Answer:
[tex]$\frac{51}{5}t$[/tex]
Step-by-step explanation:
Let W = [tex]$(p_0, p_1, p_2)$[/tex] be orthogonal polynomials which is equal to [tex]$(4, 3t, t^2 -2)$[/tex], which defines the inner products as
[tex]$(f,g)=f(-2)g(-2)+f(-1)g(-1)+f(0)g(0)+f(1)g(1)+f(2)g(2)$[/tex]
Now, we find the orthogonal projection of [tex]$p=3t^3$[/tex] on W.
So the projection is
[tex]$Proj_W p = \frac{(p_0,p)}{(p_0,p_0)}p_0+\frac{(p_1,p)}{(p_1,p_1)}p_1+\frac{(p_2,p)}{(p_2,p_2)}p_2$[/tex]
[tex]$(p_0,p)=p_0(-2)p(-2)+p_0(-1)p(-1)+p_0(0)p(0)+p_0(1)p(1)+p_0(2)p(2)$[/tex]
[tex]$=4(-24)+4(-3)+4(0)+4(3)+4(24)=0$[/tex]
[tex]$(p_0,p_0)=p_0(-2)p_0(-2)+p_0(-1)p_0(-1)+p_0(0)p_0(0)+p_0(1)p_0(1)+p_0(2)p_0(2)$[/tex]
[tex]$=4(4)+4(4)+4(4)+4(4)+4(4)=80$[/tex]
[tex]$(p_1,p)=p_1(-2)p(-2)+p_1(-1)p(-1)+p_1(0)p(0)+p_1(1)p(1)+p_1(2)p(2)$[/tex]
[tex]$=(-6)(-24)+(-3)(-3)+0(0)+3(3)+6(24)=306$[/tex]
[tex]$(p_1,p_1)=p_1(-2)p_1(-2)+p_1(-1)p_1(-1)+p_1(0)p_1(0)+p_1(1)p_1(1)+p_1(2)p_1(2)$[/tex]
[tex]$=(-6)(-6)+(-3)(-3)+0(0)+3(3)+6(6)=90$[/tex]
[tex]$(p_2,p)=p_2(-2)p(-2)+p_2(-1)p(-1)+p_2(0)p(0)+p_2(1)p(1)+p_2(2)p(2)$[/tex]
[tex]$=2(-24)+(-1)(-3)+(-2)(0)+(-1)(3)+2(24)=0$[/tex]
[tex]$(p_2,p_2)=p_2(-2)p_2(-2)+p_2(-1)p_2(-1)+p_2(0)p_2(0)+p_2(1)p_2(1)+p_2(2)p_2(2)$[/tex]
[tex]$=(2)(2)+(-1)(-1)+(-2)(-2)+(-1)(-1)+2(2)=14$[/tex]
Therefore,
[tex]$Proj_W p = \frac{(p_0,p)}{(p_0,p_0)}p_0+\frac{(p_1,p)}{(p_1,p_1)}p_1+\frac{(p_2,p)}{(p_2,p_2)}p_2$[/tex]
[tex]$=\frac{0}{80}(4)+\frac{306}{90}(3t)+\frac{0}{14}(t^2-2)$[/tex]
[tex]$=\frac{51}{5}t$[/tex]
the area of a circle with (a) a radius of 9.2 centimeters and (b) a diameter of 50.5 inches.
Answer:
(a) 57.8 cm²
(b) 158.7 in²
Step-by-step explanation:
(a)
The area of a circle is denoted by A = 2πr, where r is the radius.
Here the radius is r = 9.2, so plug this in:
A = 2πr
A = 2π * 9.2 ≈ 57.8 cm²
(b)
The diameter is twice the radius, so since the diameter is 50.5 inches, the radius will be 50.5/2 = 25.25 inches.
Plug this into the formula:
A = 2πr
A = 2π * 25.25 ≈ 158.7 in²
~ an aesthetics lover
We____ this movie a lot so we also ____ the book. a) bring- liked b)likes- brought c)liked- buy d) liked- brought.
Answer:
Your welcome!Step-by-step explanation:
liked- brought
Find the percent change from a stock that was worth $230 and is now $287
Answer:
24.78%
Step-by-step explanation:
Initial price = $230
Final price = $287
change in price = final price - initial price
= 287 - 230
= $57
Percent change
= (change in price / initial price) x 100%
= (57 / 230) x 100%
= 24.78%
Why is 2 + (−3) equal to −1 HELP
Because it is 3 units to the left of 2 on a horizontal number line
Because it is 3 units to the right of 0 on a horizontal number line
Because it is 3 units to the left of 0 on a horizontal number line
Because it is 3 units to the right of 2 on a horizontal number line
Answer:
The answer is A
Its A.
Reasoning: Because I Took The Test
find the complement of 32.5% *its percent not angle*
Answer:
9
Step-by-step explanation:
4-x/5+x+2/3=6 PLEASE HELP 5-10 MINUTES PLEEEEAAASEEEE
Answer:
x=5/3
Step-by-step explanation:
Formulas HW for algebra. First correct answer gets brainliest.
Answer:
T = Z + pr
Z + T = pr
Z/r + T/r = p
Answer:
p = Z/r + T/r
Which expression is equal to 8/11 A. 8 ÷ 11 B. 11 ÷ 8
Answer:
A
Explanation
8/11 = 8 ÷ 11
BRAINLIEST PLEASE
suppose we want to choose 5 objects, without replacement, from 16 distinct objects.
Question:
Suppose we want to choose 5 objects, without replacement, from 16 distinct objects.
A) How many ways can this be done, if the order of the choices is relevant?
B) How many ways can this be done, if the order of the choices is not relevant?
Answer:
A. 4368 ways
B. 524160 ways
Step-by-step explanation:
Given
[tex]Objects = 16[/tex]
[tex]Selection = 5[/tex]
Required
A & B
Solving (A)
Because the order of choice is irrelevant, this implies combination and it is calculated as follows;
[tex]^nC_r = \frac{n!}{(n-r)!r!}[/tex]
Where n = 16 and r = 5
[tex]^{16}C_5 = \frac{16!}{(16-5)!5!}[/tex]
[tex]^{16}C_5 = \frac{16!}{11!5!}[/tex]
[tex]^{16}C_5 = \frac{16 * 15 * 14 * 13 * 12 * 11!}{11!5!}[/tex]
[tex]^{16}C_5 = \frac{16 * 15 * 14 * 13 * 12}{5!}[/tex]
[tex]^{16}C_5 = \frac{16 * 15 * 14 * 13 * 12}{5 * 4 * 3 * 2 * 1}[/tex]
[tex]^{16}C_5 = \frac{524160}{120}[/tex]
[tex]^{16}C_5 = 4368\ ways[/tex]
Solving (B)
Because the order of choice is relevant, this implies permutation and it is calculated as follows;
[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]
Where n = 16 and r = 5
[tex]^{16}P_5 = \frac{16!}{(16-5)!}[/tex]
[tex]^{16}P_5 = \frac{16!}{11!}[/tex]
[tex]^{16}P_5 = \frac{16 * 15 * 14 * 13 * 12 * 11!}{11!}[/tex]
[tex]^{16}P_5 = 16 * 15 * 14 * 13 * 12[/tex]
[tex]^{16}P_5 = 524160\ ways[/tex]
is 2 the solution of 4x+2=x+8
a cup is 1/16 of a gallon. what part of a gallon is 10 cups
Answer:
5/8 of a gallon
Step-by-step explanation:
since a cup is 1/16 of a gallon and were asked what part of a gallon is 10 cups so what were going to do is....
(1/16)*10= 10/16 = 5/8
arrange the slope values in order from least steep to most steep
3
4/5
-3
-11/2
1.5
0
Answer:
0 => -⅘ => 1.5 => 3 => -4 => [tex]-\frac{11}{2} (-5.5)[/tex]
Step-by-step explanation:
The greater the absolute value of a slope, the steeper the slope. By absolute value, we mean the non-negative value of tthe .
To arrange the slope values, from the least steep to the steepest, ignore the negative sign in any of the slope values.
Thus, in the order from the least steep to the steepest, we have:
0 => -⅘ => 1.5 => 3 => -4 => [tex]-\frac{11}{2} (-5.5)[/tex]
The greater the absolute value of the slope, the greater the vertical movement. The greater the vertical movement, the steeper the slope.
A slope value of 0 connotes a horizontal line.
If sin(x) = 3/5, what is sin(2x)
====================================================
Explanation:
If sin(x) = 3/5, then cos(x) = 4/5 through the use of the trig identity
sin^2(x) + cos^2(x) = 1
This is assuming that x is in quadrant Q1.
Plug those values into the identity below and simplify.
sin(2x) = 2*sin(x)*cos(x)
sin(2x) = 2*(3/5)*(4/5)
sin(2x) = 24/25
Answer:
24/25
Step-by-step explanation:
Trig functions relate the angle of a triangle with the sides of that triangle (right triangle)
sin(x)= 3/5 (opposite/ hypotenuse) (25=9-x^2, using pythag. theorem, remaining side= 4)
now, cos(x)= 4/5
now, the double angle identity states:
sin2x= 2sinxcosx
so,
sin2x= 2 * (3/5) * (4/5) =
24/25
Find the measure of one interior angle of a regular 20-gon.
Answer: 162°
Step-by-step explanation:
Using exterior angle methods,
sum total of exterior angle of polygon = ³⁶⁰/ₙ , where n is the size of the polygon. = ³⁶⁰/₂₀
One exterior angle = 18°.
Now the interior angle = 180° - 18° ( angle on a straight line )
Therefore, the measure of the interior angle = 162°.
Not , Other methods can still be applied.
The following is a list of 5 measurements. 20,10,13,11,20 Suppose that these 5 measurements are respectively labeled.
Answer:
1190
Step-by-step explanation:
Here, you need to add the squares of the measurements.
20² + 10² + 13² + 11² + 20² =
= 400 + 100 + 169 + 121 + 400
= 1190
In a random sample of mobile devices, the mean repair cost was $ and the standard deviation was $. Assume the population is normally distributed and use a t-distribution to find the margin of error and construct a % confidence interval for the population mean. Interpret the results. The % confidence interval for the population mean is ( nothing, nothing). (Round to two decimal places as needed.)
Complete Question
In a random sample of
five mobile devices, the mean repair cost was $75.00 and the standard deviation was $11.50
Assume the population is normally distributed and use at-distribution to find the margin of error and construct a 95%
confidence interval for the population mean. Interpret the results.
Answer:
The margin of error is [tex]E = 10.1[/tex]
The 95% confidence interval is [tex]64.9 < \mu < 85.1[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = \$ 75.00[/tex]
The standard deviation is [tex]\sigma = \$ 11.50[/tex]
The sample size is n = 5
Given the that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{ \sqrt{n} }[/tex]
substituting values
[tex]E = 1.96* \frac{11.50 }{ \sqrt{5} }[/tex]
[tex]E = 10.1[/tex]
The 95% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]75 - 10.1< \mu < 75 + 10.1[/tex]
[tex]64.9 < \mu < 85.1[/tex]
Factorise the following completely 6x(squared) + 11xy + 5y(squared)
Answer:
[tex] \boxed{\sf (x + y)(6x + 5y)} [/tex]
Step-by-step explanation:
Factor the following:
[tex] \sf \implies 6 {x}^{2} + 11xy + 5 {y}^{2} [/tex]
The coefficient of x² is 6 and the coefficient of y² is 5. The product of 6 and 5 is 30. The factors of 30 which sum to 11 are 5 and 6.
So,
[tex] \sf \implies 6 {x}^{2} + (6 + 5)xy + 5 {y}^{2} [/tex]
[tex] \sf \implies 6 {x}^{2} + 6xy + 5xy + 5 {y}^{2} [/tex]
[tex] \sf \implies 6x(x + y) + 5y(x + y)[/tex]
Factor (x + y) from 6x(x + y) + 5y(x + y):
[tex] \sf \implies (x + y)(6x + 5y)[/tex]
The table shows ordered pairs of the function y=8 - 2x. What is the value of y when x = 8?
Answer:
-8.
Step-by-step explanation:
y = 8 - 2x.
x = 8.
y = 8 - 2(8)
= 8 - 16
= -8.
Hope this helps!
The students of a certain college were asked to choose which of six movie genres was their favorite. The pie chart below shows the distribution of the students’ answers. If there are 18,500 students at the college, how many chose Drama , Other, or Comedy ?
Answer:
4255 students choose Drama
4995 students choose Other
3700 students choose Comedy
Step-by-step explanation:
18500 x _% =
Ex: 18500 x 23% = 4255.
Meghan sets up her model train on a circular track that is 1 metre wide and that sits in her bedroom doorway, half in her bedroom and half in the hallway. Each round trip takes 2 seconds, and the train starts as far into the bedroom as possible. How deep into her bedroom the train engine is in terms of time is modelled by which equation?
Answer:
We have a circular track that is 1 meter wide, which would mean that the diameter is equal to 1 meter.
First, we want to define this problem as a one dimensional problem. The position 0 is in the doorway, the bedroom is the positive axis, and the hallway is the negative side.
P(t) = R*cos(c*t) + R*sin(c*t).
Where R is the amplitude, in the case of the circular motion, R is equal to the radius.
If the diameter is 1m, the radius is 1m/2 = 0.5m
The equation now is:
P(t) = 0.5m*cos(c*t) + 0.5m*sin(c*t).
We also know that for t = 0s, the train is as far into the bedroom as it can, the maximum position is P = 0.5m
Then we have:
P(0s) = 0.5m*1 + 0.5*0 = 0.5m
And we also know that the period is t = 2seconds.
The period for the sine and cosine functions is 2*pi, then:
c*2s = 2*pi
c =pi/s
The function now is:
P(t) = 0.5m*cos(t*pi/s) + 0.5m*sin(t*pi/s)
When this function is positive, this means that the train is inside her bedroom, when the function is negative, the train is outside the bedroom, when P(t) = 0, the train is in the doorway.
Simplify.
6m +7n +5т — Зm
Answer:
3m +7n +5т
Step-by-step explanation:
6m +7n +5т — Зm
Combine like terms
3m +7n +5т
Find the midpoint of the segment between the points (15,−9) and (−2,−18) A. (172,92) B. (13,−27) C. (132,−272) D. (−13,27)
Answer:
from my calculation, the answer is B
The midpoint of the segment between the points (15,−9) and (−2,−18) will be (−13/2, −27/2). Then the correct option is C.
What is the midpoint of line segment AB?Let C be the mid-point of the line segment AB.
A = (x₁, y₁)
B = (x₂, y₂)
C = (x, y)
Then the midpoint will be
x = (x₁ + x₂) / 2
y = (y₁ + y₂) / 2
The midpoint of the segment between the points (15,−9) and (−2,−18) will be
x = (15 – 2) / 2
x = –13 / 2
y = (–9 – 18) / 2
y = –27/2
Then the correct option is C.
More about the midpoint of line segment AB link is given below.
https://brainly.com/question/17410964
#SPJ5
Suppose that a typical adult heart pumps 5.0 liters of blood per minute. Express this rate in SI units you provided above. M/s. 1cm^3=1mL
Answer:
The answer is below
Step-by-step explanation:
International system of unit (SI unit) are standard units which are universally accepted. There are 7 basic SI units which are meter (m), second (s), kilogram (kg), mole (mol), ampere (A), candela (cd) and kelvin (K).
The SI unit of flow rate is the m³/s.
The conversions needed are:
1 minute = 60 seconds,
1 cm³ = 1 ml = 0.001 ml,
1000000 cm³ = 1 m³,
1 L = 0.001 m³
We have to convert 5.0 liters of blood per minute. to m³/s. Therefore:
[tex]5\ L/minute=\frac{5\ L*0.001\ m^3}{1\ min*60\ s}=8.33*10^{-5} \ m^3/s[/tex]
cos3A-sin3A/1-2sin2A= cosA + sinA. Prove the identity
Step-by-step explanation:
(cos(3A) − sin(3A)) / (1 − 2 sin(2A))
Use double angle formula:
(cos(3A) − sin(3A)) / (1 − 4 sin A cos A)
Use triple angle formulas:
(4 cos³A − 3 cos A − 3 sin A + 4 sin³A) / (1 − 4 sin A cos A)
Group and factor:
(4 (cos³A + sin³A) − 3 (cos A + sin A)) / (1 − 4 sin A cos A)
Factor the sum of cubes:
(4 (cos A + sin A) (cos²A − cos A sin A + sin²A) − 3 (cos A + sin A)) / (1 − 4 sin A cos A)
Use Pythagorean identity:
(4 (cos A + sin A) (1 − cos A sin A) − 3 (cos A + sin A)) / (1 − 4 sin A cos A)
Factor out cos A + sin A:
(cos A + sin A) (4 (1 − cos A sin A) − 3) / (1 − 4 sin A cos A)
Simplify:
(cos A + sin A) (4 − 4 cos A sin A − 3) / (1 − 4 sin A cos A)
(cos A + sin A) (1 − 4 cos A sin A) / (1 − 4 sin A cos A)
cos A + sin A
Find a formula for the described function. A rectangle has perimeter 8 m. Express the area A of the rectangle as a function of the length, L, of one of its sides
Answer:
[tex]A(L) = 4L - L^2[/tex]
Step-by-step explanation:
Given
Perimeter = 8m
Required
Determine its area as a function of length
Represent Length and Width with L and W, respectively;
Perimeter (P) is calculated as thus;
[tex]P = 2(L + W)[/tex]
Substitute 8 for P
[tex]8 = 2(L + W)[/tex]
Divide both sides by 2
[tex]4 = L + W[/tex]
Make W the subject of formula
[tex]W = 4 - L[/tex]
Area (A) of a rectangle is calculated as thus:
[tex]A = L * W[/tex]
Substitute 4 - L for W
[tex]A = L * (4 - L)[/tex]
Open bracket
[tex]A = 4L - L^2[/tex]
Represent as a function
[tex]A(L) = 4L - L^2[/tex]
Area of rectangle in terms of length L is
[tex]A(L)= 4L-L^2[/tex]
Given :
A rectangle has perimeter 8 m. Express the area A of the rectangle as a function of the length, L, of one of its sides
We know that the perimeter of rectangle formula is
[tex]perimeter = 2(length)+2(width )[/tex]
perimeter is 8m
Let the length of rectangle is L
[tex]P=2L+2W\\8=2(L+W)\\4=L+W\\W=4-L[/tex]
so width is 4-L
Now we use area formula
Area of rectangle = length times width
[tex]A=L(W)\\A=L(4-L)\\A= 4L-L^2[/tex]
Area of rectangle in terms of length L is
[tex]A= 4L-L^2[/tex]
Learn more : brainly.com/question/5085323
find the unknown angles
Answer: Hi!
Since this is a right triangle, we already know that one angle is 90 degrees. Since the angles of a triangle all add up to 180 degrees, and the two unknown angles will be equal, all we have to do is subtract 90 from 180 and then divide the difference by 2!
180 - 90 = 90
90 ÷ 2 = 45
The two missing angles are each 45 degrees.
(x = 45 and y = 45)
Make sure to put the degrees sign after your answers!
Hope this helps!
Answer:
45 degrees.
Step-by-step explanation:
All of the angles in a triangle is 180 degrees.
Knowing that we subtract 90 degrees, the right angle from 180 degrees.
180-90=90
Since both the angles are equal,
90/2=45
Hope this helps :)
Have a great day!
Solve and check solve for e
Answer:
e(as in variable)=1/7x+2, e(as in euler)=2.388326
Step-by-step explanation:
2.718282
7
+181−179
=2.388326
What is the scale factor of the triangles ABE & DBC ?
In other words, you'll use the SAS similarity property with 3/2 as the scale factor
=================================================
Explanation:
Choice A is not correct because we don't have enough info about all three pairs of sides.
Instead we'll go with SAS similarity. This is the idea where we'll use two pairs of sides to see if they are in the same proportion, and we'll also use the included angle between the two sides. The angles ABE and DBC are congruent as they are vertical angles. So that's where the "A" comes from in "SAS".
As for the S terms, we divide the corresponding sides like so
DB/AB = 9/6 = 3/2
BC/BE = 1.5/1 = 15/10 = 3/2
The scale factor as a fraction is 3/2, which converts to the decimal form 1.5
This says that triangle DBC has sides that are 3/2 = 1.5 times longer than corresponding sides in triangle ABE.
------------------
If you're curious how the sides correspond, then look at the ordering of ABE and DBC. The order is important when it comes to similar triangles.
AB and DB are the first two letters of ABE and DBC respectively. So we have AB pair up with DB.
Similarly, BE and BC pair up because they are the last two letters of ABE and DBC respectively.
We divide sides of DBC over sides of ABE to get the scale factor from ABE to DBC. The scale factor must be some result larger than 1 do indicate an enlargement is going on.
Correct 0.04945 to two significant figures
Answer:
0.049.
Step-by-step explanation:
The number after the 9 is 4 so 9 remains.
Please help!!!! 7 - 2x if x = -4 Thank you in advance
The x is a placeholder for a number. Think of x like a box and inside the box will go a number. In this case, -4 will replace x
7 - 2x = 7 - 2(-4) = 7 + 8 = 15
Answer: 15