Answer:
A. the graph of a quadratic function y = (1/4)(x+3)(x-4)
Step-by-step explanation:
(1/4)(x+3)(x-4) = 0
x+3 = 0 or x-4 = 0
x = -3 or x = 4
For the others:
B. -(1/4)(x-3)(x+4) = 0
x-3 = 0 or x+4 = 0
x = 3 or x = -4
C. -(x+3)(x+4) = 0
x+3 = 0 or x+4 = 0
Step-by-step explanation:
The graph of function y = 1/4 (x+3)(x-4) gives the zeros at -3 and 4, therefore option (a) is correct.
What is function?A function is a combination of different types of variable and constants in which for the different values of x the value of function y is unique.
Given that,
The function f has 0 at -3 and 4.
The function f has 0 at -3 and 4 implies that the value of function is 0, when value of x are -3 and 4.
Solve with the help of options,
(a)
y = 1/4 (x + 3)(x - 4)
Substitute x = -3,
y = 1/4 (-3 + 3) (3 + 4)
y = 1/4 x 0 x 7
y = 0
Substitute x = 4,
y = 1/4 (4 + 3)(4 - 4)
y = 1/4 x 7 x 0
y = 0
The value of y is 0 at x = -3 and 4,
Therefore, option (A) is correct option.
To know more about Function on:
https://brainly.com/question/2411204
#SPJ2
The length of a rectangle is 2 inches less than twice it’s width. If the perimeter of the rectangle is 74 inches, what is the area of the rectangle
Answer:
length = 24 incheswidth = 13 inchesStep-by-step explanation:
Perimeter of a rectangle = 2l + 2w
where
l is the length
w is the width
From the question
Perimeter = 74 inches
The statement
The length of a rectangle is 2 inches less than twice it’s width is written as
l = 2w - 2
Substitute this expression into the perimeter formula and solve for the width
That's
74 = 2(2w - 2) + 2w
74 = 4w - 4 + 2w
6w = 78
Divide both sides by 6
w = 13
Substitute this value into l = 2w - 2
l = 2(13) - 2
l = 26 - 2
l = 24
Therefore we have
length = 24 inches
width = 13 inches
Hope this helps you
PLEASEEEEE
Solve for x. A. 13 B. 12 C. 10 D. 7
Answer:
Option (C)
Step-by-step explanation:
"If the two secants are drawn to a circle form an external points then the product of the measures of one secant segment (inside the circle) and its external segment will be equal to the product of measures of the other secant's segments."
By this property,
8(8 + x) = 9(9 + 7)
64 + 8x = 144
8x = 144 - 64
8x = 80
x = 10
Therefore, Option (C) will be the answer.
HELP!
12. Write a formula to estimate the amount of material required to cover Firm 1’s structure, not including the floor. Explain your reasoning.
** radius = 35, height = 60**
**the shape is a cylinder**
13. Use the formula from question 12 to estimate the amount of material required to cover Firm 1’s structure, not including the floor. Show your calculations.
Answer:
12. The formula to estimate the amount of material required to cover firm 1's structure not including the floor is π·r² + π·r·h
13. 10445.8 unit²
Step-by-step explanation:
12. The given parameters are;
The shape of the firm 1's structure = Cylindrical shape
The radius of the firm 1's structure = 35
Height of firm 1 structure = 60
The amount of material to cover the firm 1 structure not including the floor = The surface area of a cylinder excluding the base
The formula for the surface area of a cylinder = 2·π·r² + π·r·h
Removing the area of the base, we have
The surface area of a cylinder excluding the case = 2·π·r² + π·r·h - π·r² = π·r² + π·r·h
The formula to estimate the amount of material required to cover firm 1's structure not including the floor = π·r² + π·r·h
13.
The amount of material to cover firm 1's structure not including the floor = π × 35² + π × 35 × 60 = 10445.8 unit².
find the slope of the line through the points (-13,15), (20,-7)
Answer:
[tex] \boxed{ \bold{ \huge{\boxed{ \sf{ \frac{ - 2}{3} }}}}}[/tex]
Step-by-step explanation:
Let the points be A and B
A ( -13 , 15 ) ⇒( x₁ , y₁ )
B ( 20 , -7 )⇒( x₂ , y₂ )
Finding the slope :
[tex] \boxed{ \sf{slope = \frac{y2 - y1}{x2 - x1} }}[/tex]
plug the values
⇒[tex] \sf{slope = \frac{ - 7 - 15}{20 - ( - 13)} }[/tex]
We know that, [tex] \sf{( - ) \times ( - ) = ( + )}[/tex]
⇒[tex] \sf{slope = \frac{ - 7 - 15}{20 + 13}} [/tex]
Calculate the sum
⇒[tex] \sf{slope = \frac{ - 22}{33} }[/tex]
Reduce the numbers with G.C.F 11
⇒[tex] \sf{slope = \frac{ - 2}{3} }[/tex]
Hope I helped !
Best regards!!
The Atlantic Ocean region contains approximately 2 × 10^16 gallons of water. Lake Ontario has approximately 8,000,000,000,000 gallons of water. How many Lake Ontarios would it take to fill the Atlantic Ocean region in terms of gallons of water?
Answer:
2500 gallons or water.
Step-by-step explanation:
Atlantic ocean contains 2 x 10¹⁶ gallons of water.
lake Ontario has approx 8 x 10¹² gallons of water.
req'd:
how many lake ontarios would it take to fill the Atlantic ocean in gallons of water?
= 2 x 10¹⁶ gallons of water
8 x 10¹² gallons of water
= 2500 Lake Ontarios to fill The Atlantic Ocean
2500 times the gallons of water Lake Ontarios will take to fill the Atlantic Ocean region.
Given that,
The Atlantic Ocean region contains approximately 2 × 10^16 gallons of water.
Lake Ontario has approximately 8,000,000,000,000 gallons of water or 8 * 10¹².
To determine how many Lake Ontarios would it take to fill the Atlantic Ocean region in terms of gallons of water
The ratio can be defined as the proportion of the fraction of one quantity towards others. e.g.- water in milk.
Here,
Lake Ontarios would it take to fill the Atlantic Ocean region
= 2 × 10¹⁶ / 8 * 10¹²
= 0.25 * 10⁴
= 2500 times the gallons of water Lake Ontarios
Thus, 2500 times the gallons of water Lake Ontarios will take to fill the Atlantic Ocean region.
Learn more about ratios here:
brainly.com/question/13419413
#SPJ2
simplify -4(3-6)+8÷2
Answer: 16
Step-by-step explanation:
multiply -4 onto (3-6) and set 8÷2 off to the side for now
-4(3-6)
-12+24 combine them
12 then solve 8÷2 which is 4
12+4 = 16
A biconditional statement is a conjunction of which two types of statements?
A. Conditional and inverse
B. Converse and conditional
C. Converse and contrapositive
D. Conditional and contrapositive
Answer:
i can confirm its B
Step-by-step explanation:
hypothesis, if and only if, conclusion
So I need help. If DE=4x+10,EF=2x-1,and DF=9x-15 find DF?????
Greetings from Brasil....
Looking at the figure we can say that:
DF = DE + EFand
DF = 9X - 15
DE = 4X + 10
EF = 2X - 1
So
DF = DE + EF
9X - 15 = (4X + 10) + (2X - 1)
X = 8 and
DF = 9X - 15
DF = 57The solution is, the value of DF is 57.
What is simplification?Simplify simply means to make it simple. In mathematics, simply or simplification is reducing the expression/fraction/problem in a simpler form. It makes the problem easy with calculations and solving.
here, we have,
from the given information, we get,
DF = DE + EF
and
DF = 9X - 15
DE = 4X + 10
EF = 2X - 1
So, we have to simplify ,
DF = DE + EF
9X - 15 = (4X + 10) + (2X - 1)
X = 8 and
DF = 9X - 15
DF = 57
Hence, The solution is, the value of DF is 57.
To learn more on simplification click:
brainly.com/question/28996879
#SPJ3
Amelie is shopping for children's books and puzzle books. She wants to purchase at least 2 more children's books than puzzle books, but she can afford no more than 15 items total. If x represents the number of children's books and y represents the number of puzzle books Amelie purchases, which point lies in the solution set?
Answer:
X = 8.5, Y = 6.5
Step-by-step explanation:
X = # of children's books
Y = # of puzzle books
Amelie wants to buy 2 more children's books than puzzle books.
15 - 2 = 13 (Save the 2)
13 / 2 = 6.5
6.5 + 2 = 8.5
So; 8.5 + 6.5 = 15
X = 8.5
Y = 6.5
what is 5 /2 equeivelent to
Answer:
2.5
Step-by-step explanation:
Since 4/2 = 2 and 5/2 is 1/2 more than 4/2, then 5/2 is equal to 2 1/2 which can be rewritten as 2.5
Answer:
5/2 = 2,5
5 to divide 2 = 2,5
Step-by-step explanation:
Find the sum of 4x^2+3x+24x 2 +3x+2 and 7x^2+7x+37x 2 +7x+3. A
Answer:
146x + 9
unless they have to be seperate not all combined
I am a three digit number the digits total is nine when added together all of my digits are odd numbers the hundreds digit is less than the tens digit but more than the ones digit what is the mystery number
Answer:
The mystery number is 351.
Step-by-step explanation:
Let the numbers be xyz.
The digits total is 9; That is, x+y+z = 9All of the digits are odd numbers; That is, the digits will be 1,3,5,7 and / or 9.Since the digits total is 9, then '9' cannot be among since summing it with other digit(s) will be greater than 9. Hence, '9' cannot be among the digits.
Also, '7' cannot be among the three digit number, since adding 7 to any two of the remaining three digits (that is, 1, 3, and / or 5) will make the total greater than 9. Hence, '7' also cannot be among the digits.
The remaining digits are 1,3 and 5; which all sum up to 9. That 1 + 3 + 5 = 9.
The hundreds digit is less than the tens digit, that is, x is less than y. But it (hundreds digit) is more than the ones digit, that is, x is more than z. Hence, x is 3, since '3' is the only number which is less than one of the numbers and as well more than one of the numbers. If x is less than y, then y is 5 and then z is 1. Hence, xyz becomes 351.Hence the mystery number is 351.
Solve for x:
-10x- 5 = -8x + 11
Answer:
x = -8
Step-by-step explanation:
-10x-5 = -8x + 11
-10x + 8x = 11 + 5
-2x = 16
x = 16/-2
x = -8
one of the interior angles of a regular polygon is 144. fine the number of sides of the polygon
Answer:
10
Step-by-step explanation:
In any polygon
exterior angle + interior angle = 180° , thus
exterior angle + 144 = 180 ( subtract 144 from both sides )
exterior angle = 36°
The sum of the exterior angles = 360°
Thus number of sides n is calculated as
n = 360 ÷ 36 = 10
Answer:
The polygon has 10 sidesStep-by-step explanation:
One of the interior angles of a polygon can be found using the formula
[tex] \frac{(n - 2) \times180\degree }{n} [/tex]where n is the number of sides of the polygon
From the question
One of the interior angles = 144
To find the number of sides substitute this value into the above formula and solve for n
That's
[tex]144 = \frac{(n - 2) \times 180}{n} [/tex]Cross multiply
We have
[tex]144n = (n - 2) \times 180[/tex]Expand the terms in the bracket
[tex]144n = 180n - 360[/tex]Group like terms
[tex]144n - 180n = - 360 \\ \\ - 36n = - 360[/tex]Divide both sides by - 36
That's
[tex] \frac{ - 36n}{ - 36} = \frac{ - 360}{ - 36} [/tex]We have the final answer as
n = 10 sidesHope this helps you
please help immediately for brainliest
please do the number 2
Answer:
63.57817848
Step-by-step explanation:
all will be in degrees:
cos 40 sinx - sin 40 cos x = sin(x - 40) by the formula sin(A − B) = sinA cosB − cosA sinB
sin(x - 40) = 2/5
x - 40 = arcsin(2/5)
x - 40 = 23.57817848
x = 63.57817848 degrees
Answer:
x = 63.57817848
x = 196.4218215
Step-by-step explanation:
cos 40 sin x - sin 40 cos x = 2/5
sin x cos 40 - cos x sin 40 = 2/5
Using trig identities sin(α – β) = sin(α) cos(β) – cos(α) sin(β)
sin ( x - 40) = 2/5
Rewriting as m = x-40
sin ( m) = 2/5
Taking the inverse sin of each side
sin ^-1 sin m = sin ^-1 (2/5)
m = 23.57817848
m = 180 -23.57817848 = 156.4218215
now find x
x -40 = m
x = m+40
x = 23.57817848 +40 = 63.57817848
x = 156.4218215 + 40 = 196.4218215
I need help can someone help me
Answer:
See below.
Step-by-step explanation:
The graph is very unclear, but if you look at x = 2, and you go up until you intersect a point on the line, the y-coordinate of that point is the value written on the graph to the left of the y-axis.
Answer:
i think the answers c or d
by the way are you on odyssey ware or USA test prep
Step-by-step explanation:
Average rate of change for the function from 1 to 4.
H(x)=x^3-1
Answer:
A. 21
Step-by-step explanation:
First, find h(1) and h(4) given the function, [tex] h(x) = x^3 - 1 [/tex]
[tex] h(1) = (1)^3 - 1 = 1 - 1[/tex]
[tex] h(1) = 0 [/tex]
[tex] h(4) = (4)^3 - 1 [/tex]
[tex] h(4) = 64 - 1 [/tex]
[tex] h(4) = 63 [/tex]
Average rate of change = [tex] \frac{h(b) - h(a)}{b - a} [/tex]
Where,
[tex] a = 1, h(a) = 0 [/tex]
[tex] b = 4, h(b) = 63 [/tex]
Average rate of change = [tex] \frac{63 - 0}{4 - 1} [/tex]
[tex] = \frac{63}{3} = 21 [/tex]
2.Show that: (sinΘ + cosΘ)^2 + (sinΘ - cosΘ)^2 = 2
Answer:
Below
Step-by-step explanation:
● A = (sinO +cosO)^2 +(sinO -cosO)^2
●A = sin^2(O) +2×sinO×cosO +cos^2(O)+sin^2O-2×cosO×sinO +cos^2(O)
● A = sin^2(O) +cos^2(O)+sin^2(O)+cos^2(O)
We khow that cos^2 x + sin^2 x = 1
● A = 1+1
● A=2
Simplify to create an equivalent expression. 6(7−3y)+6(y+1)
Answer:
48 = 12y
Step-by-step explanation:
First, we simplify
6 * 7 = 42
6 * 3y = 18y
6 * y = 6y
6 * 1 = 6
Then, rewrite the expression
42 - 18y + 6y + 6
Now, rearrange the expression
42 + 6 - 18y + 6y
Then, simplify
48 - 12y
Hope this helps!
Answer:
48 - 12 y
Step-by-step explanation:
6 (7 - 3 y) + 6 (y + 1)
Use distributive property to get rid of the parentheses:
42 - 18 y + 6 y + 6
now combine like terms:
(42 + 6 ) + (- 18 y + 6 y) = 48 - 12 y
The population of a city is 1,880,000 what is the value of each of the two 8s in this number how are the two values related
Answer:nnn
Step-by-step explanation:
jjj
When the number k is multiplied by 5, the result is the same as when 5 is added to k. What is the value of k?
Answer:
k = 1[tex]\frac{1}{4}[/tex] or 5/4
Step-by-step explanation:
5k = 5 + k
4k = 5
k = 5/4
Write a function rule using function notation that will transform a geometric figure by rotating it 270 degrees clockwise. a f(x, y)=(-y, x) b f(x, y)=(y, x) c f(x, y)=(-x, y) d f(x, y)=(x, -y)
Answer:
a
Step-by-step explanation:
Under a clockwise rotation about the origin of 270°
a point (x, y ) → (- y, x ) , thus
f(x, y ) = (- y, x )
Given:
Function 'f' with two variables 'x' and 'y'.
To find:
Function rule if the parent function 'f' is rotated by 270° clockwise.
Solution:
A function given with two variables 'x' and 'y',
f(x, y) → (x, y)
If this function is rotated by 270° clockwise, the function rule will become,
f(x, y) → (-y, x)
Therefore, Option A will be the correct option.
If an atom has 18 positively - charged protons and 18
negatively charged electrons, what is its total charge?
Answer:
THE TOTAL CHARGE WILL BE ZERO.
Step-by-step explanation:
BECAUSE ATOMS ARE NEUTRAL WHEN THE PROTONS AND ELECTRONS HAVE THE SAME CHARGE
HOPE THIS HELPS YOU IF IT DID PLZ CLICK ONTO THANKS AND MARK AS BRAINLIEST
A jacket that normally sells for $45 is on sale with 20% off. What is the sale price?
Answer:
20% of 45 is 9. sale price- 9$
Step-by-step explanation:
20% of 45
20/100 = 0.20 (0.20) (45) = 9
Answer:
37.50
Step-by-step explanation:
45 ÷ 80% = 37.50
÷80% because original price reduced TO 80%.
Solve the following problem and show the work. (x - 6)^2 + (y + 1)^2 = 40
Answer:
see explanation
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
(x - 6)² + (y + 1)² = 40 ← is the equation of a circle in standard form
centre = (6, - 1) and r = [tex]\sqrt{40}[/tex] = 2[tex]\sqrt{10}[/tex]
(x+6)(x-5) = x²+x-30
Answer:
0=0
Step-by-step explanation:
(x+6)(x-5) = x^2 + - 30
Step 1: Simplify both sides of the equation.
x^2 + x-30 = x^2 + x-30
Step 2: Subtract x^2 from both sides.
x^2 + x - 30 - x^2 = x^2 + x - 30 - x^2
x-30=x-30
Step 3: Subtract x from both sides.
x-30-x=30-x
-30 = - 30
step 4: Add 30 to both sides.
-30+ 30 = -30 + 30
0=0
There are 6 green marbles, 11
blue marbles, 7 red marbles, and 8
orange marbles in a bag. Three
marbles are selected and marbles
are NOT replaced. What is the
probability of selecting a green
marble, then a red marble?
Step-by-step explanation:
green: 6/4
red: 7/4
this is all i know
What is the probability of rolling a “7" on a fair 6-sided die and flipping a tails on a
fair coin?
0 because there is no 7 on a fair 6-sided die
Answer:
The probability of rolling a "7" on a fair 6-sided die is 0/6 or 0% because there is no value of 7 to be rolled on such a die. The probability of flipping a tails on a fair coin is 1/2 or 50% because there are only two sides to a coin and tails is one of those sides.
Find the value of $B - A$ if the graph of $Ax + By = 3$ passes through the point $(-7,2),$ and is parallel to the graph of $x + 3y = -5.$
Answer:
-6
Step-by-step explanation:
We know that since Ax + By = 3 passes through (-7, 2), then if we plug -7 in for x and 2 in for y, the equation is satisfied. So, let's do that:
Ax + By = 3
A * (-7) + B * 2 = 3
-7A + 2B = 3
We also know that this line is parallel to x + 3y = -5, which means their slopes are the same. Let's solve for y in the second equation:
x + 3y = -5
3y = -x - 5
y = (-1/3)x - (5/3)
So, the slope of this line is -1/3, which means the slope of Ax + By = 3 is also -1/3. Let's solve for y in the first equation:
Ax + By = 3
By = -Ax + 3
y = (-A/B)x + 3/B
This means that -A/B = -1/3. So, we have a relationship between A and B:
-A/B = -1/3
A/B = 1/3
B = 3A
Plug 3A in for B into the equation we had where -7A + 2B = 3:
-7A + 2B = 3
-7A + 2 * 3A = 3
-7A + 6A = 3
-A = 3
A = -3
Use this to solve for B:
B = 3A
B = 3 * (-3) = -9
So, B = -9 and A = -3. Then B - A is:
B - A = -9 - (-3) = -9 + 3 = -6
The answer is -6.
~ an aesthetics lover
Answer:
-6
Step-by-step explanation:
Let $A = (-3,8)$ and $B = (-5,4)$. The midpoint of $\overline{AB}$ is $\left( \frac{(-3) + (-5)}{2}, \frac{8 + 4}{2} \right) = (-4,6)$.
The slope of $\overline{AB}$ is $\frac{8 - 4}{(-3) - (-5)} = 2$, so the slope of the perpendicular bisector of $\overline{AB}$ is $-\frac{1}{2}$. Therefore, the equation of the perpendicular bisector is given by
\[y - 6 = -\frac{1}{2} (x + 4).\]Isolating $y,$ we find
\[y = -\frac{1}{2} x + 4.\]Therefore, $m+b = -\frac{1}{2} + 4 = \boxed{\frac{7}{2}}.$
find 2 Pais of integers who's product is -20
Step-by-step explanation:
To find the factors of -20 (or 20), we ask ourselves: what numbers multiply each other to get -20?
We have:
-20 * 1
-10 * 2
-5 * 4
5* -4
10 * -2
20 * -1
All of these pairs are factors of -20. Choose two that you want to use! Hope this helps!
Answer:
2 and -10 or 4 and -5
Step-by-step explanation:
An integer is any whole number, positive or negative (so not fractions, decimals.... just numbers like -1, -2, 10, etc.).
Hence, there is not only one answer to your question...
It could be 2 and -10, 4 and -5... just not any decimals or fractions!
God bless and stay safe! I hope this helped.