Answer:
your answer will be 12.5!
Two parallel lines are crossed by a transversal.
Parallel lines c and b are cut by transversal a. On line c where it intersects with line a, the uppercase left angle is 80 degrees. On line b where it intersects with line a, the bottom right angle is y degrees.
What is the value of y?
y = 40
y = 80
y = 100
y = 120
Answer 80
Step-by-step explanation:
If the line is a straight line through two parallel lines then the angles of the two intersections should be the same. Basically because they are both on the bottom right they will be the same.
The value of 'y' is 80 degrees. option B
How to determine the value of y
Note that alternate angles are equal
The intersections of a transversal with two parallel lines forms various types of pairs of angles such as
consecutive interior anglesconsecutive exterior angles, corresponding anglesalternate anglesIn this case, the transverse line forms alternate angles of line c and b
Angle at line c = 80 degrees
Angle at line b = y
Since they are alternate angles, y = 80 degrees
Therefore, the value of 'y' is 80 degrees. option B
Learn more about transverse lines here:
https://brainly.com/question/24607467
#SPJ9
Find the slope of each line.
Jill has to go to the post office before she drops her 3 children off at the elementary school. She is going straight home after dropping them off. How long is Jill traveling before going back home?
A. 9 miles
B. 12 miles
C. 18 miles
D. 27 miles
Classify the number (choose all that apply): 3/4
Answer:
What are the answer choices? I would help but you didn't attach or write them.
Step-by-step explanation:
Triangle ABC is dilated by a scale factor of 4 to form triangle A'B'C.
The coordinates of vertex A' are
The coordinates of vertex B' are
The coordinates of vertex C’are
NEED HELP ASAP PLS
Answer:
Vertex A' (-8,4)
Vertex B' (-12,12)
Vertex C' (-4,12)
Step-by-step explanation:
Multiply all the coordinates by 4!
Answer:
[tex]A'(-8,4)\\B'(-12,12)\\C'(-4,12)[/tex]
Step-by-step explanation:
** Scale and/or dilate signal the operation symbol to be multiplication.
Definitions
[tex]A=(-2,1)\\B=(-3,3)\\C=(-1,3)[/tex]
Formulas
[tex]A'=A4\\B'=B4\\C'=C4[/tex]
Solve
[tex]A'=(-2,1)(4)=(-8,4)\\B'=(-3,3)(4)=(-12,12)\\C'=(-1,3)(4)=(-4,12)[/tex]
y= -2x +9 is an equation that represents a line parallel to the line 8x + 4y = 28 is the statement true or false? Be sure to explain your answer.
Answer:
True
Step-by-step explanation:
y = -2x + 9 is already in slope-intercept form, so we can leave it be. 8x + 4y = 28, however, is not, so we have to convert it to find the answer.
To do this we have to separate the variable 4y from the rest.
We get 4y = -8x + 28.
But, y must equal zero, so to achieve this, we divide the entire equation by 4.
Then we get y = -2x + 7
Since the slopes are the same (-2x = -2x) the lines are parallel.
Ejercicio Nº 4 Desde la parte superior de un acantilado de 80 metros de altura se dispara horizontalmente una piedra a razón de 8m/s. Calcular: g = 10m/s? 1) el tiempo que permanece en el aire. 2) la distancia horizontal que el cuerpo alcanza. 3) la velocidad con que la piedra alcanza el suelo
Answer:
1) La piedra permanece en el aire en 4 segundos.
2) La piedra alcanza una distancia horizontal de 32 metros.
3) La velocidad de la piedra con la que alcanza el suelo es aproximadamente 40.792 metros por segundo.
Step-by-step explanation:
El problema nos indica un caso de tipo parabólico, el cual consiste en la suma de un movimiento horizontal a velocidad y un movimiento uniforme acelerado por la gravedad desde el reposo.
1) El tiempo total que la piedra permanecería en el aire es tiempo requerido entre la parte superior del acantilado y el fondo. La ecuación cinemática que vamos a utilizar es la siguiente:
[tex]y = y_{o} + v_{o,y}\cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex] (Ec. 1)
Donde:
[tex]y_{o}[/tex] - Altura inicial, medida en metros.
[tex]y[/tex] - Altura final, medida en metros.
[tex]v_{o,y}[/tex] - Velocidad vertical inicial de la piedra, meadida en metros por segundo.
[tex]g[/tex] - Aceleración gravitacional, medido en metros por segundo al cuadrado.
[tex]t[/tex] - Tiempo, medido en segundos.
Si sabemos que [tex]y_{o} = 80\,m[/tex], [tex]v_{o,y} = 0\,\frac{m}{s}[/tex] y [tex]g = -10\,\frac{m}{s^{2}}[/tex], entonces encontramos la siguiente función cuadrática:
[tex]-5\cdot t^{2}+80 = 0[/tex] (Ec. 2)
El tiempo en el que la piedra permanece en el aire es:
[tex]t = 4\,s[/tex]
La piedra permanece en el aire en 4 segundos.
2) La distancia horizontal es descrita por la siguiente fórmula cinemática:
[tex]x = x_{o}+v_{o,x}\cdot t[/tex] (Ec. 3)
Donde:
[tex]x_{o}[/tex] - Posición horizontal inicial, medido en metros.
[tex]x[/tex] - Posición horizontal final, medido en metros.
[tex]v_{o,x}[/tex] - Velocidad horizontal inicial de la piedra, medida en metros por segundo.
Si sabemos que [tex]x_{o} = 0\,m[/tex], [tex]v_{o,x} = 8\,\frac{m}{s}[/tex] and [tex]t = 4\,s[/tex], entonces la distancia horizontal alcanzada por la piedra es:
[tex]x = 0\,m + \left(8\,\frac{m}{s}\right)\cdot (4\,s)[/tex]
[tex]x = 32\,m[/tex]
La piedra alcanza una distancia horizontal de 32 metros.
3) En primer lugar, determinamos los componentes vertical y horizontal de la velocidad final de la piedra por medio de las siguientes fórmulas cinemáticas:
Velocidad final horizontal ([tex]v_{x}[/tex]), medida en metros por segundo.
[tex]v_{x} = \frac{x-x_{o}}{t}[/tex] (Ec. 4)
Velocidad final vertical ([tex]v_{y}[/tex]), medida en metros por segundo.
[tex]v_{y} = v_{o,y}+g\cdot t[/tex] (Ec. 5)
Si [tex]x = 32\,m[/tex], [tex]x_{o} = 0\,m[/tex]. [tex]t = 4\,s[/tex], [tex]v_{o,y} = 0\,\frac{m}{s}[/tex] y [tex]g = -10\,\frac{m}{s^{2}}[/tex], los componentes de la velocidad final de la piedra son:
[tex]v_{x} = \frac{32\,m-0\,m}{4\,s}[/tex]
[tex]v_{x} = 8\,\frac{m}{s}[/tex]
[tex]v_{y} = 0\,\frac{m}{s}+\left(-10\,\frac{m}{s^{2}} \right) \cdot (4\,s)[/tex]
[tex]v_{y} = -40\,\frac{m}{s}[/tex]
Por último, determinamos la velocidad final de la piedra por Teorema de Pitágoras:
[tex]v = \sqrt{v_{x}^{2}+v_{y}^{2}}[/tex] (Ec. 6)
[tex]v = \sqrt{\left(8\,\frac{m}{s} \right)^{2}+\left(-40\,\frac{m}{s} \right)^{2}}[/tex]
[tex]v \approx 40.792\,\frac{m}{s}[/tex]
La velocidad de la piedra con la que alcanza el suelo es aproximadamente 40.792 metros por segundo.
The sum of two numbers that are at the ratio of 3:4 is 1001. Find these numbers.
Step-by-step explanation:
x - the part
3x one part(first number)
4x second part (second number)
so u have
3x + 4x = 1001
7x= 1001
x = 1001/7
x= 143. First number : 3x = 3• 143 = 429
Second number : 4x = 4• 143= 572
So, 429 and 572 are the numbers
What is the value of x? 4 ( -x + 4 ) = 12
Answer:
x=1
Step-by-step explanation:
7,296÷24 please. Description also.
HELPPP PLEASEEE
Point P is the center of the cirlce and ∠BDC= 60°. Determine:
a. ∠DBC
b. ∠DAC
c. ∠ACD
d. ∠AEB
e. ∠APB
Answer:
Step-by-step explanation:
Angle CDB=angle BAC=42°(angles subtended by same chord)
CA is diameter,therefore angle ABC=90°(angle subtended by diameter is 90°)
In triangle CBA ,angle ACB=48°[angle
sum property]
Verify the linear approximation at (0, 0) for
f(x, y) = 7x + 4
5y + 1
â 4 + 7x â 20y
Let f(x, y) = 7x + 4 5y + 1 . Then fx(x, y) = ________
Which is the quotient 2,956 ÷ 0.03?
Answer:
Step-by-step explanation:
Not sure what you mean by quotient but 2956?0.03
=98,533.3333333333333333333333
can you please help me it's really urgent
Answer:
D
Step-by-step explanation:
I is true. Limits don't care if the point defined or not. All they care about is if they are approaching a value from both sides, unequivocally.
II is not true. We need more information about the type of function.
III is true. Since the point isn't defined but the limit exist, we have a removable discontinuity
Fred wants to determine the mean hourly wage of the working students at his
school. He asks thirty of his friends their hourly wages and calculates the sample
mean to be $8. Which of these statements MUST be true?
The sample was randomly selected.
Bias was present and the sample was not randomly selected.
The sample was representative of all students at the school
The mean hourly range of the working students at the school is $8.
Answer:
Last Option
Step-by-step explanation:
For this to be true, everyone who works at school must be getting a wage of 8$ so the hourly range of working students at the school IS 8$
Consider the following expressions: A. 34÷23 B. 710÷45 C. 78÷12 D. 34÷13 E. 15÷1115 a. Which expression(s) will result in a quotient that is greater than one? 34÷23 710÷45 78÷12 34÷13 15÷1115
Answer:
A, B, C, and D
Step-by-step explanation:
The perimeter of a rectangular garden is 90m its breadth is 17m find its length
Answer:
28 m
Step-by-step explanation:
Length = x
90 = 2(17 + x)
17 + x = 90/2 = 45
so
x = 45 - 17 = 28 m
solve the equation x 2 1/2 = 3 1/4x
Answer: x=0, 13/2......
Solve for the negative solution: -2 | 5x - 1 | - 3 = - 11
The negative solution is [tex]-\frac{3}{5}[/tex]
First, add 3 on both sides.
[tex]-2|5x-1|=-8[/tex]
Then, Divide both sides by -2
[tex]|5x-1|=4[/tex]
We know 5x-1 = 4 or 5x-1=-4
[tex]x=1[/tex] (positive)
[tex]x=-\frac{3}{5}[/tex] (negative)
The function g(x)=x^2+3 .the function f(x)=g(x+2)
Answer: x^2 + 4x + 7
Step-by-step explanation:
what is the simplified expression
Solution:
[tex]\rightarrow \frac{4^{-3} \times 3^{4} \times 4^{2} }{3^{5} \times 4^{-2} }[/tex]
[tex]\rightarrow 4^{-3 + 2} \times 3^{4 - 5} \times 4^{2} }[/tex]
[tex]\rightarrow 4^{-1} \times 3^{-1} \times 16}[/tex]
[tex]\rightarrow \frac{1}{4} \times \frac{1}{3} \times 16}[/tex]
[tex]\rightarrow \frac{1}{12} \times 16}[/tex]
[tex]\rightarrow \frac{16}{12}[/tex]
[tex]\rightarrow \boxed{\bold{\frac{4}{3} \tex\text{ (Option B)}}}[/tex]
Answer:
[tex]\dfrac43[/tex]
Step-by-step explanation:
[tex]\dfrac{4^{-3}\cdot3^4\cdot4^2}{3^5\cdot4^{-2}}[/tex]
Separate like terms:
[tex]\implies \dfrac{4^{-3}\cdot4^2}{4^{-2}}\cdot \dfrac{3^4}{3^5}[/tex]
Use exponent rule [tex]a^b \cdot a^c=a^{(b+c)}[/tex] :
[tex]\implies \dfrac{4^{(-3+2)}}{4^{-2}}\cdot \dfrac{3^4}{3^5}[/tex]
[tex]\implies \dfrac{4^{-1}}{4^{-2}}\cdot \dfrac{3^4}{3^5}[/tex]
Use exponent rule [tex]\dfrac{a^b}{a^c}=a^{(b-c)}[/tex]
[tex]\implies 4^{(-1--2)}\cdot {3^{(4-5)}[/tex]
[tex]\implies 4^{1}\cdot {3^{-1}[/tex]
Use exponent rule [tex]a^{-1}=\dfrac{1}{a}[/tex]
[tex]\implies 4\cdot \dfrac13[/tex]
[tex]\implies \dfrac43[/tex]
3+7+-31=17+3+=3
what property is being used
sin2x= ____.
a. (1-cos2x)/2
b. sin^2xcos^2x
c. 2cos^2x-1
d. 2sinxcosx
The expression sin2x is a trigonometric expression
The equivalent of sin2x is (d) 2sinxcosx
How to solve the trigonometric expressionThe expression is given as:
sin2x
Rewrite properly as:
sin(2x)
To solve the expression, we make use of the following double angle ratio
sin(2a) = 2sin(a)cos(a)
Substitute x for a in the above equation
sin(2x) = 2sin(x)cos(x)
Rewrite the equation as
sin2x = 2sinxcosx
Hence, the equivalent of sin2x is (d) 2sinxcosx
Read more about trigonometric expressions at:
https://brainly.com/question/8120556
Answer:
D
Step-by-step explanation:
A P E X
Please explain how to do this
Show working
Answer:
a = 3b/b-3
because combined the expression and leaving alone the variable
Answer:
(A, B) = (4, 12) or (12, 4)
Step-by-step explanation:
An Egyptian fraction is the sum of distinct unit fractions. Here, we're asked to decompose 1/3 into an Egyptian fraction sum of two fractions. There are formulas available when the sum has a numerator value of 2.
Here, the sum is a unit fraction. A reasonable approach is to use 1/(n+1) as the larger portion of 1/n. Then the other portion is 1/(n(n+1)). That is effectively what we end up with here.
__
Multiplying by 3AB gives ...
AB = 3B +3A
Solving for B, we find ...
AB -3B = 3A
B(A -3) = 3A
B = 3A/(A -3)
In order for A-3 to be a factor of A, or equal to 3, we must have ...
A-3 = 1 ⇒ A = 4
A-3 = 3 ⇒ A = 6
A-3 = 3×3 ⇒ A = 4×3
This will give integer values for B when A is one of 4, 6, or 12. In the case of A=6, the two fractions are equal, which is not what you want
The two solutions are ...
(A, B) = (4, 12) or (12, 4)
Help pls thank you! It’s math….
Answer:
○ [tex]\displaystyle (2x + 1)(2x - 5) = 0[/tex]
Step-by-step explanation:
Find two quantities that when differed to 8, they also multiply to 20. Those will be 2 and 10. The TINIER quantity gets the plus symbol because the B-value is −8, therefore 10 gets the minus symbol, leaving 2 with the plus symbol. In extension, sinse we have a leading coefficient greater than one, we need to take extra procedures. Here is how it is done:
[tex]\displaystyle y = 4x^2 - 8x - 5 \\ \\ y = [4x^2 - 10x] + [2x - 5] \\ \:\:\:\:\:\:\:\:\:\:\:2x[2x - 5]+ 1[2x - 5] \\ \\ \boxed{[2x - 5][2x + 1] = 0}[/tex]
I am joyous to assist you at any time.
Evaluate the algebraic expression when f = 6, g = 8, h = 12 and j = 2.
6
7
8
9
Answer:
theres no expression..?
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
6
Find the distance between (-7,3) and (-2, 1). Round your
answer to the nearest tenth
Answer:
5.4
Step-by-step explanation:
Using the distance formula:
[tex] \sqrt{ {( - 7 - ( - 2))}^{2} + {(3 - 1)}^{2} } [/tex]
[tex] \sqrt{ {( - 5})^{2} + {2}^{2} } [/tex]
[tex] \sqrt{25 + 4} [/tex]
[tex] \sqrt{29} [/tex]
[tex]5.4[/tex]
If one serving contains 90 calories, how many calories are in 4 1/2 serving
Answer: 405 calories
Step-by-step explanation:
What is an equation for the line that passes that passes through the points (1, 1) and (3, 5)
Answer:
(6,9)
Step-by-step explanation:
I need help now please and thanks