Jane is sliding down a slide. What kind of motion is she demonstrating? A. translational motion B. rotational motion C. vibrational motion D. transverse motion

Answers

Answer 1
A. translational motion
Answer 2

Answer:

Transational Motion

Explanation:


Related Questions

The 2-kg collar is attached to a spring that has an un-stretched length of 3.0 m. If the collar is drawn to point B and releases from rest, what is the speed when it arrives at point A. Note that k = 3.0 N/m and neglect friction.

Answers

Complete Question

The image for this question is shown on the first uploaded image

Answer:

[tex]v = 3.4 \ m/s[/tex]

Explanation:

From the question we are told that

   The mass of the collar is  [tex]m = 2 \ kg[/tex]

    The original length is  [tex]L = 3.0 \ m[/tex]

     The spring constant is  [tex]k = 3.0 \ N/m[/tex]

     

Generally the extension of the spring  is  mathematically evaluated as

        [tex]e = 4 -3 = 1 \ m[/tex]

Now with Pythagoras theorem we can obtain the length from A to B as

        [tex]AB = \sqrt{5 ^2 + 4^2}[/tex]

       [tex]AB = 6.4 \ m[/tex]

The  extension of the spring at B is  

     [tex]e_b = 6.4 - 3 = 3.4 \ m[/tex]

According to the law of energy conservation

   The energy stored in the spring at point A +  the kinetic energy of the  spring =  The  energy stored on the spring at B

So

     [tex]\frac{1}{2} * k * e + \frac{1}{2} * m* v^2 = \frac{1}{2} * k * e_b[/tex]

substituting values

    [tex]\frac{1}{2} * 3 * 1^2 + \frac{1}{2} * 2* v^2 = \frac{1}{2} * 3 * 3.4^2[/tex]

=>   [tex]v = 3.4 \ m/s[/tex]

A source of emf is connected by wires to a resistor, and electrons flow in the circuit. The wire diameter is the same throughout the circuit. Compared to the potential energy of an electron before entering the source of emf, the potential energy of an electron after leaving the source of emf is

Answers

Answer

The potential energy is  less

Explanation:

From the question we are told that

   The  source of  the emf is  by wires to a resistor.

Now  the potential energy of electron before leaving the source emf will be greater than the potential energy of an electron after leaving the source of emf because the resistor connected to the source emf will reduced the potential energy as it will convert some of the energy to heat

The potential energy of an electron after leaving the source of emf is lesser.

What is electro motive force?

Electro motive force is the voltage or potential difference of an electrical energy device such as battery.

The  source of  the emf is  by wires to a resistor.Now,  the potential energy of an electron before leaving the source emf will be greater than the potential energy of an electron.

After leaving the source of emf because the resistor connected to the source of emf will reduce the potential energy as it will convert some of the energy to heat.

Thus the potential energy of an electron after leaving the source of emf is lesser.

To know more about Electromotive force, follow

https://brainly.com/question/820393

A Carnot heat engine and an irreversible heat engine both operate between the same high temperature and low temperature reservoirs. They absorb the same energy from the high temperature reservoir as heat. The irreversible engine:__________. A. does more work. B. has the same efficiency as the reversible engine. C. has the greater efficiency. D. transfers more energy to the low temperature reservoir as heat. E. cannot absorb the same energy from the high temperature reservoir as heat without violating the second law of thermodynamics.

Answers

Answer:

the answers d

A Carnot heat engine and an irreversible heat engine both operate between the same high-temperature and low-temperature reservoirs. They absorb the same energy from the high-temperature reservoir as heat. The irreversible engine cannot absorb the same energy from the high-temperature reservoir as heat without violating the second law of thermodynamics, therefore the correct option is E.

What is a Carnot engine?

It is a theoretical engine assumed to have the maximum efficiency among all engines out there in the universe.

No other engine can have greater efficiency than the Carnot engine.

The Carnot engine work on the principle of the Carnot cycle which assume that the heat and work tranfer processes are reversible in nature. there is no loss due to the friction of the piston.

As we know from the second law of thermodynamics that no other engine can have greater efficiency than the Carnot engine.

Thus, the irreversible engine cannot absorb the same energy from the high-temperature reservoir as heat without violating the second law of thermodynamics, therefore the correct option is E.

Learn more about the Carnot engine from here

https://brainly.com/question/14680478

#SPJ2

If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from the color of the light), the power input, the Stefan-Boltzmann constant, and what property of the filament

Answers

Answer:

To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and Emissivity of the Filament.

Explanation:

The emissive power of a light bulb can be given by the following formula:

E = σεAT⁴

where,

E = Power Input or Emissive Power

σ = Stefan-Boltzmann constant

ε = Emissivity

A = Area

T = Absolute Temperature

Therefore,

A = E/σεT⁴

So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and Emissivity of the Filament.

An electron accelerates through a 12.5 V potential difference, starting from rest, and then collides with a hydrogen atom, exciting the atom to the highest energy level allowed. List all the possible quantum-jump transitions by which the excited atom could emit a photon. 4 rightarrow 3 4 rightarrow 2 4 rightarrow 1 3 rightarrow 2 3 rightarrow 1 2 rightarrow 1

Answers

Answer:

Initial state    Final state

     3           ⇒        2

     3           ⇒        1

     2          ⇒         1

Explanation:

For this exercise we must use Bohr's atomic model

         E = - 13.606 / n²

where is the value of 13.606 eV is the energy of the ground state and n is the integer.

The energy acquired by the electron in units of electron volt (eV)

          E = e V

          E = 12.5 eV

all this energy is used to transfer an electron from the ground state to an excited state

        ΔE = 13.6060 (1 / n₀² - 1 / n²)

the ground state has n₀ = 1

       ΔE = 13.606 (1 -  1/n²)

        1 /n² = 1 - ΔE/13,606

         1 / n² = 1 - 12.5 / 13.606

         1 / n² = 0.08129

          n = √(1 / 0.08129)

          n = 3.5

 since n is an integer, maximun is

         n = 3

because it cannot give more energy than the electron has

From this level there can be transition to reach the base state.

 

Initial state    Final state

     3           ⇒        2

     3           ⇒        1

     2          ⇒         1

The possible quantum-jump transitions by which the excited atom emits a photon are :

Initial state    Final state

    3          --->       2

    3          ---->      1

    2          ---->      1

Given data :

Potential difference through which an electron accelerates = 12.5 V

Energy acquired by the the electrons = 12.5 eV  ( e * 12.5 )

The Model we will use to determine the possible quantum jump transition is  Bohr's atomic model

 E = - 13.606 / n²    

where ; n = integer

energy at ground state = 13.606 eV

The energy acquired by the electrons ( 12.5 eV )  is used to move the electron from its ground state to an excited state.

Therefore

ΔE = 13.606 * (1 / n₀² - 1 / n²)  ---- ( 1 )  

where n₀ = 1

Back to equation ( 1 )

ΔE = 13.606 (1 -  1/n²)   -- ( 2 )

Resolving equation ( 2 )

1 / n² = 0.08129

n = 3.5 .    Therefore the maximum integer = 3  

Hence The collision between the electron and the hydrogen atom will undergo three ( 3 ) transition to reach the base state.

In Conclusion The possible quantum-jump transitions by which the excited atom emits a photon are :

Initial state    Final state

    3          --->       2

    3          ---->      1

    2          ---->      1

Learn more : https://brainly.com/question/7289718

Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics present on both strings?
1) 0.800, 0.670, 0.500
2) 1.33, 1.00, 0.500
3) 2.00, 1.00, 0.500
4) 2.00, 1.33, 1.00
5) 4.00, 2.00, 1.0

Answers

Answer:

5) 4.00, 2.00, 1.0

Explanation:

wave equation is given as;

F₀ = V / λ

Where;

F₀ is the fundamental frequency = first harmonic

Length of the string for first harmonic is given as;

L₀ = (¹/₂) λ  

λ  = 2 L₀

when L₀ = 1

λ  = 2 x 1 = 2m

when L₀ = 2m

λ  = 2 x 2 = 4m

For First harmonic, the wavelength is 2m, 4m

For second harmonic;

L₁ = (²/₂)λ  

L₁ = λ

When L₁ = 1

λ  = 1 m

when L₁ = 2

λ  = 2 m

For second harmonic, the wavelength is 1m, 2m

Thus, the wavelength that could represent harmonics present on both strings is 4m, 2m, 1 m

What kind of wave is formed (transverse or longitudimal wave, pick one) is formed by ripples on a calm pond? With explanation! Please help, most detailed answer will get brainliest and many points.

Answers

Answer:

Transverse

Explanation:

It's tranverse because the water molecules are moving repeatedly up and down vertically when the waves move horizontally across the waters surface.

A liquid of density 1250 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.93 m/s and the pipe diameter d1 is 11.1 cm. At Location 2, the pipe diameter d2 is 16.7 cm. At Location 1, the pipe is Δy=8.89 m higher than it is at Location 2. Ignoring viscosity, calculate the difference ΔP between the fluid pressure at Location 2 and the fluid pressure at Location 1.

Answers

Answer:

The  pressure difference is  [tex]\Delta P = 1.46 *10^{5}\ Pa[/tex]

Explanation:

From the question we are told that

   The  density is  [tex]\rho = 1250 \ kg/m^3[/tex]

   The  speed at location 1  is  [tex]v_1 = 9.93 \ m/s[/tex]

    The  diameter at location 1 is  [tex]d_1 = 11.1\ cm = 0.111 \ m[/tex]

     The  diameter at location 2 is  [tex]d_1 = 16.7\ cm = 0.167 \ m[/tex]

     The  height at location 1 is  [tex]h_1 = 8.89 \ m[/tex]

       The  height at location 2  is  [tex]h_2 = 1 \ m[/tex]

Generally the cross- sectional area at location 1 is mathematically represented as

       [tex]A_1 = \pi * \frac{d^2}{4}[/tex]

=>     [tex]A_1 = 3.142 * \frac{ 0.111^2}{4}[/tex]

=>     [tex]A_1 = 0.0097 \ m^2[/tex]

Generally the cross- sectional area at location 2 is mathematically represented as

           [tex]A_2 = \pi * \frac{d_1^2}{4}[/tex]

=>     [tex]A_2= 3.142 * \frac{ 0.167^2}{4}[/tex]

=>     [tex]A_2 =0.0219 \ m^2[/tex]

From continuity formula

       [tex]v_1 * A_1 = v_2 * A_2[/tex]

=>     [tex]v_2 = \frac{A_1 * v_1}{A_2 }[/tex]

=>      [tex]v_2 = \frac{0.0097 * 9.93}{0.0219 }[/tex]

=>      [tex]v_2 = 4.398 \ m/s[/tex]

Generally according to Bernoulli's theorem

     [tex]P_1 + \rho * g * h_1 + \frac{1}{2} \rho * v_1^2 = P_2 + \rho * g * h_2 + \frac{1}{2} \rho * v_2^2[/tex]

=>   [tex]P_2 - P_1 = \frac{1}{2} \rho (v_1 ^2 - v_2^2 ) + \rho* g (h_1 - h_2)[/tex]

=> [tex]\Delta P = \frac{1}{2}* 1250* (9.93 ^2 - 4.398^2 ) + 1250* 9.8 (8.89- 1)[/tex]

=> [tex]\Delta P = 1.46 *10^{5}\ Pa[/tex]

A tire swing hanging from a branch reaches nearly to the ground. How could you estimate the height of the branch using only a stopwatch?

Answers

Answer:

Explanation:

With the help of expression of  time period of pendulum we can calculate the height of the branch . The swinging tire can be considered equivalent to swinging bob of a pendulum . Here length of pendulum will be equal to height of branch .

Let it be h . Let the time period of swing of tire be T then from the formula of time period of pendulum

[tex]T = 2\pi\sqrt{\frac{l}{g} }[/tex]  where l is length of pendulum .

here l = h so

[tex]T = 2\pi\sqrt{\frac{h}{g} }[/tex]  

[tex]h = \frac{T^2g}{4\pi^2}[/tex]

If we calculate the time period of swing of tire , we can calculate the height of branch .

The time period of swing of tire can be estimated with the help of a stop watch . Time period is time that the tire will take in going from one extreme point to the other end and then coming back . We can easily estimate it with the help of stop watch .

A speeding motorist traveling down a straight highway at 100 km/h passes a parked police car. It takes the police constable 1.0 s to take a radar reading and to start up his car. The police vehicle accelerates from rest at 2 m/s2 and finally catches up with the speeder. a) How much time has elapsed when the two cars meet?

Answers

Answer:

t = 7.5 s

Explanation:

The distance traveled by the car at the time of meeting of the two cars must be the same. First, we calculate the distance traveled by the police car. For that we use 2nd equation of motion. Here, we take the time when police car starts to be reference. So,

s₁ = Vi t + (0.5)gt²

where,

s₁ = distance traveled by police car

Vi = Initial Velocity = 0 m/s

t = time taken

Therefore,

s₁ = (0 m/s)(t) + (0.5)(9.8 m/s²)t²

s₁ = 4.9 t²

Now, we calculate the distance traveled by the car. For constant speed and time to be 1 second more than the police car time, due to car starting time, we get:

s₂ = Vt = V(t + 1)

where,

s₂ = distance traveled by car

V = Velocity of car = (100 km/h)(1000 m/1 km)(1 h/ 3600 s) = 27.78 m/s

Therefore,

s₂ = 27.78 t + 27.78

Now, we know that at the time of meeting:

s₁ = s₂

4.9 t² = 27.78 t + 27.78

4.9 t² - 270.78 t - 27.78 = 0

solving the equation and choosing the positive root:

t = 6.5 s

since, we want to know the time from the moment car crossed police car. Therefore, we add 1 second of starting time in this.

t = 6.5 s + 1 s

t = 7.5 s

Please answer the following questions about uniform circular motion.?
Part (a) A planet orbits a star in a circular orbit at a constant orbital speed, which of the following statements is true?
All of these are correct.
The magnitude of the orbital velocity of the planet is unchanged, thus there is no acceleration and therefore no force action on the planet.
None of these are correct.
The planet experiences a centripetal force pulling towards its star.
The planet experiences no centripetal force.
The planet experiences a centripetal force pushing it away from its star.
Part (b) When a planet is orbiting a star, which force plays the role of the centripetal force?
The force resulting from the planets’ velocity around the star.
The force resulting from the centripetal acceleration.
The gravitational force
Part (c) Which of the following are true statements about uniform circular motion?
An object in uniform circular motion experiences a tangential force.
An object in uniform circular motion experiences a centripetal force, an equal and opposite centrifugal force, and a tangential force.
An object in uniform circular motion experiences a centripetal force and a tangential force.
An object in uniform circular motion experiences a centripetal force.
None of these choices are true.
An object in uniform circular motion experiences no forces.

Answers

Answer:

a) The planet experiences a centripetal force towards its star

b) The universal attractive force (Gravitational force)

c)None of these choices are true.

Explanation:

This problem raise several claims, let's review some aspects of circular motion

            F = m a

the centripetal acceleration is

            a = v² / r

where v is the speed (modulus of velocity) that is constant and r is the radius

 

The direction of the acceleration is perpendicular to the motion.

Let's review the different claims

Part a) the orbital velocity is constant

The correct statement is: The planet experiences a centripetal force towards its star

Part b) what is the centripetal force

The correct statement: The universal attractive force (Gravitational force)

Part c) which statement is true

1) False. There can be no tangential force

2) False. There is a centripetal force that creates the movement, but there is no centrifugal force because the system is accelerated and there is no tangential force because the movement is circular.

3) False. There is no tangential force

4) True none is true

5) False. There is a force because movement has acceleration

Sodium has a work function of 2.46 eV.
(a) Find the cutoff wavelength and cutoff frequency for the photoelectric effect.
(b) What is the stopping potential if the incident light has a wavelength of 181 nm?

Answers

Answer:

Explanation:

given, work function of Φ = 2.46 eV.

converting the eV to joule, we have

2.45 * 1.6*10^-19 J

The cutoff wavelength is the wavelength where the incoming light does not have enough energy to free an electron, i.e. all of

the photon’s energy will be channeled into trying overcoming the work function barrier.

It is mathematically given as

Φ = hf

f = Φ/h

f = (2.46 * 1.6*10^-19) / 6.63*10^-34

f = 3.936*10^-19 / 6.63*10^-34

f = 5.94*10^14 Hz as our cut off frequency

λf = c,

λ = c/f

λ = 3*10^8 / 5.94*10^14

λ = 5.05*10^-7

λ = 505 nm as our cut off wavelength

K(max) = hf - Φ

K(max) = hc/λ - Φ

K(max) = [(6.63*10^-34 * 3*10^8) / 181*10^-9] - 3.936*10^-19

K(max) = (1.989*10^-25/181*10^-9) - 3.936*10^-19

K(max) = 1.1*10^-18 - 3.936*10^-19

K(max) = 7.064*10^-19 J or 4.415 eV

V(s) = K(max) / e

V(s) = 4.612 V

Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side of firecracker A. You see two flashes of light, from the two explosions, at exactly the same instant of time.
Define event 1 to be "firecracker 1 explodes" and event 2 to be "firecracker 2 explodes." According to your lab partner, based on measurements he or she makes, does event 1 occur before, after, or at the same time as event 2? Explain.

Answers

Answer:

See the explanation

Explanation:

Given:

Distance of Firecrackers A and B = 600 m

Event 1 = firecracker 1 explodes

Event 2 = firecracker 2 explodes

Distance of lab partner from cracker A = 300 m

You observe the explosions at the same time

to find:

does event 1 occur before, after, or at the same time as event 2?

Solution:

Since the lab partner is at 300 m distance from the firecracker A and Firecrackers A and B are 600 m apart

So the distance of fire cracker B from the lab partner is:

600 m  + 300 m = 900 m

It takes longer for the light from the more distant firecracker to reach so

Let T1 represents the time taken for light from firecracker A to reach lab partner

T1 = 300/c

It is 300 because lab partner is 300 m on other side of firecracker A

Let T2 represents the time taken for light from firecracker B to reach lab partner

T2 = 900/c

It is 900 because lab partner is 900 m on other side of firecracker B

T2 = T1

900 = 300

900 = 3(300)

T2 = 3(T1)

Hence lab partner observes the explosion of the firecracker A before the explosion of firecracker B.

Since event 1 = firecracker 1 explodes and event 2 = firecracker 2 explodes

So this concludes that lab partner sees event 1 occur first and lab partner is smart enough to correct for the travel time of light and conclude that the events occur at the same time.

Which statement best describes the liquid state of matter?
ОА.
It has definite shape but indefinite volume.
OB.
It has definite shape and definite volume.
Ос.
It has indefinite shape and indefinite volume.
OD.
It has indefinite shape but definite volume.

Answers

Answer:

OB.It has definite shape and definite volume

what happens to the speed of the
Skateboard/refrigerator when there is no longer a force being applied ?

Answers

Answer:

The speed stays constant after the force stops pushing.

Explanation:

Speed always stays constant when the force stops pushing it.

50 g of pieces of brass are heated to 200 ° C and then placed in the aluminum container of a 50 g calorimeter containing 160 g of water. What is the equilibrium temperature, if the temperature of the container and the water is initially 20 ° C?

Answers

Answer:

24.7°C

Explanation:

Heat lost by brass = heat gained by aluminum and water

-q = q

-mCΔT = mCΔT + mCΔT

-(50 g) (0.380 J/g/°C) (T − 200°C) = (50 g) (0.900 J/g/°C) (T − 20°C) + (160 g) (4.186 J/g/°C) (T − 20°C)

-(19 J/°C) (T − 200°C) = (45 J/°C) (T − 20°C) + (670 J/°C) (T − 20°C)

-(19 J/°C) (T − 200°C) = (715 J/°C) (T − 20°C)

-19 (T − 200°C) = 715 (T − 20°C)

-19T + 3800°C = 715T − 14300°C

18100°C = 734T

T = 24.7°C

A particle with charge -5 C initially moves at v = (1.00 i^ + 7.00 j^ ) m/s. If it encounters a magnetic field B =80 Tkˆ, find the magnetic force vector on the particle.

Answers

Answer:

The magnetic force is  [tex]\= F = 400\r j + 2800\r i[/tex]

Explanation:

From the question we are  told that

  The  charge is  [tex]q = -5C[/tex]

  The  velocity is  [tex]v = (1.00\ \r i + 7.00 \ \r j )\ m/s[/tex]

   The  magnetic field is  [tex]B = 80 \r k \ \ T[/tex]

Generally the magnetic force is mathematically represented as

        [tex]\= F = q \= v \ \ X \ \ \= B[/tex]

=>     [tex]\= F = -5 (1.0 \r i + 7.0 \r j ) \ \ X \ \ 80 \r k[/tex]

=>    [tex]\= F = -5.0 \r i + 35\r j \ \ \ X \ \ 80\r k[/tex]

=>  [tex]\= F = 400\r j + 2800\r i[/tex]    N/B - Applied cross - product of unit vector

Two gratings A and B have slit separations dA and dB, respectively. They are used with the same light and the same observation screen. When grating A is replaced with grating B, it is observed that the first-order maximum of A is exactly replaced by the second-order maximum of B.
a.) I already found that the ratio of db/da is 2
b.) Find the next two principal maxima of grating A and the principal maxima of B that exactly replace them when the gratings are switched. Identify these maxima by their order numbers

Answers

Answer:

mA=2,mB=4

mA=2,mB=4 and

mA=3,mB=6

Explanation:

First of all we need to write the equation of the networks

sin θ = mA λ / dA

sin θ = mB λ / dB

Equating we have

mA λ/ dA = mB λ / dB

We are given the ratio as

dB / dA = 2

So

mA 2 = mB

Finally overlapping orders

We have

mA=2,mB=4

mA=2,mB=4

and mA=3,mB=6

The allowed energies of a simple atom are 0.0 eV, 4.0 eV, and 6.0 eV. Part A What wavelength(s) appear(s) in the atom's emission spectrum

Answers

Answer:

3.1 × 10^- 7 m and 2.1 × 10^-7 m

Explanation:

First we must convert each value of energy to Joules by multiplying its value by 1.6 ×10^-19. After that, we can now obtain the wavelength from E= hc/λ

Where;

h= planks constant

c= speed of light

λ= wavelength of light

For 6.0ev;

E= 6.0 × 1.6 ×10^-19

E= 9.6 × 10^-19 J

From

E= hc/λ

λ= hc/E

λ= 6.6 × 10^-34 × 3 × 10^8/9.6 × 10^-19

λ= 2.1 × 10^-7 m

For 4.0 eV

4.0 × 1.6 × 10^-19 = 6.4 × 10^-19 J

E= hc/λ

λ= hc/E

λ= 6.6 × 10^-34 × 3 × 10^8/6.4 × 10^-19

λ= 3.1 × 10^- 7 m

(a) The wavelength of the atom's emission spectrum when the energy is 4 eV is [tex]3.1 \times 10^{-7} \ m[/tex]

(b) The wavelength of the atom's emission spectrum when the energy is 6 eV is

[tex]2.1 \times 10^{-7} \ m[/tex]

The wavelength of the atom's emission spectrum is calculated as follows;

[tex]E = hf\\\\E = \frac{hc}{\lambda}[/tex]

where;

λ is the wavelengthh is Planck's constant

For 4 eV;

[tex]\lambda = \frac{hc}{E} \\\\\lambda = \frac{(6.626 \times 10^{-34}) \times 3\times 10^8}{4 \times 1.602 \times 10^{-19}} \\\\\lambda = 3.1 \times 10^{-7} \ m[/tex]

For 6 eV;

[tex]\lambda = \frac{hc}{E} \\\\\lambda = \frac{(6.626 \times 10^{-34}) \times 3\times 10^8}{6 \times 1.602 \times 10^{-19}} \\\\\lambda = 2.1 \times 10^{-7} \ m[/tex]

Learn more here:https://brainly.com/question/9432100

An airplane is traveling at 400 mi/h. It touches down at an airport 2000 miles away. How long was the airplane airborne?

Answers

Answer:

5 hours

Explanation:

Given that

Speed of the airplane, v = 400 mile/hr

Distance of the airport, s = 2000 miles

This is quite a straightforward question that deals with one of the basic formulas in physics.

Speed.

speed is said to the the ratio of distance covered with respect to the time taken. This can be mathematically expressed as

Speed, v = distance covered, d / time taken, t

v = d / t

In the question above, we're looking for the time taken. So, so make t, subject of formula.

t = d / v, now we proceed to substituting the earlier given values into this equation.

t = 2000 / 400

t = 5 hrs,

therefore we can conclude that the airplane was airborne for 5 hours

Why is a flask is wider on the bottom than on the top? allows for a more precise measurement allows for better thermal equilibrium prevents spillage to hold a thermometer

Answers

Answer:

allows for better thermal equilibrium

Explanation:

Due to the cone shape, most of the liquid will be closer to the bottom than the top.  The large surface area of the bottom allows for faster heating.

Represent a vector of 100 N in North-East direction

Answers

Answer:

please find the attachment to this question.

Explanation:

In this question, we represent the 100N in the North-East direction, but first, we define the vector representation:

It is generally represented through arrows, whose length and direction reflect the magnitude and direction of the arrow points. In this, both size and direction are necessary because the magnitude of a vector would be a number that can be compared to one vector.

Please find the attachment:

What is the tension in the cord after the system is released from rest? Both masses (A and B) are 10-kg.

Answers

Answer:

98 N.

Explanation:

Given data: mass= 10 kg,      gravity= 9.8 m/s2

required: tension in the cord=  ?

solution:

formula of tension= mass x gravity

by putting values of mass and gravity, we get

tension= 10 x 9.8

tension= 98 N.  Ans

If the mass of the object which is attached with both ends of cord is 10 kg, so the tension which is a opposite force of weight is 98 N.

Estimate the distance (in cm) between the central bright region and the third dark fringe on a screen 5.00 m from two double slits 0.500 mm apart illuminated by 500-nm light.

Answers

Answer:

y = 1.75 cm

Explanation:

In the double-slit experiment the equation for destructive interference is

           d sin tea = (m + ½)

λ

let's use trigonometry to find the angle

         tan θ = y / L

as all the experiment does not occur at small angles

          tan θ = sin θ / cos θ = sin θ = y / L

we substitute

        y = (m + 1/2 ) λ  L / d

we calculate

         y = (3 + ½) 500 10⁻⁹ 5.00 / 0.5 10⁻³

         y = 1.75 10⁻² m

         y = 1.75 cm

A small candle is 34 cm from a concave mirror having a radius of curvature of 22 cm. Where will the image of the candle be located? Follow the sign conventions.

Answers

Answer:

16.26 cm in front of the mirror

Explanation:

Using,

1/f = 1/u+1/v....................... Equation 1

Where f = focal focal length of the concave mirror, u = object distance, v = image distance.

make v the subject of the equation

v = fu/(u-f)................... Equation 2

Note: The focal length of a concave mirror is positive

Using the real- is- positive convention

Given: f = 22/2 = 11 cm, u = 34 cm.

Substitute into equation 2

v = (34×11)/(34-11)

v = 374/23

v = 16.26 cm.

The image will be formed 16.26 cm in front of the mirror.

The coefficient of static friction between a 3.00 kg crate and the 35.0o incline is 0.300. What minimum force F must be applied perpendicularly to the incline to prevent the crate from sliding down

Answers

Answer:

32.13 N

Explanation:

Given that

mass of the crate, m = 3 kg

angle of inclination, = 35°

coefficient of static friction, = 0.3

To solve this, we can assume that the minimum force is F Newton, then use the formula

mgsinA = coefficient of static friction * [F + mgcosA]

=>3 * 9.8 * sin35 = 0.3 * [F + 3 * 9.8 * cos35]

=> 29.4 * 0.5736 = 0.3 * [F + 29.4 * 0.8192]

=> 16.86 = 0.3 [F + 24.08]

=> 16.86 = 0.3F + 7.22

=> 16.86 - 7.22 = 0.3F

=> 0.3F = 9.64

=> F = 9.64/0.3

=> F = 32.13 N

Therefore, the Force that must be applied is 32.13 N

The  net force that must be applied is  9.8 N.

The minimum force required is Fnet.

Fnet = -Ff + mgsinθ

But Ff = μN = μmgcosθ

Fnet = - μmgcosθ + mgsinθ

Where;

m = 3.00 kg

μ =  0.300

θ = 35.0o

Substituting values;

Fnet = mgsinθ - μmgcosθ

Fnet = (3 × 10 × sin 35.0o) - (3 × 0.300  × 10 × cos  35.0o)

= 17.2 - 7.4

Fnet = 9.8 N

Learn more: https://brainly.com/question/2510654

If a thermometer measured the temperature in an oven as 400oF five days in a row when the temperature was actually 397oF, this measuring instrument would be considered quite:

Answers

Answer:

It can be said to be reliable although it is not valid

Explanation:

This is because Reliability means an indicator of consistency, A measure should produce similar or the same results consistently if it measures the same quantity. So does the thermometer measures over 5days but it is not valid because it deviates from the real value

pls help me solve dis​

Answers

Answer:

9 Ω

Explanation:

The following data were obtained from the question:

Resistor 1 (R1) = 3 Ω

Resistor 2 (R2) = 3 Ω

Resistor 3 (R3) = 3 Ω

Resistor 4 (R4) = 3 Ω

Resistor 5 (R5) = 3 Ω

Resistor 6 (R6) = 3 Ω

Resistor 7 (R7) = 3 Ω

Resistor 8 (R8) = 3 Ω

Resistor 9 (R9) = 3 Ω

Resistor 10 (R10) = 3 Ω

Resistor 11 (R11) = 3 Ω

Resistor 12 (R12) = 3 Ω

Equivalent Resistance (R) =.?

From the above diagram,

Resistor 1, 2, 3, 4, 5 and 6 are in series connection and in parralle connections with Resistor 7, 8, 9, 10, 11 and 12 which are also in series connection.

Thus we shall determine the equivalent resistance of Resistor 1, 2, 3, 4, 5 and 6

This is illustrated below:

Resistance Ra = R1 + R2 + R3 + R4 + R5 + R6

Ra = 3 + 3 + 3 + 3 + 3 + 3

Ra = 18 Ω

Next, we shall determine the equivalent resistance of Resistor 7, 8, 9, 10, 11 and 12.

This is illustrated below:

Resistance Rb = R7 + R8 + R9 + R10 + R11 + R12

Rb = 3 + 3 + 3 + 3 + 3 + 3

Rb = 18 Ω

Thus, Ra and Rb are in parallel connections. The equivalent resistance between A and B can be obtained as shown below :

Ra = 18 Ω

Rb = 18 Ω

Equivalent resistance R =?

1/R = 1/Ra + 1/Rb

1/R = 1/18 + 1/18

1/R = 2/18

1/R = 1/9

Invert

R = 9 Ω

Therefore, the equivalent resistance between A and B is 9 Ω.

Joe is hiking through the woods when he decides to stop and take in the view. He is particularly interested in three objects: a squirrel sitting on a rock next to him, a tree a few meters away, and a distant mountain. As Joe is taking in the view, he thinks back to what he learned in his physics class about how the human eye works.
Light enters the eye at the curved front surface of the cornea, passes through the lens, and then strikes the retina and fovea on the back of the eye. The cornea and lens together form a compond lens system. The large difference between the index of refraction of air and that of the aqueous humor behind the cornea is responsible for most of the bending of the light rays that enter the eye, but it is the lens that allows our eyes to focus. The ciliary muscles surrounding the lens can be expanded and contracted to change the curvature of the lens, which in turn changes the effective focal length of the cornea-lens system. This in turn changes the location of the image of any object in one's field of view. Images formed on the fovea appear in focus. Images formed between the lens and the fovea appear blurry, as do images formed behind the fovea. Therefore, to focus on some object, you adjust your ciliary muscles until the image of that object is located on the fovea.
A) Joe first focuses his attention (and his eyes) on the tree. The focal length of the cornea-lens system in his eye must be __________ the distance between the front and back of his eye.
a. greater than
b. less than
c. equal to
B) Joe's eyes are focused on the tree, so the squirrel and the mountain appear out of focus. This is because the image of the squirrel is formed ______ and the image of the mountain is formed _____.
a. between the lens and fovea / between the lens and fovea
b. between the lens and fovea / behind the fovea
c. behind the fovea / between the lens and fovea
d. behind the fovea / behind the fovea
C) Joe now shifts his focus from the tree to the squirrel. To do this, the ciliary muscles in his eyes must have _____ the curvature of the lens, resulting in a(n) _______ focal length for the cornea-lens system. Note that curvature is different from radius of curvature.
a. increased / increased
b. increased / decreased
c. decreased / increased
d. decreased / decreased

Answers

Answer:

A) correct answer is C,   B)   correct answer is b  and C) The correct answer is b

Explanation:

In the exercises of geometric optics, the equation of the constructor tells us the location of the image.

        1 / f = 1 / p + 1 / q

where f is the focal length of the cornea-crystalline system, p and q are the distances to the object and the image.

In this case, the distance to the image on the retina is constant, about 3 cm. Therefore depending on the distance to the object) p = the focal length must change

        1 / q = 1 / f 1 / p

let's apply this expression to our case

A) indicates that the tree is at a medium distance

so that the image is formed on the retina THE SAME AS

correct answer is C

B) The squirrel is at a smaller distance (p ') than the tree (p), therefore if we substitute in the equation above we find that q must decrease. Consequently the image is in front of the retina

The mountain is very far, suppose in infinity, so the image is BEHIND THE RETINA

therefore the correct answer is b

C) The squirrel is very close so the curvature of the lens INCREASES, resulting in a DECREASE in the focal length

The correct answer is b

Parallel rays of monochromatic light with wavelength 582 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 4.40×10^−4 W/m^2.

Required:
What is the intensity at a point on the screen that is 0.710 mm from the center of the central maximum?

Answers

Answer:

What is the intensity is 1.3349 × 10⁻⁷ w/m²

Explanation:

Given that;

λ = 582 nm = 582 × 10⁻⁹

R = 75.0 cm = 0.75 m

d = 0.640 mm = 0.000640 m

a = 0.434 mm = 0.000434 m

I₀ =  4.40×10⁻⁴ W/m²

y = 0.710 mm  = 0.00071 m

Now to get our tanФ we say

tanФ = y/R =  0.00071 / 0.75 = 0.0009466  

Ф is so small

∴ tanФ ≈ sinФ

So

∅ = 2πdsinФ / λ

we substitute

∅ = ( 2π × 0.000640 × 0.0009466  ) /  582 × 10⁻⁹

=  6.54 rad

Now

β = 2πasinФ / λ

we substitute

β = ( 2π × 0.000434 × 0.0009466  ) /  582 × 10⁻⁹

β = 4.435 rad

I = I₀ cos²(∅/2) [(sin(β/2))/(β/2)]²

we substitute

I = 4.40×10⁻⁴ cos(3.27)² [ (sin(2.2175)) / (2.2175) ]²  

= 4.40×10⁻⁴ × 0.9967 × 0.0003044

= 1.3349 × 10⁻⁷ w/m²

Other Questions
was the first crusade a fail or a success? Two vehicles collide and stick together. After the collision, their combined y-momentum is 2.40 104 kilogram meters/second, and their x-momentum is 7.00 104 kilogram meters/second. What is the angle of the motion of the two vehicles, with respect to the x-axis? Sara eats very .....a-slow b-slowly Please the answer and explain Calculate the mass of MgCO3 (84.31 g/mol) precipitated by mixing 10.0 mL of a 0.300 M Na2CO3 solution with 6.00 mL of 0.0400 M Mg(NO3)2 solution. The supply chain is the process a company uses to build and sell its products, it is also sometimes called: which strategy specifies the firm's overall direction in terms of its general orientaion toward growth, the industries or markets what is india's national bird? The volume of a rectangular prism with a length of x meters, a width of x 1 meters, and a height of x + 11 meters is no more than 180 cubic meters. What are the possible values of the length? Rice is a very important part of food around the world!what is the favorite way your family prepares rice?Are there multiple ways your family enjoys rice?Please use details and be personal.All writing conventions apply. (3 paragraphs) Here is a rule to make a sequence. The next term is 4 less than 3 times the previous term. .Starting with the initial term of 10, build a sequence of 5 numbers. What is the sum of the two largest numbers in the list $$\frac 13,~\frac 27,~\frac 3{10},~\frac 4{13},~\frac 5{17}~?$$ Express your answer in simplest form. how does defunding the police related to the concept of guns or butter? Which personality trait best fits this description? A ella le gusta pintar y tocar los instrumentos musicales.A. artsticaB. simpticaC. amableD. generosa what is odontology , and explain how they do their job. Camera shop stocks six different types of batteries, one of which is type A7b. Suppose that the camera shop has only twelve A7b batteries but at least 30 of each of the other types. Now, answer the following question - How many ways can a total inventory of 30 batteries be distributed among the six different types? A company wants to create a dynamic survey that navigates users through a different series of questions based on their previous responses. What is the recommended solution to meet this requirement A candy store called "Sugar" built a giant hollow sugar cube out of wood to hang above the entrance totheir store. It took 13.5 m of material to build the cube. What do you know to be true about the values of a and b?60"75"O A. a bO B. a = bO c. a> bO D. Can't be determined A 0.01 significance level is being used to test a correlation between two variables. If the linear correlation coefficient r is found to be 0.591 and the critical values are r 0.590, what can you conclude? Which of the following terms describes the capacity to engage in a supportive, affectionate relationship without losing one's own sense of self? a. generativity b. identity infusion c. attachment d. intimacy