Answer:
Part 1)
10,000 different numbers.
Part 2)
A) 1 in 10,000.
Step-by-step explanation:
Part 1)
Since there are four digits and there are ten choices for each digit (0 - 9) and digits can be repeated, then we will have:
[tex]T=\underbrace{10}_{\text{Choices For First Digit}}\times\underbrace{10}_{\text{Second Digit}}\times\underbrace{10}_{\text{Third Digit}}\times \underbrace{10}_{\text{Fourth Digit}} = 10^4=10000[/tex]
Thus, 10,000 different numbers are possible.
Part 2)
Since there 10,000 different tickets possible, the chance of one being the correct combination will be 1 in 10,000.
This is equivalent to 0.0001 or a 0.01% chance of winning.
3x+7>10
Solve for x.
Answer: x>1
Step-by-step explanation:
To solve for x, we want to isolate x.
3x+7>10 [subtract both sides by 7]
3x>3 [divide both sides by 3]
x>1
Therefore, we know that x>1.
Answer:
Step-by-step explanation:
3x + 7 > 10
3x > 10 - 7
3x > 3
x > 1
x ∈ ( 1, ∞ )
if 5 breads for $100 and they want 2000 breads how much will it cost
Answer:
$40,000
Step-by-step explanation:
If 5 breads cost $100, then 1 bread will cost 100/5=20.
So if 1 bread cost $20, then 2000 breads will cost 2000*20=$40,000.
Answer:
$40000
Step-by-step explanation:
5 breads=$100
1 bread=$100/5=$20
2000 breads= $20 x 2000 = $40000
We are throwing darts on a disk-shaped board of radius 5. We assume that the proposition of the dart is a uniformly chosen point in the disk. The board has a disk-shaped bullseye with radius 1. Suppose that we throw a dart 2000 times at the board. Estimate the probability that we hit the bullseye at least 100 times.
Answer:
the probability that we hit the bullseye at least 100 times is 0.0113
Step-by-step explanation:
Given the data in the question;
Binomial distribution
We find the probability of hitting the dart on the disk
⇒ Area of small disk / Area of bigger disk
⇒ πR₁² / πR₂²
given that; disk-shaped board of radius R² = 5, disk-shaped bullseye with radius R₁ = 1
so we substitute
⇒ π(1)² / π(5)² = π/π25 = 1/25 = 0.04
Since we have to hit the disk 2000 times, we represent the number of times the smaller disk ( BULLSEYE ) will be hit by X.
so
X ~ Bin( 2000, 0.04 )
n = 2000
p = 0.04
np = 2000 × 0.04 = 80
Using central limit theorem;
X ~ N( np, np( 1 - p ) )
we substitute
X ~ N( 80, 80( 1 - 0.04 ) )
X ~ N( 80, 80( 0.96 ) )
X ~ N( 80, 76.8 )
So, the probability that we hit the bullseye at least 100 times, P( X ≥ 100 ) will be;
we covert to standard normal variable
⇒ P( X ≥ [tex]\frac{100-80}{\sqrt{76.8} }[/tex] )
⇒ P( X ≥ 2.28217 )
From standard normal distribution table
P( X ≥ 2.28217 ) = 0.0113
Therefore, the probability that we hit the bullseye at least 100 times is 0.0113
g Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Evaluate logarithmic expressions if possible.
Answer:
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]
Step-by-step explanation:
Given
[tex]4\log_bx - \log_by[/tex]
Required
Express as a single expression
Using power rule of logarithm, we have:
[tex]n\log m = \log m^n[/tex]
So, we have:
[tex]4\log_bx - \log_by = \log_bx^4 - \log_by[/tex]
Apply quotient rule of logarithm
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]
If the smallest angle of a triangle is 20° and it is included between sides of 4 and 7, then (to the nearest tenth) the smallest side of the triangle is _____.
Answer:
[tex]3.5[/tex]
Step-by-step explanation:
The smallest side of a triangle is formed by the smallest angle in the triangle.
To find the side opposite (formed by) the 20 degree angle, we can use the Law of Cosines. The Law of Cosines states that for any triangle, [tex]c^2=a^2+b^2-ab\cos \gamma[/tex], where [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] are the three sides of the triangle and [tex]\gamma[/tex] is the angle opposite to [tex]c[/tex].
Let [tex]c[/tex] be the side opposite to the 20 degree angle.
Assign variables:
[tex]a\implies 4[/tex] [tex]b\implies 7[/tex] [tex]\gamma \implies 20^{\circ}[/tex]Substituting these variables, we get:
[tex]c^2=4^2+7^2-2(4)(7)\cos 20^{\circ},\\c^2=16+49-56\cos 20^{\circ},\\c^2=12.377213236,\\c=\sqrt{12.377213236}=3.51812638147\approx \boxed{3.5}[/tex]
Therefore, the shortest side of this triangle is 3.5.
On weekend nights, a large urban hospital has an average of 4.8 emergency arrivals per hour. Let X be the number of arrivals per hour on a weekend night at this hospital. Assume that successive arrivals are random and independent. What is the probability P(X < 3)?
Answer:
P(X < 3) = 0.14254
Step-by-step explanation:
We have only the mean, which means that the Poisson distribution is used to solve this question.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
On weekend nights, a large urban hospital has an average of 4.8 emergency arrivals per hour.
This means that [tex]\mu = 4.8[/tex]
What is the probability P(X < 3)?
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
So
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-4.8}*4.8^{0}}{(0)!} = 0.00823[/tex]
[tex]P(X = 1) = \frac{e^{-4.8}*4.8^{1}}{(1)!} = 0.03950[/tex]
[tex]P(X = 2) = \frac{e^{-4.8}*4.8^{2}}{(2)!} = 0.09481[/tex]
So
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00823 + 0.03950 + 0.09481 = 0.14254[/tex]
P(X < 3) = 0.14254
Question 1 of 10
The triangles shown below may not be congruent.
66V
100
100
00
2017
A. True
B. False
SUBMIT
Answer:
A. TRUE
Step-by-step explanation:
To determine if two triangles are congruent, we need to establish the facts that the three angles and three side lengths of one is congruent to corresponding angles and side lengths of the other triangle.
The diagram given only tells us the angle measure of the two triangles which are congruent to each other. The side length wasn't given. Therefore, the triangles may not be congruent.
Given the function
Calculate the following values:
f( - 1) =
f(0)
f(2)=
-1 is less than 0, so you use the first equation:
3(-1) +2 = -3+2 = -1
f(-1) = -1
For 0 use the 2nd equation:
3(0) + 4 = 0+4 = 4
f(0) = 4
For 2 use the 2nd equation:
3(2) + 4 = 6+4 = 10
f(2) = 10
Find the volume of the composite solid. Round your answer to the nearest hundredth. A. 22.5mm^3 B. 22.19mm^3 C. 22.53mm^3 D. 22.54mm^3
A businessman spends 1/5 of his travel expense funds on a hotel room and 4/10 on airfare. What percentage of his travel expenses are left over?
Answer: 40%
Step-by-step explanation:
1/5=20%, 4/10=40%. 20 + 40 = 60. [ 100% - 60% = 40%]
Keisha borrowed $400 from a bank for 5 years and was charged simple interest. The total interest that she paid on the loan was $120. As a percentage, what was the annual interest rate of her loan?
Answer:
6%
Step-by-step explanation:
Answer:
you need to divide 120 by 5
Step-by-step explanation:
the percentage is 16.6 and it goes on that is for 1 year
for the function f(x)=5 evaluate and simplify the expression: f (a+h)-f(a)/h
Answer:
0 is the answer assuming the whole thing is a fraction where the numerator is f(a+h)-f(a) and the denominator is h.
Step-by-step explanation:
If the expression for f is really a constant, then the difference quotient will lead to an answer of 0.
If the extra for f is linear (including constant expressions), the difference quotient will be the slope of the expression.
However, let's go about it long way for fun.
If f(x)=5, then f(a)=5.
If f(x)=5, then f(a+h)=5.
If f(a)=5 and f(a+h)=5, then f(a+h)-f(a)=0.
If f(a+h)-f(a)=0, then [f(a+h)-f(a)]/h=0/h=0.
Gemma recently rode her bicycle to visit her friend who lives 6 miles away. On her way there, her average speed was 16 miles per hour faster than on her way home. If Gemma spent a total of 1 hour bicycle, find the two rates.
first speed --- x mph
return speed -- x+16 mph
6/x + 6/(x+16) = 1
times each term by x(x+16)
6(x+16) + 6x = x(x+16)
x^2 + 4x - 96 = 0
(x-8)(x+12) = 0
x = 8 or x is a negative
her first speed was 8 mph
her return speed was 24 mph
check:
6/8 + 6/24 = 1 , that's good!
Decide which of the two given prices is the better deal and explain why.
You can buy shampoo in a 5-ounce bottle for 3,89$ or in a 14-ounce bottle for 11,99$.
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A.The -ounce bottle is the better deal because the cost per ounce is $
nothing per ounce while the -ounce bottle is $
nothing per ounce.
B.The -ounce bottle is the better deal because the cost per ounce is $
nothing per ounce while the -ounce bottle is $
nothing per ounce.
(Round to the nearest cent as needed.)
Answer:
The 14-ounce bottle is the better deal
Step-by-step explanation:
I know this beause inorder to figure out which one is better you have to make them the same price and then see which bottle has more ounces. So I made each price 1$ so there is 1.58-ounces per dollar in the 5-ounce bottle and 1.17 -ounces per dollar in the 14-ounce bottle.
What is 35 degrees Celsius in Fahrenheit equal
Answer:
95°Fahrenheit
hipe this helps you
if a x + B Y is equal to a square minus b square and b x + A Y is equal to zero find the value of x + Y
9514 1404 393
Answer:
a-b
Step-by-step explanation:
Add the two equations together:
(ax +by) +(bx +ay) = (a² -b²) +(0)
x(a +b) +y(a +b) = (a +b)(a -b)
x + y = a - b . . . . . divide by (a+b), assuming a+b ≠ 0
A water reservoir is shaped like a rectangular solid with a base that is 60 yards by 30 yards, and a vertical height of 30 yards. At the start of a three-month period of
no rain, the reservoir was completely full. At the end of this period, the height of the water was down to 6 yards. How much water was used in the three-month period?
How much water was used in the three-month period?
Please help :)
Answer:
43200 yd³
Step-by-step explanation:
The water reservoir is a rectangular solid that is a three dimensional shape with six quadrilateral faces (cuboid).
This reservoir has a base of 60 yards by 30 yards, and a vertical height of 30 yards. Therefore:
Volume of the reservoir = area of base * vertical height = 60 * 30 * 30 = 54000 yd³
This reservoir hence have a volume of 54000 yd³ when filled up with water.
After 3 months, the height of the water was down to 6 yards therefore the the volume is:
Volume after 3 months = area of base * vertical height = 60 * 30 * 6 = 10800 yd³
The amount of water used after 3 months = volume of water at beginning - volume of water after 3 months
The amount of water used after 3 months = 54000 - 10800 = 43200 yd³
the All-star appliance shop sold 10 refrigerators, 8 ranges, 12 freezers, 12 washing machines, and 8 clothes dryers during January. Freezers made up what part of the appliances sold in January?
Answer:
Freezers made up [tex]\frac{6}{25}[/tex] = 24% of the appliances sold in January.
Step-by-step explanation:
We have that:
10 + 8 + 12 + 12 + 8 = 50 parts were sold in January.
Freezers made up what part of the appliances sold in January?
12 of those were freezers, so:
[tex]\frac{12}{50} = \frac{6}{25} = 0.24[/tex]
Freezers made up [tex]\frac{6}{25}[/tex] = 24% of the appliances sold in January.
The table shows the proof of the relationship between the slopes of two perpendicular lines. What is the missing statement in step 2?
Answer:
[tex]\frac{AB}{BC} = \frac{CE}{ED}[/tex]
Step-by-step explanation:
Given
The attached proof
Required
Complete the missing piece
In (a), we have:
[tex]\triangle ABC \to \triangle CED[/tex]
This implies that, the following sides are similar:
[tex]AB \to CE[/tex]
[tex]AC \to CD[/tex]
[tex]BC \to ED[/tex]
An equation that compares the triangle can be any of:
[tex]\frac{AB}{BC} = \frac{CE}{ED}[/tex]
[tex]\frac{AB}{AC} = \frac{CE}{CD}[/tex]
.....
From the options;
[tex]\frac{AB}{BC} = \frac{CE}{ED}[/tex] is true
find all missing angles in the following diagram
Step-by-step explanation:
the item angle on the left line is also 130 degrees, as these 2 equally long lines create a triangle with 2 equal sides.
the two internal angles are the complement from 130 to 180 degrees, as every straight line stands for 180 degrees.
so, 180-130 = 50 degrees.
=> both internal angles are 50 degrees.
that makes the angle at the bottom tip of the triangle the complement of both 50 degree angle to 180, because the sum of all angles in a triangle is always 180 degrees.
so, 180 - 50 - 50 = 80 degrees.
and the outside angles of that triangle tip angle are each half of the complement of these 80 degrees to 180 (resistive to the bottom horizontal line).
180 - 80 = 100
100/2 = 50
so, both outside bottom angles are again 50 degrees.
Evaluate for x=2 and y=3: x^2y^-3/x^-1y
Answer:
8/81
Step-by-step explanation:
It's most efficient to simplify the quotient algebraically before inserting the values of the variables x and y.
The given expression reduces to x³ / y^4.
Substituting 2 for x and 3 for y, we get:
(2)³ 8
--------- = ---------- (Agrees with first given possible answer)
(3)^4 81
CAN SOMEONE HELP ME ON ANALYZING DOT PLOTS!!!
Answer:
yes
Step-by-step explanation:
but I can't see them here
The difference of a number and 6 is the same as 5 times the sum of the number and 2. What is the number?
Step-by-step explanation:
Lets consider the unknown number as x
according to the question,
6-x= 5(x+2)
6-x= 5x+10
-x-5x=10-6
-6x=4
x=4/-6= 2/-3
x= -2/3
hope this helps
please mark me as brainliest.
Answer:
Step-by-step explanation:
Plato!! Answer: -4
Hope this helped
If today is Friday, tomorrow will be Saturday
Answer:
Yes
Step-by-step explanation:
Yesterday would be Thursday and the day after next would be Sunday
A hypothesis will be used to test that a population mean equals 5 against the alternative that the population mean is less than 5 with known variance σ. What is the critical value for the test statistic for the significance level of 0.010
Answer:
The critical value is [tex]Z_c = -2.327[/tex]
Step-by-step explanation:
A hypothesis will be used to test that a population mean equals 5 against the alternative that the population mean is less than 5
Test if the mean is less than a value, so a one-tailed hypothesis test is used.
Known variance σ.
This means that the z-distribution is used to solve this question.
What is the critical value for the test statistic for the significance level of 0.010?
Z with a p-value of 0.01, so, looking at the z-table, [tex]Z_c = -2.327[/tex]
A large bottle of water is leaking. The amount of ounces left in the bottle is shown in the function [tex]O(s) = 72-3s[/tex] is the amount of ounces left, and s is the number of seconds that is the water is leaking out. What is a reasonable domain and range for this function?
9514 1404 393
Answer:
D: [0, 24]
R: [0, 72]
Step-by-step explanation:
The function only makes sense for non-negative values of time or water volume. The intercepts of the function are ...
y-intercept: 72
x-intercept: 72/3 = 24
so the reasonable domain is 0 ≤ s ≤ 24,
and the corresponding range is 0 ≤ O(x) ≤ 72.
One-ninth of all sales at a local Subway are for cash. If cash sales for the week were $690, what were
Subway's total sales?
Select one:
O a. $22,600
O b. $2,611
O c. $6,210
O d. $2,610
e. None of these
Answer:
c. $6,210Step-by-step explanation:
Total sales = x
x*1/9 = 690x = 690*9x = 6210Correct choice is C
The area of a square is increasing at a rate of 24 centimeters squared per second. Find the rate of change of the side of the square when it is 4 centimeters. The rate of change of the side is Number cm/sec.
Answer:
3cm/s
Step-by-step explanation:
Area of a square is expressed as:
A = L²
Rate of change of area is expressed as:
dA/dt = dA/dL•dL/dt
Given that
dA/dt = 24cm²/s
L = 4cm
Required
dL/dt
Since dA/dl = 2L
dA/dl = 2(4)
dA/dl = 8cm
Subatitute the given values into the formula
24 = 8 dL/dt
dL/dt = 24/8
dL/dt = 3cm/s
Need help with this one please
it right answer is Clovis 2.5% it answer
angle P and angle Q are complementary. The measure of angle Q is 33.5°. What is the measure of angle P?
Answer:
56.5 degrees
Step-by-step explanation:
Because complementary angles are when their sum is 90, you get the equation:
P + Q = 90
Since Q is 33.5,
P + 33.5 = 90
Subtracting 33.5 from both sides,
P = 56.5