How many ways can 4 people sit in a table of 6 seats? A.120
B.24
C.360
D.15

Answers

Answer 1

Answer:

I thought it would be 24


Related Questions

What is the product? Five-twelfths times one-third

Answers

When you multiply two fractions together, multiply the two top numbers and then multiply the two bottom numbers.

5/12 x 1/3 = (5x1) / (12x3) = 5/36

Answer:

Step-by-step explanation:

[tex]\frac{5}{12}*\frac{1}{3}\\\\\\=\frac{5*1}{12*3}=\frac{5}{36}[/tex]

Explain a situation when the absolute value of a number might be negative. Explain using examples, relevant details, and supporting evidence. RACE Format Its for a CRQ

Answers

The absolute value of any number is never negative. Absolute value represents distance, and negative distance is not possible (it doesn't make any sense to have a negative distance). Specifically, it is the distance from the given number to 0 on the number line.

The result of an absolute value is either 0 or positive.

Examples:

| -22 | = 22

| -1.7 | = 1.7

| 35 | = 35

The vertical bars surrounding the numbers are absolute value bars

divide the sum of 3/8 and -5/12 by the reciprocal of -15/8×16/27​

Answers

Answer:

757

Step-by-step explanation:

Answer:

Step-by-step explanation:

Sum of 3/8 and -5/12:

Least common denominator of 8 & 12 = 24

[tex]\frac{3}{8}+\frac{-5}{12}=\frac{3*3}{8*3}+\frac{-5*2}{12*2}\\\\\\=\frac{9}{24}+\frac{-10}{24}\\\\\\=\frac{-1}{24}[/tex]

Finding -15/8 * 16/27:

[tex]\frac{-15}{8}*\frac{16}{27}=\frac{-5*2}{1*9}=\frac{-10}{9}[/tex]  

Reciprocal of -10/9 = -9/10

-1/24 ÷ -9/10 = [tex]\frac{-1}{24}*\frac{-10}{9}=\frac{1*5}{12*3}[/tex]

= [tex]\frac{5}{24}[/tex]

Question 27 (1 point)
(01.05)
What is the slope-intercept form equation of the line that passes through (1,3) and (3, 7)? (1 point)

а. y = -2x + 1

b. y=-2x - 1

с. y = 2x + 1

d. y= 2x - 1

Answers

Answer: y=2x+1

Step-by-step explanation:

plug in the points in to the equation to see what you get

What is the relationship between two lines whose slopes are −8 and 1 8 ?

Answers

Answer:

They are perpendicular lines

Step-by-step explanation:

If one line has slope -8 and the other one has slope 1/8, they must be perpendicular to each other because the condition for perpendicular lines is that the slope of one must be the "opposite of the reciprocal of the slope of the original line."

the opposite of -8 is 8 , and the reciprocal of this is 1/8

Answer:

Below

Step-by-step explanation:

Let m and m' be the slopes of two different lines.

These lines are peependicular if and only if:

● m×m' = -1

Notice that:

● -8 ×(1/8) = -1

So the lines with the respectives slopes -8 and 1/8 are perpendicular.

if sina=4/5 find the cosa

Answers

Answer:

cos A = 3/5

Step-by-step explanation:

sin A = 4/5

sin^2 A + cos^2 A = 1

(4/5)^2 + cos^2 A = 1

16/25 + cos^2 A = 1

cos^2 A = 9/25

cos A = 3/5

Rewrite 7.13 as a mixed number in lowest terms

Answers

Hey there! I'm happy to help!

A mixed number is a whole number and a fraction. We already see that our whole number is 7.

Our decimal is 0.13. Since this goes into the hundredths place, we can rewrite this as 13/100. This cannot be simplified anymore.

Therefore, 7.13 is 7 13/100 in lowest terms.

Have a wonderful day! :D

Find em when em = 7x and the midpoint is m and mg = 8x-6

Answers

Answer:

EM = 42

Step-by-step explanation:

If M is the midpoint, then we can say that EM = MG.

So now, I can set up an equation:

7x = 8x - 6

And solve for x.

7x = 8x - 6

 -8x     -8x

-x = -6

x = 6

Since we are trying to find EM, and EM is 7x, we can multiply x by 7 to find our answer:

7x

7(6)

42

EM = 42

Select the correct answer from each drop-down menu. Shape I is similar to shape II. The sequence that maps shape I onto shape II is a 180degree clockwise rotation about the origin, and then a dilation by a scale factor of (0.5; 1; 1.5 ; or 2)

Answers

Answer:

Scale factor 2.

Step-by-step explanation:

The vertices of shape I are (2,1), (3,1), (4,3), (3,3), (3,2), (2,2), (2,3), (1,3).

The vertices of shape II are (-4,-2), (-6,-2), (-8,-6), (-6,-6), (-6,-4), (-4,-4), (-4,-6), (-2,-6).

Consider shape I is similar to shape II. The sequence that maps shape I onto shape II is a 180 degree clockwise rotation about the origin, and then a dilation by a scale factor of k.

Rule of 180 degree clockwise rotation about the origin:

[tex](x,y)\rightarrow (-x,-y)[/tex]

The vertices of shape I after rotation are (-2,-1), (-3,-1), (-4,-3), (-3,-3), (-3,-2), (-2,-2), (-2,-3), (-1,-3).

Rule of dilation by a scale factor of k.

[tex](x,y)\rightarrow (kx,ky)[/tex]

So,

[tex](-2,-1)\rightarrow (k(-2),k(-1))=(-2k,-k)[/tex]

We know that, the image of (-2,-1) after dilation is (-4,-2). So,

[tex](-2k,-k)=(-4,-2)[/tex]

On comparing both sides, we get

[tex]-2k=-4[/tex]

[tex]k=2[/tex]

Therefore, the scale factor is 2.

Answer:

180 clockwise rotation about the orgin, 2

Step-by-step explanation:

the volume of a cylinder is 308 cm cube with radius 7 cm find the height​

Answers

Formula :-

Volume of cylinder is π r²h .

Given :-

→ Volume = 308 cm³

→ Radius = 7 cm

Solution :-

→ πr²h = 308

→ π (7)²(h) = 308

→ 22×7×7×h/7 = 308

→ 22×7×h = 308

→ 154×h = 308

→ Height = 308/154

→ Height = 2 cm

So the height of the cylinder is 2 cm .

4.1 by the power of 2

Answers

Answer:

16.81

Step-by-step explanation:

That's basically just 4.1×4.1

In predicate calculus, arguments to predicates and functions can only be terms - that is, combinations of __. Select one: a. predicates and connectives b. constants and predicates c. variables, constants, and functions d. predicates, quantifiers, and connectives

Answers

Answer:

c. variables, constants, and functions

Step-by-step explanation:

A predicate is the property that some object posses. Predicate calculus is a kind of logic that combines the categorical logic with propositional logic. The formal syntax of a predicate calculus contains 3 Terms which consist  of:

1.  Constants and Variables

2. Connectives

3. Quantifiers

But in arguments to predicates and functions, the terms  can only be combination of variables, constants, and functions.

Imagine these are your students' test scores (out of 100): 63, 66, 70, 81, 81, 92, 92, 93, 94, 94, 95, 95, 95, 96, 97, 98, 98, 99, 100, 100, 100. What can you conclude regarding their distribution? (HINT: The mean is ~ 90; The median = 95)

Answers

Answer:

The mean ≈ 90

The median = 95

The mode = 95 & 100

The range = 37

Step-by-step explanation:

We will base out conclusion by calculating the measures of central tendency of the distribution i.e the mean, median, mode and range.

– Mean is the average of the numbers. It is the total sum of the numbers divided by the total number of students.

xbar = Sum Xi/N

Xi is the individual student score

SumXi = 63+66+70+81+81+92+92+93+94+94+95+95+95+96+97+98+98+99+100+100+100

SumXi = 1899

N = 21

xbar = 1899/21

xbar = 90.4

xbar ≈ 90

Hence the mean of the distribution is approximately equal to 90.

– Median is number at the middle of the dataset after rearrangement.

We need to locate the (N+1/2)the value of the dataset.

Given N =21

Median = (21+1)/2

Median = 22/2

Median = 11th

Thus means that the median value falls on the 11th number in the dataset.

Median value = 95.

Note that the data set has already been arranged in ascending order so no need of further rearrangement.

– Mode of the data is the value occurring the most in the data. The value with the highest frequency.

According to the data, it can be seen that the value that occur the most are 95 and 100 (They both occur 3times). Hence the modal value of the dataset are 95 and 100

– Range of the dataset will be the difference between the highest value and the lowest value in the dataset.

Highest score = 100

Lowest score = 63

Range = 100-63

Range = 37

what is the square root of 80 simplified to?

Answers

Answer:

4√5

Step-by-step explanation:

√80 = √4·4·5 = √4²·5 = 4√5

The quantities xxx and yyy are proportional. xxx yyy 111111 1\dfrac{2}{9}1 9 2 ​ 1, start fraction, 2, divided by, 9, end fraction 212121 2\dfrac{1}{3}2 3 1 ​ 2, start fraction, 1, divided by, 3, end fraction 454545 555

Answers

Answer:

The constant of proportionality is 1/9

Answer:

The answer is actually 3

Step-by-step explanation:

The two triangles are drawn to scale, so we can use the scale factor of \maroonD{1\dfrac{1}{2}}1

2

1

start color #ca337c, 1, start fraction, 1, divided by, 2, end fraction, end color #ca337c to find \greenD{x}xstart color #1fab54, x, end color #1fab54.

Hint #22 / 3

\begin{aligned} [\blueD{\text{length on A}}] \cdot [\maroonD{\text{scale factor}}] &= [\greenD{\text{length on B}}]\\\\ \blueD{2}\cdot \maroonD{1\dfrac{1}{2}}&=\greenD{x} \\\\ \greenD{3}&=\greenD{x} \end{aligned}

[length on A]⋅[scale factor]

2⋅1

2

1

3

 

=[length on B]

=x

=x

which equals 3

can someone help me pls?

Answers

Answer:

decreasing:   (-2, -1)∪(-1, 0)

Step-by-step explanation:

From  x = -2 to x = 0 function is decreasing, but for x= -1 function doesn't exist, so we need to exclude x = -1 from (-2, 0)

1) Determine the discriminant of the 2nd degree equation below:

3x 2 − 2x − 1 = 0
a = 3, b = −2, c = −1
Discriminant → ∆= b 2 − 4 a c


2) Solve the following 2nd degree equations using Bháskara's formula:

Δ = b² - 4.a.c
x = - b ± √Δ
__________
2a

a) x 2 + 5x + 6 = 0

b)x 2 + 2x + 1 = 0

c) x2 - x - 20 = 0

d) x2 - 3x -4 = 0

Answers

[tex] \LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}[/tex]

We have, Discriminant formula for finding roots:

[tex] \large{ \boxed{ \rm{x = \frac{ - b \pm \: \sqrt{ {b}^{2} - 4ac} }{2a} }}}[/tex]

Here,

x is the root of the equation.a is the coefficient of x^2b is the coefficient of xc is the constant term

1) Given,

3x^2 - 2x - 1

Finding the discriminant,

➝ D = b^2 - 4ac

➝ D = (-2)^2 - 4 × 3 × (-1)

➝ D = 4 - (-12)

➝ D = 4 + 12

➝ D = 16

2) Solving by using Bhaskar formula,

❒ p(x) = x^2 + 5x + 6 = 0

[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5\pm \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm \sqrt{25 - 24} }{2 \times 1} }}[/tex]

[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm 1}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 2 \: or - 3}}}[/tex]

❒ p(x) = x^2 + 2x + 1 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4 \times 1 \times 1} }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm 0}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 1 \: or \: - 1}}}[/tex]

❒ p(x) = x^2 - x - 20 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 1) \pm \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{1 \pm 9}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \: - 4}}}[/tex]

❒ p(x) = x^2 - 3x - 4 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm \sqrt{9 + 16} }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm 5}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \: - 1}}}[/tex]

━━━━━━━━━━━━━━━━━━━━

Step-by-step explanation:

a)

given: a = 1, b = 5, c = 6

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= 5² - (4*1*6)

∆=25 - ( 24 )

∆= 25 - 24

∆= 1

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 5 ± √25 ) / 2*1

x = ( 2 ± 5 ) / 2

x = ( 2 + 5 ) / 2 or x = ( 2 - 5 ) / 2

x = ( 7 ) / 2 or x = ( - 3 ) / 2

x = 3.5 or x = -1.5

b)

given: a = 1, b = 2, c = 1

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= 2² - (4*1*1)

∆= 4 - (4)

∆= 4 - 4

∆= 0

2)

Solve x = (- b ± √Δ ) / 2a

x = ( -2 ± √0) / 2*1

x = ( 2 ± 0 ) / 2

x = ( 2 + 0) / 2 or x = ( 2 - 0 ) / 2

x = ( 2 ) / 2 or x = ( 2 ) / 2

x = 1 or x = 1

x = 1 (only one solution)

c)

given: a = 1, b = -1, c = -20

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= -1² - (4*1*-20)

∆= 1 - ( -80 )

∆= 1 + 80

∆= 81

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 2 ± √81 ) / 2*1

x = ( 2 ± 9 ) / 2

x = ( 2 + 9 ) / 2 or x = ( 2 - 9 ) / 2

x = ( 11 ) / 2 or x = ( - 7 ) / 2

x = 5.5 or x = -3.5

d)

given: a = 1, b = -3, c = -4

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= -3² - (4*1*-4)

∆= 9 - ( -16)

∆= 9 + 16

∆= 25

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 3 ± √25 ) / 2*1

x = ( 3 ± 5 ) / 2

x = ( 3 + 5 ) / 2 or x = ( 3 - 5 ) / 2

x = ( 8 ) / 2 or x = ( - 2 ) / 2

x = 4 or x = -1

URGENT!!!! Which of the following statements is not true?(1 point) A.) For a complex number written in the form a+bi, the value of a is called the real part of the complex number. B.) A complex number is a number that can be written in the form a+bi where a and b are real numbers. C.) In order for a+bi to be a complex number, b must be nonzero. D.) Every real number is also a complex number.

Answers

Answer:

The correct option is;

Non of the above

Step-by-step explanation:

Option A is correct when a + b·i is a complex number, the real part = a and the imaginary part = b

Option B.) For the complex number,  a + b·i, a and b are real number

Option C) When a number, a + b·i is a complex number, then b ≠ 0

Option D) Whereby real numbers are numbers of the form  a + b·i, where b = 0, therefore, a real number is a complex number with the imaginary part = 0 and every real number is a complex number.

−3 3/8−7/8 what is it

Answers

Greetings from Brasil...

First, let's make the mixed fraction improper:

- (3 3/8)

- { [(8 · 3) + 3]/8}

- { [24 + 3]/8}

- {27/8}

- (3 3/8) - (7/8)

- (27/8) - (7/8)

as the denominators are equal, we operate only with the numerators

- 34/8      simplifying

- 17/4

Answer:

-  4 ¹/₄

Step-by-step explanation:

-3 3/8 - 7/8

convert -3 3/8 to improper fractions

_   27   _   7

    8            8

_   27 - 7

       8      

simplify

_   34

     8

convert to proper factions

_   17

     4

-  4 ¹/₄

What is the result of the product of 21 and x added to twice of 6?​

Answers

Answer:

21x + 12

Step-by-step explanation:

In math, it is

21x + 2(6).

so we have

21x + 2(6) = 21x + 12.

Help! I need to solve #17 and the Challenge! The first one to answer, ill will mark as brainliest!

Answers

Answer:

16) Anya, Danny, Bridget, Carl.

17) 217.66 bricks

Challenge) 275.65 minutes

Step-by-step explanation:

16) I think you have Anya and Danny reversed.  It should be:

Anya, Danny, Bridget, Carl.

17) Bridget can do 60 an hour, Danny 50 an hour, Carl 66 an hour, and Anya 41.66 an hour.  60+50+66+41.66=217.66

Challenge: Anya can do .694444 per minute, Bridget 1 per minute, Carl 1.1 per minute, and Danny .83333 per minute.  That makes 3.62777 per minute.  1000 divided by 3.6277777 is 275.65 minutes

solve ; 7/x-3/2x+7/6=9/x

Answers

Answer:

x = 3

Step-by-step explanation:

7/x - 3/(2x) + 7/6 = 9/x

x(7/x  - 3/(2x)  + 7/6) = x(9x)

x*7/x  - 3*x/(2x) + x*7/6 = x*9x

7 - 3/2 + 7x/6 = 9

7x/6 = 9 - 7 + 3/2

7x/6 = 2 + 3/2

7x/6 = 12/6 + 9/6

7x = 12+9

7x = 21

x = 21/7

x = 3

probe:

7/3 - 3/(2*3) + 7/6 = 9/3

14/6 - 3/6 + 7/6 = 3

(14 - 3 + 7) / 6 = 3

18/6 = 3

A city has a population of people. Suppose that each year the population grows by . What will the population be after years?

Answers

Answer:

The question is missing the values, I found a possible matching question:

a city has a population of 380,000 people. suppose that each year the population grows by 7.5%. what will be the population after 6 years

Answer:

After 6 years, the population will be 586, 455 people

Step-by-step explanation:

This growth is similar to the growth of an invested amount of money, which is compounded annually, yielding a future value, when it increases by a certain interest rate. Hence the formula for compound interest is used to determine the population after 6 years as follows:

[tex]FV = PV (1+ \frac{r}{n})^({n \times t})[/tex]

where

FV = future value = population after 6 years = ???

PV = present value = current  population = 380,000 people

r = interest rate = growth rate = 7.5% = 7.5/100 = 0.075

n = number of compounding periods per year = annually = 1

t = time of growth = 6 years

[tex]FV = 380,000 (1+ \frac{0.075}{1})^({1 \times 6})\\FV = 380,000 (1.075)^{6}\\FV= 380,000 (1.5433015256)\\FV = 586,454.58\\FV= 586,455\ people[/tex]

Therefore, after 6 years, the population will be 586, 455 people

Help. What does 4^5×4^7=

Answers

4 ^12 because if you’re multiplying powers you just add the power number

[tex]4^5\cdot4^7=4^{5+7}=16,777,216[/tex].

Hope this helps.

water flows into a tank 200m by 150m through a rectangular pipe 1.5m by 1.25m at 20kmph. in what time (in minutes) will the water rise by 2 meters​

Answers

Answer:

Volume required in the tank (200 × 150 × 2)m3. therefore, required time= (6000/625)= 96 min.

What is the pattern between these numbers 8,7,5,2

Answers

it subtracts 1 then 2 then 3

Who drove faster?
Dan drives 60 miles in 5 hours.
David drives 75 miles in 6 hours.

Answers

Answer:

david drove faster than dan bcz

Answer:

David drove faster

Step-by-step explanation:

Dan - 60m/5h = 12 miles an hour

David - 75m/6h = 12.5 miles an hour

Therefore David drove faster.

Which expression is equal to (2 – 5i) – (3 + 4i)?
O1 – 9i
0-1 – 9i
05 -
0 -1- i

Answers

Answer:

-1-9i (the second option)

Step-by-step explanation:

(2 – 5i) – (3 + 4i)

=2-5i-3-4i

= -1-9i

-1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).

so, 2nd option is correct.

Here, we have,

To simplify the expression (2 – 5i) – (3 + 4i),

we need to perform the subtraction operation for both the real and imaginary parts separately.

The real part subtraction is done as follows: 2 - 3 = -1.

The imaginary part subtraction is done as follows: -5i - 4i = -9i.

Combining the real and imaginary parts, we get -1 - 9i.

Therefore, the expression (2 – 5i) – (3 + 4i) is equal to -1 - 9i.

Among the given options, the expression that matches this result is O-1 - 9i.

Hence, -1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).

so, 2nd option is correct.

To learn more on subtraction click:

brainly.com/question/2346316

#SPJ2

what is the LCM for 3 and 8

Answers

Answer: The LCM of 3 and 8 is 24.

Step-by-step explanation:

So far, the given two numbers are 3 and 8. We have to find the LCM ( Least Common Multiple ) of 3 and 8, not the GCF ( Greatest Common Factor). That means, we have to find the smallest multiple of 3 and 8.

Let's try it out.

3 times 1 = 3. Is that a multiple of eight? No.

3 times 2 = 6. Is that a multiple of eight? No.

3 times 3 = 9. Is that a multiple of eight? No.

3 times 4 = 12. Is that a multiple of eight? No.

3 times 5 = 15. Is that a multiple of eight? No.

3 times 6 = 18. Is that a multiple of eight? No.

3 times 7 = 21. Is that a multiple of eight? No.

3 times 8 = 24. Is that a multiple of eight? YES!

Now try it out for 8.

8 times 1 = 8. Is that a multiple of three? No.

8 times 2 = 16. Is that a multiple of three? No.

8 times 3 = 24. Is that a multiple of three? YES!

So now that 24 occurs in the list for both of them, it is the LCM because there are no other numbers that come before it that are multiples of both 3 and 8.

The LCM of 3 and 8 is 24.

What is the LCM for 3 and 8?

The LCM (Least Common Multiple) of two numbers is the smallest number that is a multiple of both numbers.

To find the LCM of 3 and 8, we can use the following steps:

1. List out the multiples of 3 until we reach a number that is divisible by 8.

2. List out the multiples of 8 until we reach a number that is divisible by 3.

3. The smallest number that appears in both lists is the LCM of 3 and 8.

The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27...

The multiples of 8 are 8, 16, 24, 32 ...

The smallest number that appears in both lists is 24. Therefore, the LCM of 3 and 8 is 24.

Learn more about LCM on:

https://brainly.com/question/29231098

#SPJ6

the diagram shows a sector of a circle, center O,radius 5r the length of the arc AB 4r. find the area of the sector in terms of r , giving your answer in its simplest form​

Answers

Answer:

10r²

Step-by-step explanation:

The following data were obtained from the question:

Radius (r) = 5r

Length of arc (L) = 4r

Area of sector (A) =?

Next, we shall determine the angle θ sustained at the centre.

Recall:

Length of arc (L) = θ/360 × 2πr

With the above formula, we shall determine the angle θ sustained at the centre as follow:

Radius (r) = 5r

Length of arc (L) = 4r

Angle at the centre θ =?

L= θ/360 × 2πr

4r = θ/360 × 2π × 5r

4r = (θ × 10πr)/360

Cross multiply

θ × 10πr = 4r × 360

Divide both side by 10πr

θ = (4r × 360) /10πr

θ = 144/π

Finally, we shall determine the area of the sector as follow:

Angle at the centre θ = 144/π

Radius (r) = 5r

Area of sector (A) =?

Area of sector (A) = θ/360 × πr²

A = (144/π)/360 × π(5r)²

A = 144/360π × π × 25r²

A = 144/360 × 25r²

A = 0.4 × 25r²

A = 10r²

Therefore, the area of the sector is 10r².

the area of the sector in terms of r is [tex]10r^2[/tex]

Given :

From the given diagram , the radius of the circle is 5r  and length of arc AB is 4r

Lets find out the central angle using length of arc formula

length of arc =[tex]\frac{central-angle}{360} \cdot 2\pi r[/tex]

r=5r  and length = 4r

[tex]4r=\frac{central-angle}{360} \cdot 2\pi (5r)\\4r \cdot 360=central-angle \cdot 2\pi (5r)\\\\\\\frac{4r \cdot 360}{10\pi r} =angle\\angle =\frac{4\cdot 36}{\pi } \\angle =\frac{144}{\pi }[/tex]

Now we replace this angle in area of sector formula

Area of sector =[tex]\frac{angle}{360} \cdot \pi r^2\\[/tex]

[tex]Area =\frac{angle}{360} \cdot \pi r^2\\\\Area =\frac{\frac{144}{\pi } }{360} \cdot \pi\cdot 25r^2\\\\Area =\frac{ 144 }{360\pi } \cdot \pi\cdot 25r^2\\\\Area =\frac{ 2 }{5 } \cdot 25r^2\\\\\\Area=10r^2[/tex]

So, the area of the sector in terms of r is [tex]10r^2[/tex]

Learn more : brainly.com/question/23580175

Other Questions
Solve for X......... What is one way that New Deal policies reformed economic institutions affected by the economy? A. The government established programs to avoid another depression and prevent economic downturns. B.The government provided temporary assistance through lowering taxes on the wealthy. C.The government promoted social programs to end poverty and improve civil rights. D.The government stabilized and stimulated the economy through adopting a policy of bimetallism. Who was the first explorer to attempt to reach East Asia by sailing west from Europe?Leif ErikssonAmerigo VespucciMarco PoloChristopher Columbus If a short-run equilibrium occurs at a level of output above the natural rate, then in the transition to the long run prices will ______, and output will ______. How has a desire for freedom affected history? I cant figure this out pls help 17-2p=2p+5+2p Solve for x in the simplest form 11=1/2(x+8) place the steps in order to keep a graphic from spilling over into the next page and to include the text it is assciated with. highlight the text.open the paragraph dialogue box,select keep with text. select the line and page break, click OK. Select P for physical characteristic. Select H for human characteristic. mountain language hurricane ocean religion government tundra Kevin mowed 12 lawns and earned a total of $60.Which rate represents the amount of money earned per lawn? please help me with this Help me please!!! Weekly time card help. $11hr Why were early humans nomads? Point c d and g lie on plane x. Point e and f lie on plane y. Which statements are true a person who display displays his knowledge is Using evidence from the story, explain whether you agree or disagree with the following statement: Johnsy's foolishness caused Mr. Behrman's death. in the last leaf of O hanrry The energy produced when nucleons fuse together is called the: Select the correct answer below: a. strong nuclear force b. nuclear fusion energy c. nuclear binding energy d. none of the above Pretend that you were a witness to one of the changes shown above, and you experienced its social consequences. Write a journal entry describing your role in the society and your reaction to the change. "A Registered Investment Adviser has a retired client who wishes to put aside funds for the purchase of a car 5 years from now. Preservation of capital is important to this client. The RIA should recommend investments in:" why was the columbian exchange important and how did it impact the world ?