10^{-7} \ m[/tex]

For 6 eV;

[tex]\lambda = \frac{hc}{E} \\\\\lambda = \frac{(6.626 \times 10^{-34}) \times 3\times 10^8}{6 \times 1.602 \times 10^{-19}} \\\\\lambda = 2.1 \times 10^{-7} \ m[/tex]

Learn more here:https://brainly.com/question/9432100

Make a graph of the data. You may use a graphing program. Think about what data should be on the y-axis and the x-axis. Be sure to label each axis and note the units used in the measurements. Be sure to draw a smooth curve through the points. Do not just connect the dots. Upload your data and graph in the essay box below and answer the following questions. Did the car travel at a constant speed? What was the average speed of the car? What are some practical applications for determining the motion of an object?

Answers

Answer:

yes it was a constant speed and the car traveled 10 meters in 20 seconds.

Explanation:

Answer:

It's a constant speed and the car traveled 10 meters in 20 seconds.

hope this helps!

Explanation:

The coefficient of static friction between a 3.00 kg crate and the 35.0o incline is 0.300. What minimum force F must be applied perpendicularly to the incline to prevent the crate from sliding down

Answers

Answer:

32.13 N

Explanation:

Given that

mass of the crate, m = 3 kg

angle of inclination, = 35°

coefficient of static friction, = 0.3

To solve this, we can assume that the minimum force is F Newton, then use the formula

mgsinA = coefficient of static friction * [F + mgcosA]

=>3 * 9.8 * sin35 = 0.3 * [F + 3 * 9.8 * cos35]

=> 29.4 * 0.5736 = 0.3 * [F + 29.4 * 0.8192]

=> 16.86 = 0.3 [F + 24.08]

=> 16.86 = 0.3F + 7.22

=> 16.86 - 7.22 = 0.3F

=> 0.3F = 9.64

=> F = 9.64/0.3

=> F = 32.13 N

Therefore, the Force that must be applied is 32.13 N

The  net force that must be applied is  9.8 N.

The minimum force required is Fnet.

Fnet = -Ff + mgsinθ

But Ff = μN = μmgcosθ

Fnet = - μmgcosθ + mgsinθ

Where;

m = 3.00 kg

μ =  0.300

θ = 35.0o

Substituting values;

Fnet = mgsinθ - μmgcosθ

Fnet = (3 × 10 × sin 35.0o) - (3 × 0.300  × 10 × cos  35.0o)

= 17.2 - 7.4

Fnet = 9.8 N

Learn more: https://brainly.com/question/2510654

Consider two different isotopes of the same neutral element. Which statements about these isotopes are true?

a. Both isotopes contain the same number of protons.
b. Both isotopes contain the same number of nucleons.
c. isotopes contain the same number of neutrons.
d. Both isotopes contain the same number of orbital electrons.
d. The sum of the protons and neutrons is the same for both isotopes.

Answers

Answer:

a. d.

Explanation:

isotopes have a diff number of neutrons

Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side of firecracker A. You see two flashes of light, from the two explosions, at exactly the same instant of time.
Define event 1 to be "firecracker 1 explodes" and event 2 to be "firecracker 2 explodes." According to your lab partner, based on measurements he or she makes, does event 1 occur before, after, or at the same time as event 2? Explain.

Answers

Answer:

See the explanation

Explanation:

Given:

Distance of Firecrackers A and B = 600 m

Event 1 = firecracker 1 explodes

Event 2 = firecracker 2 explodes

Distance of lab partner from cracker A = 300 m

You observe the explosions at the same time

to find:

does event 1 occur before, after, or at the same time as event 2?

Solution:

Since the lab partner is at 300 m distance from the firecracker A and Firecrackers A and B are 600 m apart

So the distance of fire cracker B from the lab partner is:

600 m  + 300 m = 900 m

It takes longer for the light from the more distant firecracker to reach so

Let T1 represents the time taken for light from firecracker A to reach lab partner

T1 = 300/c

It is 300 because lab partner is 300 m on other side of firecracker A

Let T2 represents the time taken for light from firecracker B to reach lab partner

T2 = 900/c

It is 900 because lab partner is 900 m on other side of firecracker B

T2 = T1

900 = 300

900 = 3(300)

T2 = 3(T1)

Hence lab partner observes the explosion of the firecracker A before the explosion of firecracker B.

Since event 1 = firecracker 1 explodes and event 2 = firecracker 2 explodes

So this concludes that lab partner sees event 1 occur first and lab partner is smart enough to correct for the travel time of light and conclude that the events occur at the same time.

Two gratings A and B have slit separations dA and dB, respectively. They are used with the same light and the same observation screen. When grating A is replaced with grating B, it is observed that the first-order maximum of A is exactly replaced by the second-order maximum of B.
a.) I already found that the ratio of db/da is 2
b.) Find the next two principal maxima of grating A and the principal maxima of B that exactly replace them when the gratings are switched. Identify these maxima by their order numbers

Answers

Answer:

mA=2,mB=4

mA=2,mB=4 and

mA=3,mB=6

Explanation:

First of all we need to write the equation of the networks

sin θ = mA λ / dA

sin θ = mB λ / dB

Equating we have

mA λ/ dA = mB λ / dB

We are given the ratio as

dB / dA = 2

So

mA 2 = mB

Finally overlapping orders

We have

mA=2,mB=4

mA=2,mB=4

and mA=3,mB=6

What kind of wave is formed (transverse or longitudimal wave, pick one) is formed by ripples on a calm pond? With explanation! Please help, most detailed answer will get brainliest and many points.

Answers

Answer:

Transverse

Explanation:

It's tranverse because the water molecules are moving repeatedly up and down vertically when the waves move horizontally across the waters surface.

50 g of pieces of brass are heated to 200 ° C and then placed in the aluminum container of a 50 g calorimeter containing 160 g of water. What is the equilibrium temperature, if the temperature of the container and the water is initially 20 ° C?

Answers

Answer:

24.7°C

Explanation:

Heat lost by brass = heat gained by aluminum and water

-q = q

-mCΔT = mCΔT + mCΔT

-(50 g) (0.380 J/g/°C) (T − 200°C) = (50 g) (0.900 J/g/°C) (T − 20°C) + (160 g) (4.186 J/g/°C) (T − 20°C)

-(19 J/°C) (T − 200°C) = (45 J/°C) (T − 20°C) + (670 J/°C) (T − 20°C)

-(19 J/°C) (T − 200°C) = (715 J/°C) (T − 20°C)

-19 (T − 200°C) = 715 (T − 20°C)

-19T + 3800°C = 715T − 14300°C

18100°C = 734T

T = 24.7°C

What is the tension in the cord after the system is released from rest? Both masses (A and B) are 10-kg.

Answers

Answer:

98 N.

Explanation:

Given data: mass= 10 kg,      gravity= 9.8 m/s2

required: tension in the cord=  ?

solution:

formula of tension= mass x gravity

by putting values of mass and gravity, we get

tension= 10 x 9.8

tension= 98 N.  Ans

If the mass of the object which is attached with both ends of cord is 10 kg, so the tension which is a opposite force of weight is 98 N.

Which statement best describes the liquid state of matter?
ОА.
It has definite shape but indefinite volume.
OB.
It has definite shape and definite volume.
Ос.
It has indefinite shape and indefinite volume.
OD.
It has indefinite shape but definite volume.

Answers

Answer:

OB.It has definite shape and definite volume

A vertical scale on a spring balance reads from 0 to 220 N. The scale has a length of 15.0 cm from the 0 to 220 N reading. A fish hanging from the bottom of the spring oscillates vertically at a frequency of 2.70 Hz. Ignoring the mass of the spring, what is the mass m of the fish?

Answers

Mass of fish is 5.09Kg

Explanation:

First to find the spring constant K using

k = F/s

= 220/0.15 = 1466.7 N/m

So using the formula

T = 2π√(m/k)

f = 1/T = 1/2πx √(k/m)

f² x 4π²= k/m

So

m = k/(f² x π²)

m = 1466.7/(2.7² x 4π²)

m = 5.09 kg

The howler monkey is the loudest land animal and can be heard up to a distance of 2.5 km. Assume the acoustic output of a howler to be uniform in all directions. At 2.5 km away from the monkey, what would be the intensity of the sound

Answers

Answer:

10⁻¹² W / m²

Explanation:

The feeble sound that a man can hear is of the vale which measures 0 on decibel scale . The intensity of sound in terms of J / m² .s is 10⁻¹² W / m² .

So the intensity of sound of monkey at 2.5 km must be 10⁻¹² W / m² .

An airplane is traveling at 400 mi/h. It touches down at an airport 2000 miles away. How long was the airplane airborne?

Answers

Answer:

5 hours

Explanation:

Given that

Speed of the airplane, v = 400 mile/hr

Distance of the airport, s = 2000 miles

This is quite a straightforward question that deals with one of the basic formulas in physics.

Speed.

speed is said to the the ratio of distance covered with respect to the time taken. This can be mathematically expressed as

Speed, v = distance covered, d / time taken, t

v = d / t

In the question above, we're looking for the time taken. So, so make t, subject of formula.

t = d / v, now we proceed to substituting the earlier given values into this equation.

t = 2000 / 400

t = 5 hrs,

therefore we can conclude that the airplane was airborne for 5 hours

Parallel rays of monochromatic light with wavelength 582 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 4.40×10^−4 W/m^2.

Required:
What is the intensity at a point on the screen that is 0.710 mm from the center of the central maximum?

Answers

Answer:

What is the intensity is 1.3349 × 10⁻⁷ w/m²

Explanation:

Given that;

λ = 582 nm = 582 × 10⁻⁹

R = 75.0 cm = 0.75 m

d = 0.640 mm = 0.000640 m

a = 0.434 mm = 0.000434 m

I₀ =  4.40×10⁻⁴ W/m²

y = 0.710 mm  = 0.00071 m

Now to get our tanФ we say

tanФ = y/R =  0.00071 / 0.75 = 0.0009466  

Ф is so small

∴ tanФ ≈ sinФ

So

∅ = 2πdsinФ / λ

we substitute

∅ = ( 2π × 0.000640 × 0.0009466  ) /  582 × 10⁻⁹

=  6.54 rad

Now

β = 2πasinФ / λ

we substitute

β = ( 2π × 0.000434 × 0.0009466  ) /  582 × 10⁻⁹

β = 4.435 rad

I = I₀ cos²(∅/2) [(sin(β/2))/(β/2)]²

we substitute

I = 4.40×10⁻⁴ cos(3.27)² [ (sin(2.2175)) / (2.2175) ]²  

= 4.40×10⁻⁴ × 0.9967 × 0.0003044

= 1.3349 × 10⁻⁷ w/m²

A tire swing hanging from a branch reaches nearly to the ground. How could you estimate the height of the branch using only a stopwatch?

Answers

Answer:

Explanation:

With the help of expression of  time period of pendulum we can calculate the height of the branch . The swinging tire can be considered equivalent to swinging bob of a pendulum . Here length of pendulum will be equal to height of branch .

Let it be h . Let the time period of swing of tire be T then from the formula of time period of pendulum

[tex]T = 2\pi\sqrt{\frac{l}{g} }[/tex]  where l is length of pendulum .

here l = h so

[tex]T = 2\pi\sqrt{\frac{h}{g} }[/tex]  

[tex]h = \frac{T^2g}{4\pi^2}[/tex]

If we calculate the time period of swing of tire , we can calculate the height of branch .

The time period of swing of tire can be estimated with the help of a stop watch . Time period is time that the tire will take in going from one extreme point to the other end and then coming back . We can easily estimate it with the help of stop watch .

what happens to the speed of the
Skateboard/refrigerator when there is no longer a force being applied ?

Answers

Answer:

The speed stays constant after the force stops pushing.

Explanation:

Speed always stays constant when the force stops pushing it.

An electron accelerates through a 12.5 V potential difference, starting from rest, and then collides with a hydrogen atom, exciting the atom to the highest energy level allowed. List all the possible quantum-jump transitions by which the excited atom could emit a photon. 4 rightarrow 3 4 rightarrow 2 4 rightarrow 1 3 rightarrow 2 3 rightarrow 1 2 rightarrow 1

Answers

Answer:

Initial state    Final state

     3           ⇒        2

     3           ⇒        1

     2          ⇒         1

Explanation:

For this exercise we must use Bohr's atomic model

         E = - 13.606 / n²

where is the value of 13.606 eV is the energy of the ground state and n is the integer.

The energy acquired by the electron in units of electron volt (eV)

          E = e V

          E = 12.5 eV

all this energy is used to transfer an electron from the ground state to an excited state

        ΔE = 13.6060 (1 / n₀² - 1 / n²)

the ground state has n₀ = 1

       ΔE = 13.606 (1 -  1/n²)

        1 /n² = 1 - ΔE/13,606

         1 / n² = 1 - 12.5 / 13.606

         1 / n² = 0.08129

          n = √(1 / 0.08129)

          n = 3.5

 since n is an integer, maximun is

         n = 3

because it cannot give more energy than the electron has

From this level there can be transition to reach the base state.

 

Initial state    Final state

     3           ⇒        2

     3           ⇒        1

     2          ⇒         1

The possible quantum-jump transitions by which the excited atom emits a photon are :

Initial state    Final state

    3          --->       2

    3          ---->      1

    2          ---->      1

Given data :

Potential difference through which an electron accelerates = 12.5 V

Energy acquired by the the electrons = 12.5 eV  ( e * 12.5 )

The Model we will use to determine the possible quantum jump transition is  Bohr's atomic model

 E = - 13.606 / n²    

where ; n = integer

energy at ground state = 13.606 eV

The energy acquired by the electrons ( 12.5 eV )  is used to move the electron from its ground state to an excited state.

Therefore

ΔE = 13.606 * (1 / n₀² - 1 / n²)  ---- ( 1 )  

where n₀ = 1

Back to equation ( 1 )

ΔE = 13.606 (1 -  1/n²)   -- ( 2 )

Resolving equation ( 2 )

1 / n² = 0.08129

n = 3.5 .    Therefore the maximum integer = 3  

Hence The collision between the electron and the hydrogen atom will undergo three ( 3 ) transition to reach the base state.

In Conclusion The possible quantum-jump transitions by which the excited atom emits a photon are :

Initial state    Final state

    3          --->       2

    3          ---->      1

    2          ---->      1

Learn more : https://brainly.com/question/7289718

Zoning laws establish _______.

Answers

Answer:

Zoning ordinances detail whether specific geographic zones are acceptable for residential or commercial purposes. Zoning ordinances may also regulate: - size

- placement

- density

- height of structures

HOPE IT HELPS :)

PLEASE MARK IT THE BRAINLIEST!

Answer:

B

Explanation:

B on edg.

A particle with charge -5 C initially moves at v = (1.00 i^ + 7.00 j^ ) m/s. If it encounters a magnetic field B =80 Tkˆ, find the magnetic force vector on the particle.

Answers

Answer:

The magnetic force is  [tex]\= F = 400\r j + 2800\r i[/tex]

Explanation:

From the question we are  told that

  The  charge is  [tex]q = -5C[/tex]

  The  velocity is  [tex]v = (1.00\ \r i + 7.00 \ \r j )\ m/s[/tex]

   The  magnetic field is  [tex]B = 80 \r k \ \ T[/tex]

Generally the magnetic force is mathematically represented as

        [tex]\= F = q \= v \ \ X \ \ \= B[/tex]

=>     [tex]\= F = -5 (1.0 \r i + 7.0 \r j ) \ \ X \ \ 80 \r k[/tex]

=>    [tex]\= F = -5.0 \r i + 35\r j \ \ \ X \ \ 80\r k[/tex]

=>  [tex]\= F = 400\r j + 2800\r i[/tex]    N/B - Applied cross - product of unit vector

a father and his son want to play on a seesaw. where on the seesaw should each of them sit to balance the torque

Answers

On the opposite sides, the father would out weigh the sons weight, simply because he is bigger than the son

The definite answer is “the opposites side of the seesaw”

Hope this helps you ☁︎☀︎☁︎

A father and his son want to play on a seesaw. Due to his larger size than that of the son, the father should outweigh the boy on the opposing sides.

What is seesaw?

A seesaw is a long, narrow board with a single pivot point, which is often situated in the middle of both ends. As one end rises, the other falls.

What is outweigh?

Rugby continues to have far more health advantages than hazards.

A father and his son want to play on a seesaw. Due to his larger size than that of the son, the father should outweigh the boy on the opposing sides.

To know more about seesaw and outweigh

https://brainly.com/question/27823383

#SPJ2

If a thermometer measured the temperature in an oven as 400oF five days in a row when the temperature was actually 397oF, this measuring instrument would be considered quite:

Answers

Answer:

It can be said to be reliable although it is not valid

Explanation:

This is because Reliability means an indicator of consistency, A measure should produce similar or the same results consistently if it measures the same quantity. So does the thermometer measures over 5days but it is not valid because it deviates from the real value

Sodium has a work function of 2.46 eV.
(a) Find the cutoff wavelength and cutoff frequency for the photoelectric effect.
(b) What is the stopping potential if the incident light has a wavelength of 181 nm?

Answers

Answer:

Explanation:

given, work function of Φ = 2.46 eV.

converting the eV to joule, we have

2.45 * 1.6*10^-19 J

The cutoff wavelength is the wavelength where the incoming light does not have enough energy to free an electron, i.e. all of

the photon’s energy will be channeled into trying overcoming the work function barrier.

It is mathematically given as

Φ = hf

f = Φ/h

f = (2.46 * 1.6*10^-19) / 6.63*10^-34

f = 3.936*10^-19 / 6.63*10^-34

f = 5.94*10^14 Hz as our cut off frequency

λf = c,

λ = c/f

λ = 3*10^8 / 5.94*10^14

λ = 5.05*10^-7

λ = 505 nm as our cut off wavelength

K(max) = hf - Φ

K(max) = hc/λ - Φ

K(max) = [(6.63*10^-34 * 3*10^8) / 181*10^-9] - 3.936*10^-19

K(max) = (1.989*10^-25/181*10^-9) - 3.936*10^-19

K(max) = 1.1*10^-18 - 3.936*10^-19

K(max) = 7.064*10^-19 J or 4.415 eV

V(s) = K(max) / e

V(s) = 4.612 V

An object floats in water with 58 of its volume submerged. The ratio of the density of the object to that of water is

Answers

Complete Question

 An object floats in water with 5/8 of its volume submerged. The ratio of the density of the object to that of water is:

(a) 8/5

(b) 1/2

(c) 3/8

(d) 5/8

(e) 2/1

Answer:

  The correct option is  d

Explanation:

 From the question we are told that

     The ratio of the  volume of the object submerged to the total volume of the object  is  [tex]\frac{V_w}{V_o} = \frac{5}{8}[/tex]

Generally the buoyancy force acting on the object is equal to the weight of the water displaced and this is mathematically represented as

      [tex]F_b = W[/tex]

Now the mass of the water displaced is mathematically represented as

      [tex]m_w = \rho_w * V_w[/tex]

While the mass of the object is mathematically represented as

    [tex]m_o = \rho_o * V_o[/tex]

So  

      [tex]F_b = W \ \equiv \ \rho * V_o * g = \rho * V_w * g[/tex]

   =>    [tex]\frac{V_w}{V_o} = \frac{\rho_o}{\rho_w}[/tex]

From the question that it volume of the water displace (equivalent to the volume of the object in water  ) to the volume of the total object is

        [tex]\frac{V_w}{V_o} = \frac{5}{8}[/tex]

So

     [tex]\frac{\rho_o}{\rho_w} = \frac{5}{8}[/tex]

       

A source of emf is connected by wires to a resistor, and electrons flow in the circuit. The wire diameter is the same throughout the circuit. Compared to the potential energy of an electron before entering the source of emf, the potential energy of an electron after leaving the source of emf is

Answers

Answer

The potential energy is  less

Explanation:

From the question we are told that

   The  source of  the emf is  by wires to a resistor.

Now  the potential energy of electron before leaving the source emf will be greater than the potential energy of an electron after leaving the source of emf because the resistor connected to the source emf will reduced the potential energy as it will convert some of the energy to heat

The potential energy of an electron after leaving the source of emf is lesser.

What is electro motive force?

Electro motive force is the voltage or potential difference of an electrical energy device such as battery.

The  source of  the emf is  by wires to a resistor.Now,  the potential energy of an electron before leaving the source emf will be greater than the potential energy of an electron.

After leaving the source of emf because the resistor connected to the source of emf will reduce the potential energy as it will convert some of the energy to heat.

Thus the potential energy of an electron after leaving the source of emf is lesser.

To know more about Electromotive force, follow

https://brainly.com/question/820393

Represent a vector of 100 N in North-East direction

Answers

Answer:

please find the attachment to this question.

Explanation:

In this question, we represent the 100N in the North-East direction, but first, we define the vector representation:

It is generally represented through arrows, whose length and direction reflect the magnitude and direction of the arrow points. In this, both size and direction are necessary because the magnitude of a vector would be a number that can be compared to one vector.

Please find the attachment:

Other Questions
1. Mr. Miller is building a dollhousefor his daughter Juanita. He isdesigning the dollhouse after acolonial home with a height of10 yards. If he wants thedollhouse to be 4 feet tall, whatscale should he use?A. 1 foot:2-yards25B. 2 feet:15 yards1C. 2 feet:7- yards2et 7D. 1 foot:5 yards Write a net ionic equation to show that triethylamine, (C2H5)3N, behaves as a Bronsted-Lowry base in water. find the surface area of composite figures please help me on this A running back with a mass of 70 kg travels down the field with a velocity of 5.0 ms . Calculate the kinetic energy of the football player Given that 2^x = 7, find the value of 4^{x-1}. Braxton Starts his hike at sea level. Hethen hikes Uphill 200 feets, downhill 50 feets.and then he takes a break.Write an absolute Value Expression torepresent the number of feet of braxton'shike.How many feet did braxton hikes? x+3y=6 and 4x-2y=32 Solve each system of equations Whether or not the process is observed in nature, which of the following could account for the transformation of gallium-67 to zinc-67?a) positron emissionb) alpha decayc) electron captured) beta decay Is -1 1/2 rational? See Pic............. Write four true conditional statements based on this biconditional statement.An angle is a right angle if and only if it measures 90. A store sells paint sets. Each paint set costs the same amount. During a sale, the store reduces the price of each paint set by $1.30. Jasmine spends$16.45 on 5 paint sets at the sale price.What was the price of 1 paint set before the sale? You throw a balloon that floats in the air with a velocity of 2 m / s south . If the wind speed is 5 m / s west , how far south will the balloon travel after 2 seconds ? one quarter of a bread recipe calls 2/3 cup of bread flour how many cups are needed per recipe 1.) Health is the state of well-being in which all of the components ofhealth are in *O OrderO AlignmentO Working conditionO Balance Sr. Bandero sees himself as being talented. tyler brought 7/12 pound of trail mix on a camping trip. he ate 4/12 pound of the trail mix. how much trail mix is left GRIDDED RESPONSE Mark got 18 out of 25questions correct on his science test. What percentof the questions did he get correct? HELP!!!! Two airplanes leave the airport. Plane A departs at a 44' angle from the runway, and plane B departs at a 40' from the runway Which plane was farther away fromthe airport when it was 6 miles from the ground? Round the solutions to the nearest hundredthPlane A because it was 8.64 miles awayPlane A because it was 8.34 miles awayPlane B because it was 7.83 miles awayPlane B because it was 9.33 miles awayQuestion 4 Multiple Choice Worth 1 points)(05.02 MC)A triangle was dilated by a scale factor of 4. If tan a' =and FD measures 12 units, how long is EF?Question 3 (Not Answered). OmNed QuestionPrevious Question