line segment XY is graphed on a coordinate grid with endpoints at X(-5,-3). and Y (-1,-3). if the lime segment is rotated 90 degrees counterclockwise about the origin , what is the length of the transformed line segment , XY?

Answers

Answer 1

The length of the transformed line segment XY after rotating 90 degrees counterclockwise about the origin is 4 units.

We have to find the length of the transformed line segment XY after rotating 90 degrees counterclockwise about the origin

We can use the distance formula.

Distance=√(x₂-x₁)²+(y₂-y₁)²

Given the endpoints X(-5, -3) and Y(-1, -3)

let's calculate the distance between them.

Distance = √((-1 - (-5))^2 + (-3 - (-3))^2)

= √(4^2 + 0^2)

= √(16 + 0)

= √16

= 4

To learn more on Distance click:

https://brainly.com/question/15172156

#SPJ1


Related Questions

Given a normal distribution with μ=55 and σ=5​, complete parts​ (a) through​ (d).
Between what two​ X-values (symmetrically distributed around the​ mean) are 60​% of the​ values?

Answers

60% of the values are between two X-values symmetrically distributed around the mean. Specifically, the X-values that encompass 60% of the distribution lie between approximately 51.42 and 58.58.

To explain this, we can utilize the properties of the normal distribution. Since the distribution is symmetric, we can determine the X-values by finding the z-scores corresponding to the cumulative probability of 0.20 (on each tail). Using a standard normal distribution table or a calculator, we find that the z-score for a cumulative probability of 0.20 is approximately -0.8416.

To find the corresponding X-values, we use the formula: X = μ + (z * σ), where μ is the mean, z is the z-score, and σ is the standard deviation.

For the left tail, we calculate X1 as follows: X1 = 55 + (-0.8416 * 5) ≈ 51.42.

For the right tail, we calculate X2 as follows: X2 = 55 + (0.8416 * 5) ≈ 58.58.

Therefore, between the X-values of approximately 51.42 and 58.58, we can expect 60% of the values in the normal distribution to fall within this range.

To learn more about mean click here, brainly.com/question/31101410

#SPJ11

Suppose you have a student loan of $45,000 with an APR of 6% for 40 years. Complete parts (a) through (c) below. a. What are your required monthly payments? The required monthly payment is $ (Do not round until the final answer. Then round to the nearest cent as needed.) b. Suppose you would like to pay the loan off in 20 years instead of 40. What monthly payments will you need to make? The monthly payment required to pay off the loan in 20 years instead of 40 is $ (Do not round until the final answer. Then round to the nearest cent as needed.) c. Compare the total amount you'll pay over the loan term if you pay the loan off in 20 years versus 40 years. Total payments for the 40-year loan = $ Total payments for the 20-year loan = $

Answers

a) The required monthly payment for a student loan of $45,000 with an APR of 6% for 40 years is $247.60.

b) The required monthly payment for a student loan of $45,000 with an APR of 6% for 20 years instead of 40 years is $322.39.

c) The comparison of the total amount paid for the loan term is as follows:

Total payments for the 40-year loan = $118,848

Total payments for the 20-year loan = $77,373.60.

How the monthly payments are determined:

The monthly payments can be computed using an online finance calculator as follows:

Student loan = $45,000

APR (Annual Percentage Rate) = 6%

Loan period = 40 years

Monthly Payment:

N (# of periods) = 480 months (40 years x 12)

I/Y (Interest per year) = 6%

PV (Present Value) = $45,000

FV (Future Value) = $0

Results:

Monthly Payment (PMT) = $247.60

Sum of all periodic payments = $118,848

Total Interest = $73,848

Student loan = $45,000

APR (Annual Percentage Rate) = 6%

Loan period = 20 years

Monthly Payment:

N (# of periods) = 240 months (20 years x 12)

I/Y (Interest per year) = 6%

PV (Present Value) = $45,000

FV (Future Value) = $0

Results:

Monthly Payment (PMT) = $322.39

Sum of all periodic payments = $77,373.60

Total Interest = $32,373.60

Learn more about monthly payments at https://brainly.com/question/27926261.

#SPJ1

Find the mass of the wire that lies along the curve r and has density δ. C1: r(t) = (6 cos t)i + (6 sin t)j, 0 ≤ t ≤(pi/2) ; C2: r(t) = 6j + tk, 0 ≤ t ≤ 1; δ = 7t^5 units
a)(7/6)((1-64)pi^5+1)
b)(21/60)pi^5
c)(7/6)((3/32)pi^6+1)
d)(21/5)pi^5

Answers

The mass of the wire that lies along the curve r and has density δ is (7/6)((3/32)π⁶+1). (option c)

Let's start with C1. We're given the curve in parametric form, r(t) = (6 cos t)i + (6 sin t)j, 0 ≤ t ≤(π/2). This curve lies in the xy-plane and describes a semicircle of radius 6 centered at the origin. To find the length of the wire along this curve, we can integrate the magnitude of the tangent vector, which gives us the speed of the particle moving along the curve:

|v(t)| = |r'(t)| = |(-6 sin t)i + (6 cos t)j| = 6

So the length of the wire along C1 is just 6 times the length of the curve:

L1 = 6∫0^(π/2) |r'(t)| dt = 6∫0^(π/2) 6 dt = 18π

To find the mass of the wire along C1, we need to integrate δ along the length of the wire:

M1 =[tex]\int _0^{L1 }[/tex]δ ds

where ds is the differential arc length. In this case, ds = |r'(t)| dt, so we can write:

M1 = [tex]\int _0^{(\pi/2) }[/tex]δ |r'(t)| dt

Substituting the given density, δ = 7t⁵, we get:

M1 = [tex]\int _0^{(\pi/2) }[/tex] 7t⁵ |r'(t)| dt

Plugging in the expression we found for |r'(t)|, we get:

M1 = 7[tex]\int _0^{(\pi/2) }[/tex]6t⁵ dt = 7(6/6) [t⁶/6][tex]_0^{(\pi/2) }[/tex] = (7/6)((1-64)π⁵+1)

So the mass of the wire along C1 is (7/6)((1-64)π⁵+1).

Now let's move on to C2. We're given the curve in vector form, r(t) = 6j + tk, 0 ≤ t ≤ 1. This curve lies along the y-axis and describes a line segment from (0, 6, 0) to (0, 6, 1). To find the length of the wire along this curve, we can again integrate the magnitude of the tangent vector:

|v(t)| = |r'(t)| = |0i + k| = 1

So the length of the wire along C2 is just the length of the curve:

L2 = ∫0¹ |r'(t)| dt = ∫0¹ 1 dt = 1

To find the mass of the wire along C2, we use the same formula as before:

M2 = [tex]\int _0^{L2}[/tex] δ ds = ∫0¹ δ |r'(t)| dt

Substituting the given density, δ = 7t⁵, we get:

M2 = ∫0¹ 7t⁵ |r'(t)| dt

Plugging in the expression we found for |r'(t)|, we get:

M2 = 7∫0¹ t⁵ dt = (7/6) [t⁶]_0¹ = (7/6)(1/6) = (7/36)

So the mass of the wire along C2 is (7/36).

To find the total mass of the wire, we just add the masses along C1 and C2:

M = M1 + M2 = (7/6)((1-64)π⁵+1) + (7/36) = (7/6)((3/32)π⁶+1)

Therefore, the correct answer is (c) (7/6)((3/32)π⁶+1).

To know more about density here

https://brainly.com/question/29775886

#SPJ4

Brennan measured the wading pool at the salem community center and calculated that it has a circumference of 6.28 meters. what is the pool's radius?

Answers

The radius of the wading pool at the Salem Community Center can be calculated by dividing the circumference by 2π.

The circumference of a circle can be calculated using the formula C = 2πr, where C is the circumference and r is the radius of the circle. In this case, Brennan measured the circumference of the wading pool to be 6.28 meters.

To find the radius, we rearrange the formula as r = C / (2π). Substituting the given circumference value, we have r = 6.28 / (2π).

By dividing 6.28 by 2π, we can calculate the radius of the pool. The exact value will depend on the precision used for π (pi). If we use an approximation of π, such as 3.14, we can evaluate r as 6.28 / (2 * 3.14) = 1 meter.

Therefore, the radius of the wading pool at the Salem Community Center is approximately 1 meter.

Learn more about circumference here:

https://brainly.com/question/28757341

#SPJ11

a. Find the indicated probability using the standard normal distribution.​P(z<1.44​) Round to four decimal places as​ neededb. Find the indicated probability using the standard normal distribution.​P(z>0.62​) Round to four decimal places as​ neededc. Find the indicated probability using the standard normal distribution.​P(-1.35 < z < 0​) Round to four decimal places as​ needed

Answers

Find the probabilities using the standard normal distribution for each of the given scenarios:

a. P(z < 1.44)

To find this probability, we'll use the z-table or standard normal table. Look up the value for z = 1.44 in the table, which gives us the area to the left of the z-score.

Area for z = 1.44: 0.9251

Thus, P(z < 1.44) = 0.9251

b. P(z > 0.62)

First, find the area to the left of z = 0.62 in the z-table:

Area for z = 0.62: 0.7324

Since we want the area to the right, subtract the area to the left from 1:

P(z > 0.62) = 1 - 0.7324 = 0.2676

c. P(-1.35 < z < 0)

To find the probability between two z-scores, we'll subtract the area to the left of the lower z-score from the area to the left of the higher z-score:

Area for z = -1.35: 0.0885
Area for z = 0: 0.5

P(-1.35 < z < 0) = 0.5 - 0.0885 = 0.4115

So, the probabilities are:

a. P(z < 1.44) = 0.9251
b. P(z > 0.62) = 0.2676
c. P(-1.35 < z < 0) = 0.4115

To know more about probabilities, visit:

https://brainly.com/question/30034780

#SPJ11

definite Integrals
2 - a) Set up but do not evaluate, Integral from (2)^(6) e^x sin x dx as the limit of a Riemann Sum. You can choose x_i^* as right endpoints of the interaval [x_i,x_(i+1)].
2 - b) Set up and then use limits and the formula: sum_(i=1)^(n) i^2 = 1/6 n(n+1) to find the exact value of integral from (0)^(2) s x^2 dx. When discussing this problem please clearly express math.

Answers

a) Integral from (2)^(6) e^x sin x dx as the limit of a Riemann Sum can be expressed as: lim(n->infinity) Sum(i=1 to n) e^(2+ i/n) sin(2+ i/n)(1/n)

b) The exact value of integral from (0)^(2) s x^2 dx can be found as 2/3 using the formula: sum_(i=1)^(n) i^2 = 1/6 n(n+1)

a) To express the given integral as the limit of a Riemann Sum, we need to divide the interval [2,6] into n sub-intervals of equal width. Then, we choose x_i^* as the right endpoint of each sub-interval, i.e., x_i^* = 2+ i/n. Thus, the Riemann Sum is given by:

Sum(i=1 to n) f(x_i^*) delta x = Sum(i=1 to n) e^(2+ i/n) sin(2+ i/n)(1/n)

Taking the limit as n approaches infinity, we get the desired integral.

b) To find the exact value of the given integral, we need to evaluate the Riemann Sum for n rectangles. For this, we divide the interval [0,2] into n sub-intervals of equal width. Then, we choose x_i^* as the right endpoint of each sub-interval, i.e., x_i^* = 2i/n. Thus, the Riemann Sum is given by:

Sum(i=1 to n) f(x_i^*) delta x = Sum(i=1 to n) (2i/n)^2 (2/n) = 4/3 Sum(i=1 to n) i^2 / n^3

Using the formula: sum_(i=1)^(n) i^2 = 1/6 n(n+1), we can simplify the Riemann Sum as:

4/3 Sum(i=1 to n) i^2 / n^3 = 4/3 * 1/6 * (n(n+1))^2 / n^3 = 2/3 (n+1)^2 / n^2

Taking the limit as n approaches infinity, we get the desired integral as 2/3.

For more questions like Integral click the link below:

https://brainly.com/question/22008756

#SPJ11

a scale model of a building is 3 inches tall. if the building is 90 feet tall, find the scale of the model. a. 1in: 20ft c. 1:25 b. 1ft: 20in d. 1 in: 30ft

Answers

The scale of the model is 1 inch : 30 feet (option d).

To determine the scale of the model, we need to compare the height of the model to the actual height of the building. Given that the height of the model is 3 inches and the height of the building is 90 feet, we can set up a ratio to find the scale.

Let's denote the scale as "1 inch : X feet". Setting up the ratio, we have:

1 inch / X feet = 3 inches / 90 feet.

To solve for X, we can cross-multiply:

3 inches * X feet = 1 inch * 90 feet.

Simplifying the equation:

3X = 90.

Dividing both sides by 3, we find:

X = 30.

Therefore, the scale of the model is 1 inch : 30 feet (option d). This means that each inch on the model represents 30 feet in the actual building. So, for every 1 inch of the model's height, the real building's height corresponds to 30 feet.

Learn more about scale here:

https://brainly.com/question/841108

#SPJ11

Use the table of Consumer Price Index values and subway fares to determine a line of regression that predicts the fare when the CPI is given. CPI 30.2 48.3 112.3 162.2 191.9 197.8 Subway Fare 0.15 0.35 1.00 1.35 1.50 2.00 O j = 0.00955 – 0.124x Où =-0.0331 +0.00254x O û =-0.124 + 0.00955x O û = 0.00254 – 0.0331x

Answers

the predicted subway fare when the CPI is 80 would be $1.214.

To determine the line of regression that predicts subway fare based on CPI, we need to use linear regression analysis. We can use software like Excel or a calculator to perform the calculations, but since we don't have that information here, we will use the formulas for the slope and intercept of the regression line.

Let x be the CPI and y be the subway fare. Using the given data, we can find the mean of x, the mean of y, and the values for the sums of squares:

$\bar{x} = \frac{30.2 + 48.3 + 112.3 + 162.2 + 191.9 + 197.8}{6} = 110.933$

$\bar{y} = \frac{0.15 + 0.35 + 1.00 + 1.35 + 1.50 + 2.00}{6} = 1.225$

$SS_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = 52615.44$

$SS_{yy} = \sum_{i=1}^n (y_i - \bar{y})^2 = 0.655$

$SS_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = 22.69$

The slope of the regression line is given by:

$b = \frac{SS_{xy}}{SS_{xx}} = \frac{22.69}{52615.44} \approx 0.000431$

The intercept of the regression line is given by:

$a = \bar{y} - b\bar{x} \approx 1.225 - 0.000431 \times 110.933 \approx 1.180$

Therefore, the equation of the regression line is:

$y = a + bx \approx 1.180 + 0.000431x$

To predict the subway fare when the CPI is given, we can substitute the CPI value into the equation of the regression line. For example, if the CPI is 80, then the predicted subway fare would be:

$y = 1.180 + 0.000431 \times 80 \approx 1.214$

To learn more about equation visit:

brainly.com/question/29657983

#SPJ11

The following list shows how many brothers and sisters some students have:

2
,


2
,


4
,


3
,


3
,


4
,


2
,


4
,


3
,


2
,


3
,


3
,


4


State the mode.

Answers

Answer:

3.

Step-by-step explanation:

The mode is what number appears the most. Hope this helps!

solve the system of differential equations dx/dt = 4x 7y dy/dt= x-2y

Answers

The general solution to this system of differential equations is given by: x(t) = C1 * [tex]e^3^t[/tex]  + C2 * (-7t * [tex]e^t[/tex] ), y(t) = C1 *  [tex]e^3^t[/tex]  - C2 * 4t *  [tex]e^t[/tex] , where C1 and C2 are constants.

To solve this system, we follow these steps:

1. Write the given system in matrix form: d/dt [x, y] = [A] * [x, y], where A = [4, 7; 1, -2].
2. Calculate the eigenvalues of matrix A: det(A - λI) = 0. The eigenvalues are λ1 = 3, λ2 = -1.
3. Find the eigenvectors associated with each eigenvalue: (A - λI)v = 0. For λ1 = 3, v1 = [1; 1]. For λ2 = -1, v2 = [-7; 4].
4. Form the general solution using the eigenvectors and eigenvalues: x(t) = C1 * [tex]e^\lambda^_1t[/tex]* v1 + C2 * [tex]e^\lambda^_2t[/tex] * v2. In this case, x(t) = C1 *  [tex]e^3^t[/tex]  + C2 * (-7t *  [tex]e^t[/tex] ) and y(t) = C1 *  [tex]e^3^t[/tex]  - C2 * 4t *  [tex]e^t[/tex] .

To know more about differential equations click on below link:

https://brainly.com/question/31583235#

#SPJ11

One leg of a right triangle is 6 units long, and its hypotenuse is 12 units long. What is the length of the other leg? Round to the nearest whole number.

Answers

Answer: 10

Step-by-step explanation: We can find the answer using the Pythagorean theorem a^2 + b^2 = c^2. In this case it would be 6^2 + b^2 = 12^2. Then 36 + b^2 = 144. Subtract to get b^2 = 108. Finally square root them both to get 10.

The formula for the volume of a cone is
V
=
1
3
π
r
2
h
,
V=
3
1

πr
2
h, where
r
r is the radius of the cone and
h
h is the height of the cone. Rewrite the formula to solve for
h
h in terms of
r
r and
V
.
V.

Answers

Answer:

πr²h/3

Step-by-step explanation:

volume of cone = πr²h/3

where π = 3.14

r = radius of cone,

h= height of cone.

Hannah opened a bank account. She placed $120 into the bank account and added $30 per week. Now she has $450 in her account.



A. Write an equation that represents her savings

Answers

The answer of the given question based on the saving bank account  , the equation will be Savings = 120 + 30x.

A bank savings account is one simplest type of bank account. It allows you to keep your money safely while earning through interest per month. Money in a savings account is useful for emergencies since they are insured. You also get a card which enables you to withdraw or deposit money into your account. Parent's usually take this type of account for their children for future purposes.

Let x represent the number of weeks that has passed since Hannah opened the bank account.

Therefore, the equation that represents her savings is:

Savings = (amount of money deposited initially) + (amount of money added per week x number of weeks)

In this case, the amount of money deposited initially is $120, and

the amount of money added per week is $30.

Therefore, the equation is:

Savings = 120 + 30x

Note that "x" represents the number of weeks that have passed since Hannah opened the account.

To know more about Interest visit:

https://brainly.com/question/29639856

#SPJ11

A sample of 4000 persons aged 18 years and older produced the following two-way classification table: Men Women
Single 531 357
Married 1375 1179
Widowed 55 195
Divorced 139 169
Test at a 1% significance level whether gender and marital status are dependent for all persons aged 18 years and older.

Answers

Our calculated chi-square statistic (14.57) is greater than the critical value (11.34), we can reject the null hypothesis and conclude that gender and marital status are dependent for all persons aged 18 years and older.

To test whether gender and marital status are dependent, we need to use the chi-square test of independence. The null hypothesis is that gender and marital status are independent, and the alternative hypothesis is that they are dependent.

First, we need to calculate the expected frequencies for each cell under the assumption of independence. We can do this by multiplying the row total and column total for each cell and dividing by the grand total. For example, the expected frequency for the cell in the first row and first column is:

Expected frequency = (531 + 357) x (531 + 1375 + 55 + 139) / 4000 = 476.58

We can calculate the expected frequencies for all the cells and then use them to calculate the chi-square test statistic:

Observed           Expected          (O - E)^2 / E

             Men     Women     Men     Women

Single        531     357       476.58  411.42    2.68

Married       1375    1179      1374.00 1180.00   0.00

Widowed       55      195       62.58   53.42     2.84

Divorced      139     169       114.84  193.16    9.05

Chi-square = 2.68 + 0.00 + 2.84 + 9.05 = 14.57

The degrees of freedom for the chi-square test are (r-1) x (c-1) = (2-1) x (4-1) = 3, where r is the number of rows and c is the number of columns.

At a significance level of 1%, the critical value for the chi-square distribution with 3 degrees of freedom is 11.34. Since our calculated chi-square statistic (14.57) is greater than the critical value (11.34), we can reject the null hypothesis and conclude that gender and marital status are dependent for all persons aged 18 years and older.

In other words, there is evidence to suggest that the distribution of marital status is different for men and women.

for such more question on chi-square statistic

https://brainly.com/question/17142834

#SPJ11

let g(x) = x^2/f(x). fing g'(3)

Answers

To find g'(3), we need to first find the derivative of g(x) = x^2/f(x) using the quotient rule. The quotient rule states that for a function h(x) = u(x) / v(x), the derivative h'(x) = (v(x)u'(x) - u(x)v'(x)) / v(x)^2.

In this case, u(x) = x^2 and v(x) = f(x). We need to find u'(x) and v'(x) to use the quotient rule.

u'(x) = d(x^2)/dx = 2x
v'(x) = d(f(x))/dx = f'(x)

Now, apply the quotient rule:

g'(x) = (f(x)(2x) - x^2f'(x)) / (f(x)^2)

Finally, to find g'(3), substitute x = 3 into the derivative:

g'(3) = (f(3)(2(3)) - (3^2)f'(3)) / (f(3)^2)

Please note that we cannot provide a numerical answer for g'(3) without knowing the expressions for f(x) and f'(x).

know more about quotient rule here

https://brainly.com/question/29255160

#SPJ11

What is 2/3-1/2 mathswatch

Answers

To subtract fractions, you need to have a common denominator. In this case, the common denominator is 6.

2/3 can be written as 4/6 (by multiplying the numerator and denominator by 2).

1/2 can be written as 3/6 (by multiplying the numerator and denominator by 3).

Now you can subtract them:

4/6 - 3/6 = 1/6

So, 2/3 - 1/2 is equal to 1/6.

The length and width of a rectangle are given by f(x) = 3x2 – 2x and g(x) = 2x – 3, where x > 2. What is f ⋅ g, and what does its value represent?

A. (f ⋅ g)(x) = 12x2 – 40x + 33;The area of the rectangle.
B. (f ⋅ g)(x) = 12x2 – 40x + 21; The perimeter of the rectangle.
C. (f ⋅ g)(x) = 6x3 – 9x2 + 2x;The area of the rectangle.
D. (f ⋅ g)(x) = 6x3 – 13x2 + 6x; The area of the rectangle.

Answers

The value of (f . g)(x ) = 6x³-13x²+6x and the function represents the area of the rectangle

What is area of rectangle?

Area is the measure of a region's size on a surface. The area of a rectangle is expressed as;

A = l×w

where l is the length and w is the width.

length = f(x) = 3x²-2x

width = g(x) = 2x-3

therefore area =( f . g)(x)

= (3x²-2x)(2x-3)

3x²(2x-3) -2x( 2x-3)

6x³-9x²-4x²+6x

= 6x³-13x²+6x.

Therefore the value of (f . g) (x) is 6x³-13x²+6x.

and the function represents the area of the rectangle.

learn more about area of rectangle from

https://brainly.com/question/2607596

#SPJ1

Suppose T and U are linear transformations from Rn to Rn such that T(Ux)=x for all x in Rn. Is it true that U(Tx)x for all x in R"? Why or why not? Let A be the standard matrix for the linear transformation T and B be the standard matrix for the linear transformation U. Choose the correct answer below ○ A. Yes, it is true. AB is the standard matrix of the mapping x_TUx)) due to how matrix multiplication is defined. By hypothesis, this mapping is the identity mapping, so AB= I. Since both A and B are square and AB= 1, the Invertible Matrix Theorem states that both A and B invertible, and B =A-' . Thus, BA= l. This means that the mapping x U(T(x)) is the identity mapping. Therefore, U(T(x)) x for all x in R" ○ B. No, it is not true. AB is the standard matrix for T(U(x)). By hypothesis. TUx))=x is the identity mapping and so ABHowever, matrix multiplication is not commutative so BA is not necessarily equal to l. Since BA is the standard matrix for U(T(x)) U(T(x)) is not necessarily the identity matrix. O C. Yes, it is true. AB is the standard matrix for T(U(x)). By hypothesis, T(U(x))x is the trivial mapping and so AB 0 . This implies that either A or B is the zero matrix, and so BA= 0 . This implies that U(T(x)) is also the trivial mapping ○ D. No, it is not true. AB' is the standard matrix for T(U(x)). By hypothesis. TU(x))= x is the identity mapping and so ABT. However, this does not imply that BA, where BA is the standard matrix for U(T(x) So U(T(x)) is not necessarily the identity

Answers

The required answer is  the mapping x U(T(x)) is the identity mapping, U(T(x)) x for all x in R.

A. Yes, it is true. AB is the standard matrix of the mapping xUx) due to how matrix multiplication is defined. By hypothesis, this mapping is the identity mapping, so AB= I. Since both A and B are square and AB= 1, the Invertible Matrix Theorem states that both A and B are invertible, and B =A^-1. Thus, BA= I.

The standard matrix for the linear transformation T and B be the standard matrix for the linear transformation U.

Identity mapping are known as identity map is a always return the value that used as arguments. The matrix is the first installment in the matrix. It is a rectangular array or table of number. Matrix are arranged in rows and columns. Many kinds of matrix , thus the matrix are the same number of rows and columns is in square matrix. vector space is applied to linear operator is called identity function. This function are the positive integers is a represented by the matrix.

This means that the mapping x U(T(x)) is the identity mapping. Therefore, U(T(x)) x for all x in R.

To know more about the identity mapping, . Click on the link.

https://brainly.com/question/5185513

#SPJ11

Construct both a 95% and a 90% confidence interval for β1 for each of the following cases a. ß1-31 , s-4, SSxx-35, n-10 b/,-65, SSE = 1,860 , SSxx-20, n = 14 c. β,-- 8.6, SSE = 135, SSxx-64, n = 18 a. The 95% confidence interval is 00 (Round to two decimal places as needed.) The 90% confidence interval is 00 (Round to two decimal places as needed.) b. The 95% confidence interval is (Round to two decimal places as needed.) The 90% confidence interval is (Round to two decimal places as needed.) C. The 95% confidence interval is 00 (Round to two decimal places as needed.) The 90% confidence interval is Enter your answer in each of the answer boxes.

Answers

(a) For case a, the 95% confidence interval for β1 is (-48.25, -13.75) and the 90% confidence interval is (-46.37, -15.63).

(b) For case b, the 95% confidence interval for β1 is (-101.15, -28.85) and the 90% confidence interval is (-96.32, -33.68).

(c) For case c, the 95% confidence interval for β1 is (-17.35, 0.15) and the 90% confidence interval is (-15.92, 1.52).

To construct confidence intervals for β1, we need the values of β1, s (standard error of β1), SSxx (sum of squares of x), and n (sample size). The formula for the confidence interval is β1 ± tα/2 × (s / sqrt(SSxx)), where tα/2 is the critical value from the t-distribution for the desired confidence level.

(a) For case a, with β1 = -31, s = -4, SSxx = 35, and n = 10, we calculate the standard error as s / sqrt(SSxx) = -4 / sqrt(35) ≈ -0.676. With a sample size of 10, the critical value for a 95% confidence interval is t0.025,8 = 2.306, and for a 90% confidence interval is t0.05,8 = 1.860. Plugging the values into the formula, we get the 95% confidence interval as -31 ± 2.306 × (-0.676), which gives us (-48.25, -13.75), and the 90% confidence interval as -31 ± 1.860 × (-0.676), which gives us (-46.37, -15.63).

(b) For case b, with β1 = -65, SSE = 1,860, SSxx = 20, and n = 14, we calculate the standard error as sqrt(SSE / (n-2)) / [tex]\sqrt{ SSxx}[/tex]≈ 20.00 / [tex]\sqrt{20}[/tex]≈ 4.472. With a sample size of 14, the critical value for a 95% confidence interval is t0.025,12 = 2.179, and for a 90% confidence interval is t0.05,12 = 1.782. Plugging the values into the formula, we get the 95% confidence interval as -65 ± 2.179 ×4.472, which gives us (-101.15, -28.85), and the 90% confidence interval as -65 ± 1.782 × 4.472, which gives us (-96.32, -33.68).

(c) For case c, with β1 = -8.6, SSE = 135, SSxx = 64, and n = 18, we calculate the standard error as [tex]\sqrt{(SSE / (n-2) }[/tex] / [tex]\sqrt{ SSxx}[/tex] ≈ 135 / [tex]\sqrt{64}[/tex] ≈ 2.813. With a sample size of 18, the critical value for a 95% confidence interval is t

Learn more about confidence intervals here:

https://brainly.com/question/13067956

#SPJ11

A person invests 10000 dollars in a bank. The bank pays 4. 5% interest compounded daily. To the nearest tenth of a year, how long must the person leave the money in the bank until it reaches 17600 dollars?

Answers

To calculate the time required for the investment to reach $17,600, we can use the formula for compound interest:

A = P * (1 + r/n)^(n*t)

Where:

A = Final amount ($17,600 in this case)

P = Principal amount ($10,000)

r = Annual interest rate (4.5% = 0.045)

n = Number of times interest is compounded per year (daily compounding = 365)

t = Time in years

Substituting the values into the formula, we have:

17600 = 10000 * (1 + 0.045/365)^(365*t)

Dividing both sides of the equation by 10000, we get:

1.76 = (1 + 0.045/365)^(365*t)

Now, we can take the natural logarithm (ln) of both sides of the equation:

ln(1.76) = ln((1 + 0.045/365)^(365*t))

Using logarithm properties, we can bring down the exponent:

ln(1.76) = (365*t) * ln(1 + 0.045/365)

Now, we can solve for t by dividing both sides of the equation by 365 * ln(1 + 0.045/365):

t = ln(1.76) / (365 * ln(1 + 0.045/365))

Using a calculator, we can calculate the value of t:

t ≈ 7.7 years

Therefore, to the nearest tenth of a year, the person must leave the money in the bank for approximately 7.7 years until it reaches $17,600.

Learn more about investment  Visit : brainly.com/question/29547577

#SPJ11

In the diagram belowe Point A. BIC and I lie on the circumference of circle FG and FD are tangents to the Circle at cand D respectively, co is produced to met At at & Paurthermore, LGCA = 78° BB an IB LCBD = 410, 480= CBDA = 34° 5 B с A 23 F 3 24 1 B 2.3) Determine, with reasons whether CADF is cyclic quadrilateral or not​

Answers

Based on the given angle measurements, the opposite angles in quadrilateral CADF do not add up to 180°, indicating that CADF is not a cyclic quadrilateral

To determine whether the quadrilateral CADF is cyclic or not, we need to examine its properties and angles.

In the given diagram, we have the following angle measurements:

Angle LGCA = 78° (given)

Angle LBC = 41° (given)

Angle BIC = 48° (given)

Angle LCBD = 41° (given)

Angle CBDA = 34° (given)

To determine if CADF is cyclic, we need to examine if opposite angles add up to 180°. Let's check the opposite angles in the quadrilateral:

Angle CAD + Angle CFD = Angle CBDA (opposite angles)

From the given information, Angle CBDA is 34°, and the sum of the opposite angles CAD and CFD must also be 34° for CADF to be a cyclic quadrilateral.

To find Angle CAD and Angle CFD, we can subtract the known angles from the given angles:

Angle CAD = Angle LGCA - Angle LBC = 78° - 41° = 37°

Angle CFD = Angle BIC - Angle LCBD = 48° - 41° = 7°

Therefore, Angle CAD + Angle CFD = 37° + 7° = 44°, which is not equal to Angle CBDA (34°).

Since the sum of the opposite angles in CADF is not equal to 180°, we can conclude that CADF is not a cyclic quadrilateral.

In summary, based on the given angle measurements, the opposite angles in quadrilateral CADF do not add up to 180°, indicating that CADF is not a cyclic quadrilateral.

Know more about quadrilateral here:

https://brainly.com/question/29635320

#SPJ11

Kewbert paced off 9 yards north, then 40 yards east. If he walked straight


back to his starting point, how far would he have to walk?

Answers

Kewbert paced off 9 yards north, then 40 yards east. If he walked straight back to his starting point, how far would he have to walk?

When Kewbert paced off 9 yards north, he moved nine yards in the direction directly opposite of south, following the line of longitude. He then turned east and paced off 40 yards in the direction directly opposite of west, following the line of latitude.

Now, to return to his original position, Kewbert should move nine yards in the direction directly opposite of north and forty yards in the direction directly opposite of east, thereby following the path he used to move away from his initial position. To sum up, the total distance Kewbert would have to walk to return to his original starting point would be the distance of the hypotenuse of a right triangle. The distance will be determined by the Pythagorean Theorem, which states that the sum of the squares of the lengths of the two legs of a right triangle is equal to the square of the length of the hypotenuse. Therefore: Using the Pythagorean theorem, it can be determined that the distance Kewbert has to walk is 41 yards, given that `9² + 40² = c²` which gives `41² = c²` as `1681 = c²`. Therefore, c = 41.

Know more about Kewbert paced off 9 yards north here:

https://brainly.com/question/24724478

#SPJ11

A tank initially contains 200gal. Of water in which 50lbs. Of salt are dissolved. A salt solution containing 0. 5lb. Of salt per gallon is poured into the tank at a rate of 1gal/min. The mixture in the tank is stirred and drained off at the rate of 2gal/min. A. Find the amount of salt in the tank until the tank is empty. B. Find the concentration of the salt in the tank until the tank is empty. C. Concentration when the tank is empty

Answers

A. The amount of salt in the tank until it is empty is 700 lbs.

B. we find t = 100 minutes, which is the time it takes for the tank to empty.

C. the volume of the mixture is zero when the tank is empty, the concentration becomes undefined or 0 lb/gallon.

To find the amount of salt in the tank and the concentration of the salt at different points in time, we can analyze the process step by step.

Initially, the tank contains 200 gallons of water with 50 lbs of salt dissolved in it. As the salt solution containing 0.5 lb of salt per gallon is poured into the tank at a rate of 1 gallon per minute, the amount of salt in the tank increases while the volume of the mixture also increases. At the same time, the mixture is being stirred to ensure uniform distribution.

After t minutes, the amount of salt in the tank is given by:

Amount of salt = 50 lbs + (0.5 lb/gal) * (1 gal/min - 2 gal/min) * t

The negative term (-2 gal/min) accounts for the drainage rate of 2 gallons per minute. The term (1 gal/min - 2 gal/min) represents the net inflow rate of the salt solution.

To determine when the tank is empty, we set the amount of salt to zero and solve for t:

50 lbs + (0.5 lb/gal) * (1 gal/min - 2 gal/min) * t = 0

Solving this equation, we find t = 100 minutes, which is the time it takes for the tank to empty.

C. The concentration of the salt in the tank when it is empty is 0 lb/gallon. At this point, all the salt has been drained out, and the tank only contains water. The concentration is defined as the amount of salt divided by the volume of the mixture. Since the volume of the mixture is zero when the tank is empty, the concentration becomes undefined or 0 lb/gallon.

Visit here to learn more about volume:

brainly.com/question/28058531

#SPJ11

Suppose X and Y are independent and exponentially distributed random variables with parameters λ and μ, respectively.Find the PDF of Z=X+Y and U=X−Y

Answers

To find the PDF of Z=X+Y, we can use the convolution of probability density functions. Let fX(x) and fY(y) be the PDFs of X and Y, respectively. Then, the PDF of Z is:

fZ(z) = ∫fX(x)fY(z−x)dx

Since X and Y are exponentially distributed, we have:

fX(x) = λe^−λx for x > 0

fY(y) = μe^−μy for y > 0

Substituting these expressions into the convolution formula, we obtain:

fZ(z) = ∫λe^−λx μe^−μ(z−x) dx

= λμe^−μz ∫e^−(λ−μ)x dx

= λμe^−μz / (λ−μ) [1−e^(−(λ−μ)z)]

Thus, the PDF of Z is:

fZ(z) = { λμe^−μz / (λ−μ) [1−e^(−(λ−μ)z)] } for z > 0

To find the PDF of U=X−Y, we can use the change of variables technique. Let g(u,v) be the joint PDF of U and V=X. Then, we have:

g(u,v) = fX(v)fY(v−u)

Substituting the expressions for fX and fY, we get:

g(u,v) = λμe^−λve^−μ(v−u) for u < v

The PDF of U is obtained by integrating out V:

fU(u) = ∫g(u,v)dv

= ∫_u^∞ λμe^−λve^−μ(v−u) dv

= λμe^−μu ∫_0^∞ e^−(λ+μ)v dv

= λμe^−μu / (λ+μ) for all u

Therefore, the PDF of U is:

fU(u) = { λμe^−μu / (λ+μ) } for all u

To know more about PDF of U, visit:

https://brainly.com/question/31730410

#SPJ11

The function f is defined by f(x)=3(1+x)^0.5 cos(πx6) for 0≤x≤3. The function g is continuous and decreasing for 0≤x≤3 with g(3)=0.

Answers

The maximum value of f(x) in the interval [1,2] is f(1) = 3√2/2.

Substituting this value in the expression for g(x), we get:

g(x) = -3√2/2

The function g(x) in terms of the given function f(x), and we can graphically represent it as a horizontal line at y=-3√2/2 in the interval [0,3].

The given function [tex]f(x)=3(1+x)^{0.5} cos(\pi x6)[/tex] for 0≤x≤3 can be graphically represented as a combination of a square root function and a cosine function, with the square root function causing an upward shift of the cosine function.

The amplitude of the cosine function is 3, and the period is 6, which means that it completes one full oscillation in the interval [0,6].

On the other hand, the function g(x) is continuous and decreasing for 0≤x≤3 with g(3)=0.

This means that the graph of g(x) must start at some positive value and decrease steadily until it reaches 0 at x=3.

Function f(x) oscillates between positive and negative values, and its maximum and minimum values occur at x=1 and x=2, respectively.

The function g(x) as the negative maximum value of f(x) in the interval [1,2]. Mathematically, we can write:

g(x) = -max{f(x) : 1≤x≤2}

The maximum value of f(x) in the interval [1,2] as follows:

f(1) = [tex]3(1+1)^{0.5} cos(\pi/6)[/tex]

= 3√2/2

f(2) =[tex]3(1+2)^{0.5} cos(\pi/3)[/tex]

= -3√3/2

For similar questions on function

https://brainly.com/question/11624077

#SPJ11

The maximum value of f(x) in the interval [1, 2] is f(1) = 3√2/2.

Given:

f(x) = 3(1+x)^0.5 cos(πx/6) for 0 ≤ x ≤ 3

g(x) is continuous and decreasing for 0 ≤ x ≤ 3, with g(3) = 0.

To find the maximum value of f(x) in the interval [1, 2], we can evaluate the function at the endpoints of the interval:

f(1) = 3(1+1)^0.5 cos(π/6) = 3√2/2

f(2) = 3(1+2)^0.5 cos(π/3) = 3√3/2

Now, let's consider the function g(x). Since g(x) is continuous and decreasing for 0 ≤ x ≤ 3 with g(3) = 0, we can represent it as a decreasing line from some positive value at x = 0 to 0 at x = 3.

The graph of f(x) consists of oscillations caused by the cosine function multiplied by the square root function. The maximum and minimum values of f(x) occur at x = 1 and x = 2, respectively.

To learn more about function  click here

brainly.com/question/30721594

#SPJ11

evaluate the following integral or state that it diverges. ∫6[infinity] 4cos π x x2dx

Answers

Answer: ∫6[infinity] 4cos(πx)/x^2 dx converges.

Step-by-step explanation:

To determine whether the integral ∫6[infinity] 4cos(πx)/x^2 dx converges or diverges, we can use the integral test for convergence.

The integral test states that if f(x) is continuous, positive, and decreasing for x ≥ a, then the improper integral ∫a[infinity] f(x) dx converges if and only if the infinite series ∑n=a[infinity] f(n) converges.  In this case, we have f(x) = 4cos(πx)/x^2, which is continuous, positive, and decreasing for x ≥ 6.

Therefore, we can apply the integral test to determine convergence.To find the infinite series associated with this integral, we can use the fact that ∫n+1[infinity] f(x) dx is less than or equal to the sum

∑k=n+1[infinity] f(k) for any integer n.

In particular, we have:

∫6[infinity] 4cos(πx)/x^2 dx ≤ ∑k=6[infinity] 4cos(πk)/k^2

To evaluate the series, we can use the alternating series test. The terms of the series are decreasing in absolute value and approach zero as k approaches infinity. Therefore, we can apply the alternating series test and conclude that the series converges. Since the integral is less than or equal to a convergent series, the integral must also converge.

Therefore, we have:∫6[infinity] 4cos(πx)/x^2 dx converges.

Learn more about integrals here, https://brainly.com/question/22008756

#SPJ11

How many integers between 1 and 1000 meet the criteria below. Simplify your answer to an integer. • the digits are distinct the digits are odd • the digits are in ascending order

Answers

Answer:

Step-by-step explanation:

I am assuming  that the number 1 is not included.

This is an arithmetic sequence of integers with first term 1 and last term 999.

Number required  = (999-1) / 2

                              = 499.

There are 20 integers between 1 and 1000 that meet the given criteria.

To find this answer, we can start by noticing that there are only five odd digits: 1, 3, 5, 7, and 9. Therefore, any integer that meets the criteria must be made up of some combination of these digits.

Next, we can focus on the requirement that the digits be distinct. This means that we cannot repeat any of the odd digits within the same integer. We can use combinations to count the number of ways to choose three distinct odd digits from the set {1, 3, 5, 7, 9}:
5C3 = (5!)/(3!2!) = 10

Finally, we need to consider the requirement that the digits be in ascending order. Once we have chosen our three distinct odd digits, there is only one way to arrange them in ascending order. So each combination of three odd digits corresponds to exactly one integer that meets all the criteria.

To know more about integers visit:

https://brainly.com/question/15276410

#SPJ11

The table shows a probability distribution P(X) for a discrete random variable X. What is P(X>2)?

Answers

Answer:

  0.30

Step-by-step explanation:

You want P(x > 2) given the probability distribution table shown.

Greater than 2

There are two table entries where X > 2. One of them has a probability of 0.14, and the other a probability of 0.16. They are mutually exclusive, so the probabilities add.

  P(x > 2) = P(x = 3) + P(x = 4) = 0.14 +0.16

  P(x > 2) = 0.30

<95141404393>

Find the remainder in the Taylor series centered at the point a for the following function. Then show that lim_n rightarrow infinity|R_n(x)| = 0 for tor all x in the interval of convergence. f(x) = e^-x, a = 0 First find a formula for f^n(x). f^n(x) = (Type an exact answer.)

Answers

The remainder in the Taylor series centered at a=0 for the function f(x) = e^(-x) is R_n(x) = (x^n / n!) * e^(-c), where c is some value between 0 and x. The limit as n approaches infinity of the absolute value of R_n(x) is 0 for all x in the interval of convergence.

The Taylor series expansion for the function f(x) = e^(-x) centered at a=0 is given by:

f(x) = f(0) + f'(0)*x + (f''(0)/2!)*x^2 + (f'''(0)/3!)*x^3 + ... + (f^n(0)/n!)*x^n + R_n(x)

To find a formula for f^n(x), we differentiate f(x) repeatedly n times. Starting with the original function f(x) = e^(-x):

f'(x) = -e^(-x)

f''(x) = e^(-x)

f'''(x) = -e^(-x)

f''''(x) = e^(-x)

We can observe that the nth derivative alternates between positive and negative powers of e^(-x) for all n.

By evaluating the nth derivative at a=0, we can find f^n(0):

f(0) = e^0 = 1

f'(0) = -e^0 = -1

f''(0) = e^0 = 1

f'''(0) = -e^0 = -1

...

We can see that f^n(0) = (-1)^(n+1) for all n.

Substituting f^n(0) into the Taylor series expansion, we get:

f(x) = 1 + (-1)*x + (1/2!)*x^2 + (-1/3!)*x^3 + ... + ((-1)^(n+1)/n!)*x^n + R_n(x)

The remainder term R_n(x) is given by:

R_n(x) = (f^(n+1)(c)/n!)*x^(n+1), where c is some value between 0 and x.

Taking the absolute value of R_n(x):

|R_n(x)| = |(f^(n+1)(c)/n!)*x^(n+1)| = |(-1)^(n+2)/n! * x^(n+1)| = |(-1)^(n+2)|/n! * |x|^(n+1) = 1/n! * |x|^(n+1)

As n approaches infinity, the term 1/n! converges to 0, and |x|^(n+1) also converges to 0 when |x| < 1. Therefore, the limit as n approaches infinity of |R_n(x)| is 0 for all x in the interval of convergence.

For more questions like Series click the link below:

https://brainly.com/question/28167344

#SPJ11

how can the output of the floyd-warshall algorithm be used to detect the presence of a negative weight cycle? explain in detail.

Answers

The Floyd-Warshall algorithm to detect the presence of a negative weight cycle by checking the diagonal elements of the distance matrix produced by the algorithm.

If any of the diagonal elements are negative, then the graph contains a negative weight cycle.

The Floyd-Warshall algorithm is used to find the shortest paths between all pairs of vertices in a weighted graph.

If a graph contains a negative weight cycle, then the shortest path between some vertices may not exist or may be undefined.

This is because the negative weight cycle can cause the path length to decrease to negative infinity as we go around the cycle.

To detect the presence of a negative weight cycle using the output of the Floyd-Warshall algorithm, we need to check the diagonal elements of the distance matrix that is produced by the algorithm.

The diagonal elements of the distance matrix represent the shortest distance between a vertex and itself.

If any of the diagonal elements are negative, then the graph contains a negative weight cycle.

The reason for this is that the Floyd-Warshall algorithm uses dynamic programming to compute the shortest paths between all pairs of vertices. It considers all possible paths between each pair of vertices, including paths that go through other vertices.

If a negative weight cycle exists in the graph, then the path length can decrease infinitely as we go around the cycle.

The algorithm will not be able to determine the shortest path between the vertices, and the resulting distance matrix will have negative values on the diagonal.

For similar questions on algorithm

https://brainly.com/question/11302120

#SPJ11

The Floyd-Warshall algorithm is used to find the shortest paths between every pair of vertices in a graph, even when there are negative weights. However, it can also be used to detect the presence of a negative weight cycle in the graph.

Floyd-Warshall algorithm can be used to detect the presence of a negative weight cycle.
The Floyd-Warshall algorithm is an all-pairs shortest path algorithm, which means it computes the shortest paths between all pairs of nodes in a given weighted graph. The algorithm is based on dynamic programming, and it works by iteratively improving its distance estimates through a series of iterations.

To detect the presence of a negative weight cycle using the Floyd-Warshall algorithm, you should follow these steps:
1. Run the Floyd-Warshall algorithm on the given graph. This will compute the shortest path distances between all pairs of nodes.
2. After completing the algorithm, examine the main diagonal of the distance matrix. The main diagonal represents the distances from each node to itself.
3. If you find a negative value on the main diagonal, it indicates the presence of a negative weight cycle in the graph. This is because a negative value implies that a path exists that starts and ends at the same node, and has a negative total weight, which is the definition of a negative weight cycle.

In summary, by running the Floyd-Warshall algorithm and examining the main diagonal of the resulting distance matrix, you can effectively detect the presence of a negative weight cycle in a graph. If a negative value is found on the main diagonal, it signifies that there is a negative weight cycle in the graph.

Learn more about Algorithms here: brainly.com/question/21364358

#SPJ11

Other Questions
Select all that applyWhen organizations are defined by greed and secrecy, which of the following become central to employees?Multiple select question.profitability achievementpositive devianceuncertainty managementcreating resistance You and your friend are rolling number cubes. Each cube has 6 sides with the numbers 1 to 6. If a sum of 7 is rolled, yourfriend gets a point. However, you get a point if either one of the sums listed below is rolled. Which pair of numberswould make the game fair?O 12 and 8O 12 and 10O2 and 5O2 and 12 A stock advisor claims that Berkshire Hathaway, the investment co. run by Warren Buffett, generates positive alpha. How can we test this using a regression model? What are we looking for in the regression output? Write out the regression and state what we are looking for. an asset purchased 2 years ago for $40,000 is harder to maintain than expected. what is the $40,000? why was the blitzkrieg strategy so successful for hitler and germany what lesson did the battle of britain teach both germany and the allies Which of the following are passive footprinting methods? (Choose all that apply.)A. Checking DNS replies for network mapping purposesB. Collecting information through publicly accessible sourcesC. Performing a ping sweep against the network rangeD. Sniffing network traffic through a network tap A battery-operated car utilizes a 12.0 V system. Find the charge the batteries must be able to move in order to accelerate the 750 kg car from rest to 25.0 m/s, make it climb a 2.00 x 10^2 m high hill, and then cause it to travel at a constant 25.0 m/s by exerting a 5.00 x 10^2 N force for an hour. Examine this algebraic expression:3x4 2y + 37 simple organic molecules that are useful in separating a system from its surroundings so that far-from-equilibrium processes can build complexity are known as this is the last index in a string.a. 1b. 99c. 0d. the size of the string minus one The earliest anatomically modern human comes from Africa and date to around 190 ka. Decide which of the following cranial features are unique to modern humans or unique to another hominin species.-flat face-relatively small nose-vertical forehead-largest hominin brain size-prominent chin because of the use of quarter tones, arab musicians may potentially draw from a palette of __ pitches per octave in their music. Calculate the mass of 2. 18 x 10^22 molecules of B2H6? Show your work!!! c) A steel ring of radius 444mm is to be slipped on to a brass wheel of radius 450mm. To what maximum temperatureshould the steel ring be heated to enable fitting? What will be the stresses in the materials on cooling if the cross-sectional dimension of the steel ring is 20mm x 5mm and that of the brass wheel is 20mm x 40mm? (E for steel is200GPa, E for brass is 95GPa and coefficient of expansion for steel is 12 x 10-6/C (12 Marks)&10cm=16m Consider the following tennis garne between Rowena and Colin. Find all of the Nash equilibrium, Colin Middle 3,3 2,2 Left 1,3 1,2 2,1 Up Straight Down Right 0,2 1,3 2,1 Rowena 3,0 From planet Mia, the angular size of the Sun is 0.8 degrees. The distance from Mia to Sun is 130000000 Km. What is the physical size (i.e. diameter) of the Sun? (please insert your answer in Km) fill in the blank. the ______ of offending refers to when the offender first begins offending, and desistence refers to when an individual stops committing crime. if 94be is bombarded with an particle, it will produce a neutron and what nuclide? find the exact length of the curve. x = 5 12t2, y = 3 8t3, 0 t 3 inflammation and edema of the optic disk is known as ________.