The other answer is just wrong.
There are 9•9•8 = 648 distinct 3-digit codes. The first digit can be any numeral from 1-9, the next digit can be any from 0-9 minus the one used in the first position, and the last digit can be any from 0-9 minus both the numerals used in the first two positions.
But that doesn't even account for the divisibility constraint.
Let the code be [tex]abc[/tex]. We can expand this as
[tex]100a + 10b + c[/tex]
In order for this to be divisible by 4, we observe that
[tex]100a + 8b + 2b + c = 4 (25a + 2b) + (2b+c)[/tex]
so we only need [tex]2b+c[/tex] to be divisible by 4.
The last digit must be even, so there are only 5 choices for the last digit. I list the possibilities and outcomes below. For some integer [tex]k[/tex], we need
[tex]c=0 \implies 2b=4k \implies b=2k[/tex]
[tex]c=2 \implies 2b+2=4k \implies b = 2k-1[/tex]
[tex]c=4 \implies 2b+4 = 4k \implies b = 2(k-1)[/tex]
[tex]c=6 \implies 2b+6 = 4k \implies b = 2k-3[/tex]
[tex]c=8 \implies 2b+8=4k \implies b = 2(k-2)[/tex]
Ignoring [tex]a[/tex] for the moment, in the cases of [tex]c\in\{0,4,8\}[/tex], [tex]b[/tex] is also even. This leaves 3 choices for [tex]c[/tex] and 2 choices for [tex]b[/tex].
Likewise, in the cases of [tex]c\in\{2,6\}[/tex], [tex]b[/tex] is odd. This leaves 2 choices for [tex]c[/tex] and 5 choices for [tex]b[/tex].
Now taking into account the choice for [tex]a[/tex], we have the following decision tree.
• If [tex]a\in\{2,6\}[/tex] and [tex]c\in\{0,4,8\}[/tex], then [tex]b\in\{0,2,4,6,8\}\setminus\{a,c\}[/tex] - a total of 2•3•3 = 18 codes.
• If [tex]a\in\{4,8\}[/tex] and [tex]c\in\{0,4,8\}\setminus\{a\}[/tex], then [tex]b\in\{0,2,4,6,8\}\setminus\{a,c\}[/tex] - a total of 2•2•3 = 12 codes.
• If [tex]a\in\{2,6\}[/tex] and [tex]c\in\{2,6\}\setminus\{a\}[/tex], then [tex]b\in\{1,3,5,7,9\}\setminus\{a,c\}[/tex] - a total of 2•1•5 = 10 codes.
• If [tex]a\in\{4,8\}[/tex] and [tex]c \in\{2,6\}[/tex], then [tex]b\in\{1,3,5,7,9\}[/tex] - a total of 2•2•5 = 20 codes.
• If [tex]a\in\{1,3,5,7,9\}[/tex] and [tex]c\in\{0,4,8\}[/tex], then [tex]b\in\{0,2,4,6,8\}\setminus\{c\}[/tex] - a total of 5•3•4 = 60 codes.
• If [tex]a\in\{1,3,5,7,9\}[/tex] and [tex]c\in\{2,6\}[/tex], then [tex]b\in\{1,3,5,7,9\}\setminus\{a\}[/tex] - a total of 5•2•4 = 40 codes.
Hence there are a total of 18 + 12 + 10 + 20 + 60 + 40 = 160 codes.
What is the product of 3/4 and -6/7?
Answer:
-9/14
Step-by-step explanation:
Hey there!
Guide:
• Difference means subtract/subtraction
• Product means multiply/multiplication
• Sum means add/addition
• Quotient means divide/division
• Now that we know what “product” means… we can make the question/equation easier to solve.
3/4 × -6/7
= 3(-6) / 4(7)
= -18 / 28
= -18 ÷ 2 / 28 ÷ 2
= -9 / 14
Therefore, your answer is: -9/14
Good luck on assignment & enjoy your day!
~Amphitrite1040:)
A bag has 16 blue marbles and 14 red marbles. John will randomly select 1 marble from the bag. What is the probability that he will select a red marble? *
Answer:
46.66% chance of red marble
Step-by-step explanation:
Red Marbles / Total Marbles gives you the percent
14 / 30 = 46.66%
The Shah family basement floor is shaped like a tropezoidal. The basement has sides of 36 feet and 24 feet and two sides of 21 feet. They are going to carpet the basement. The carpeting will cost $35 per square yard. What is the area, in square feet, of the basement floor?
The area in square feet of the the basement floor that is trapezoidal is 603.6 feet square.
Area of a trapezium
area = 1 / 2 (a + b)h
where
a and b are the base of the trapeziumh = height of the trapezium.Therefore,
a = 24 ft
b = 36 ft
h² = 21² - 6²
h² = √405
h = 20.1246117975
h = 20.12 ft
Therefore,
area = 1 / 2 (24 + 36)20.12
area = 603.6 ft² = 67.066667 yard²
Therefore,
1 yard² = $35
67.1 yard² = ?
cost of carpeting = 35 × 67.1 = $2348.5
learn more on trapezium here: https://brainly.com/question/8591668
The area labeled B is 9 times the area labeled A. Express b in terms of a.
b=_____?
Hi there!
For the graph on the left, we know that the area A is equal to:
[tex]A = \int\limits^a_0 {e^x} \, dx[/tex]
Area 'B' is 9 times this area, so:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx[/tex]
We can evaluate the integral:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx \\\\B = 9 \cdot e^x \left \| a}} \atop {0}} \right. \\\\B = 9 (e^a - 1)[/tex]
We also know that:
[tex]B = \int\limits^b_0 {e^x} \, dx[/tex]
Evaluate:
[tex]B = e^x \left \| b}} \atop {0}} \right. = e^b - 1[/tex]
Set the two equations for 'B' equal:
[tex]e^b - 1 = 9(e^a - 1)\\\\e^b - 1 = 9e^a - 9 \\\\e^b = 9e^a - 8[/tex]
Take the natural log of both sides:
[tex]ln(e^b) = ln(9e^a - 8)\\\\\boxed{b = ln(9e^a - 8)}[/tex]
find the value of 85²-15² using the difference of two squares method
Answer:
[tex]7000[/tex]
Step-by-step explanation:
Recall the form of the difference of squares.
[tex]x^2 - y^2 = (x+y)(x-y)\\\\\\[/tex]
Now let's apply it to your numbers:
[tex]85^2 - 15^2 = (85 + 15)(85 - 15)[/tex]
Simplify:
[tex](100)(70) = 7000[/tex]
Need help with calculus asap with steps
Answer:
p=7/2
Step-by-step explanation:
Rember that a p series can be represented by
[tex] \frac{1}{k {}^{p} } [/tex]
Here, notice that
[tex] \frac{1}{8 \sqrt{2} } = \frac{1}{2 {}^{3} \sqrt{2} } = \frac{1}{2 {}^{3} \times 2 {}^{ \frac{1}{2} } } = \frac{1}{2 {}^{ \frac{7}{2} } } [/tex]
This is true for all parts of the series because
[tex]27 \sqrt{3} = 3 {}^{ \frac{7}{2} } [/tex]
So p=7/2
9. A quilt pattern will use the block shown in the graph with regular hexagon
ABCDEF that has points A(4,0) and D(-4, 0). What is the area of the hexagon
to the nearest tenth? Show all work. [5 points]
From the given coordinates of point A(4, 0), and D (-4, 0), the area of the hexagon is 33.94 units square.
How can the area of the hexagon be found?The given parameters are;
Shape of the quilt pattern = A regular hexagon
Coordinates of point A = A(4, 0)
Coordinates of point D = D(-4, 0)
Required;
The area of the hexagon
Solution;
The coordinates of the center of the hexagon, P = (0, 0)
A regular hexagon consist of six equilateral triangles.
The length of a side of the triangle = PA
Length of PA = 4 - 0 = 4
Therefore;
Length of a side of the triangle = 4
Height of the triangle = PA × sin(60)
Which gives;
Height of the triangle = 4 × (√3)/2 = 2•√3
Area of one triangle = (4 ÷ 2) × 2•√3 = 4•√2
Area of the 6 triangles is therefore;
A = 6 × 4•√2 = 24•√2
Area of the 6 triangles = Area of the hexagon
Therefore;
Area of the hexagon = 24•√2 = 33.94 square units.Learn more about the area of regular shapes here;
https://brainly.com/question/10572314
What is the factorization of the expression below?
16x^2 - 49
A. (4x + 7)(4x - 7)
B. (4x - 7)(4x - 7)
C. (8x - 7)(2x - 7)
D. (8x + 7)(2x - 7)
Answer:
[tex](4x+7)(4x-7)[/tex]
Step by step explanation:
[tex]16x^2 -49\\\\=(4x)^2-7^2\\\\=(4x+7)(4x-7)~~~~~~~~~~;[a^2-b^2 =(a+b)(a-b)][/tex]
What is five sixths divided by nine thirds?
Answer:
0.270.27777777777
Step-by-step explanation:
You draw a diagram and color each side in for both of them
find x correct to 2 decimal places
Answer:
Step-by-step explanation:
Ryan buys some jumpers to sell on a stall.
He spends £130 buying 40 jumpers.
He sells 80% of the jumpers for £12 each.
He then puts the rest of the jumpers on a Buy one get one half price offer.
He manages to sell half the remaining jumpers using this offer.
How much profit does Ryan make?
Which expression has a value 48?
.A) (4 + 5): 32-9 +3
.B) 4+ 5 • (32 - 9) + 3
.C) 4+ 5.3?(-9+3)
.D) 4+5•3²-9= 3
20 brainly points asap
Hey there!
Option A.
(4 + 5) * 3^2 - 9 ÷ 3^2
= 9 * 9 - 9 ÷ 9
= 81 - 1
= 80
Thus, that answer is: [incorrect]
Option B.
4 + 5 * (3^2 - 9) + 3^2
= 4 + 5 * (9 - 9) + 9
= 4 + 5 * (0) + 9
= 4 + 5(0) + 9
= 4 + 0 + 9
= 4 + 9
= 13
Thus, that answer is also [incorrect]
Option C.
4 + 5 * 3^2(-9 ÷ 3^2)
= 4 + 5 * 3^2(-9 ÷ 9)
= 4 + 5 * 3^2(-1)
= 4 + 5 * 9(-9)
= 4 + 5(9) * -1
= 4 + 45 * -1
= 4 - 45
= -41
Thus, that answer is also [incorrect]
Option D.
4 + 5 * 3^2 - 9 ÷ 3^2
= 4 + 5(9) - 9 ÷ 9
= 4 + 45 - 9 ÷ 9
= 49 - 9 ÷ 9
= 49 - 1
= 48
Therefore, your answer is: Option D.
Good luck on your assignment & enjoy your day l!
~Amphitrite1040:)
Answer:
Option D
Step-by-step explanation:
To find out which expression has a value of 48, we need to recall the PEMDAS (where: P = Parenthesis, E = Exponents, M/D = Multiplication or Division, A/S = Addition or Subtraction).
A) [4 + 5] × 3² - 9 ÷ 3²
First, simplify the expression in the parenthesis as PEMDAS
⇒ [9] × 3² - 9 ÷ 3²
Pull the "9" out of the parenthesis
⇒ 9 × 3² - 9 ÷ 3²
Simplify the exponents as PEMDAS
⇒ 9 × 9 - 9 ÷ 9
Multiply the first two terms in the expression as PEMDAS
⇒ 81 - 9 ÷ 9
Divide the last two terms as PEMDAS
⇒ 81 - 1
Finally, simplify the expression.
⇒ 80
⇒ 48 ≠ 80
B) 4 + 5 × (3² - 9) ÷ 3²
First, simplify the expression in the parenthesis as PEMDAS.
We can see here that the expression in the parenthesis includes a constant with a negative sign and an exponent. To simplify the expression, we need to simplify the exponent. Once the exponent is simplified, we can simplify the expression in the parenthesis.
⇒ 4 + 5 × (3² - 9) ÷ 3²
⇒ 4 + 5 × (9 - 9) ÷ 3²
⇒ 4 + 5 × (0) ÷ 3²
Pull the "0" out of the parenthesis
⇒ 4 + 5 × 0 ÷ 3²
Simplify the exponent as PEMDAS
⇒ 4 + 5 × 0 ÷ 9
Multiply the middle two terms as PEMDAS
⇒ 4 + 0 ÷ 9
Divide the last two terms as PEMDAS
⇒ 4 + 0
Add the two terms in the expression as PEMDAS
⇒ 4
⇒ 4 ≠ 48
C) 4 + 5 × 3²(-9 ÷ 3²)
First, simplify the expression in the parenthesis as PEMDAS
⇒ 4 + 5 × 3²(-9 ÷ 3²)
⇒ 4 + 5 × 3²(-9 ÷ 9)
⇒ 4 + 5 × 3²(-1)
*3²(-1) can also be written as 3² × -1*
⇒ 4 + 5 × 3² × -1
Simplify the exponent as PEMDAS
⇒ 4 + 5 × 9 × -1
Multiply the last three terms as PEMDAS
⇒ 4 + 5 × 9 × -1
⇒ 4 + (-45)
Add/Subtract the last two terms as PEMDAS
⇒ 4 - 45
⇒ -41
D) 4 + 5 × 3² - 9 ÷ 3²
Since there are no parenthesis in the expression, we can start simplifying this expression by simplifying the exponents.
⇒ 4 + 5 × 3² - 9 ÷ 3²
⇒ 4 + 5 × 9 - 9 ÷ 9
⇒ 4 + 5 × 9 - 9 ÷ 9
Multiply the second and the third terms as PEMDAS
⇒ 4 + 45 - 9 ÷ 9
Divide the last two terms as PEMDAS
⇒ 4 + 45 - 1
Add/Subtract the terms as PEMDAS
⇒ 4 + 44
⇒ 48
⇒ 48 = 48 ✔✔
In conclusion, we can say that option D is correct because the expression of Option D has a value of 48.
5. CD has an endpoint at (2, -1) and a midpoint at (8,3). Which measure is closest to the length of CD?
A 20.4 units
B 8.9 units
C 14.4 units
D 11.7 units
Answer: C
Step-by-step explanation:
the equation for X is
[tex]\frac{2+x}{2} =\frac{8}{1}[/tex] use proportion to solve
2 + x = 16
x = 14
(14,y)
The equation for Y is
[tex]\frac{-1+y}{2} =\frac{3}{1}[/tex] use proportion to solve
-1 + y = 6
y = 7
(14,7)
now use the distance formula
(14,7) (2,-1)
which gets you 14.4 or C
The speeds of four racing cars are 146.633 mph, 150 mph, 151.971 mph, and 141.428 mph. Find the average speed of the 4 cars correct to 5 significant digits.
Answer:
I think the average speed is 160mph or 180mph
Answer: I guess it is 180180mph
Step-by-step explanation:
Find the value of each variable in the parallelogram.
Answer:
x = 9 and y = 15
Step-by-step explanation:
this is the answer because each side is equivalent to the parallel line so y would be whatever is across from it
Answer:
y=15
x=9
Step-by-step explanation:
they are parallel and equal to the opposite sides
ABDE is a rectangle on coordinate axes, the sides of the rectangle are parallel to the axes,
Point C is the centre of the rectangle
What are the coordinates of B and D
The coordinates of B and D are the location of the vertices B and D in the rectangle
The coordinates of B and D are (55, 30) and (55, 14)
How to determine the coordinates of B and D?From the figure of the rectangle, we have:
A = (25,30)
C = (40, 22)
Point B has the same y-coordinate as point A
So, we have:
B = (x, 30)
The x-coordinate is then calculated as:
Bx = 2Cx - Ax
This gives
Bx = 2*40 - 25
Bx = 55
So, the coordinates of B are:
B = (55, 30)
Point D has the same x-coordinate as point B
So, we have:
D = (55, y)
The y-coordinate is then calculated as:
Dy = Cy - (By - Cy)
This gives
Dy = 22 - (30 - 22)
Dy = 14
So, the coordinates of B are:
D = (55, 14)
Hence, the coordinates of B and D are (55, 30) and (55, 14)
Read more about rectangles at:
https://brainly.com/question/10737082
After eating a meal at a restaurant, we decided to tip 25%, building a grand total of $87.50. What was the price before the tip?
Answer:
65.62
Step-by-step explanation:
Given:
After eating a meal at a restaurant, we decided to tip 25%, building a grand total of $87.50.
To find:
Price before tip
Solution:
87.50 × 25% = 21.875
~Round~: 21.875 to 21.88
87.50 - 21 .88 = 65.62
Thus the price before the tip is 65.62
Check Answer:
Formula: Higher number - Lower number ÷ original number × 100
Solve:
87.50 - 65.62 = 21.88
21.88 ÷ 87.50=0.25005714285
0.25005714285 × 100 = 25.0057142857
Round - 25%
~lenvy~
Find the value of each variable in the parallelogram.
Answer:
b=10
C=99
D=140
Step-by-step explanation:
because it’s a parallelogram
Explain how to find the length of one side of a regular polygon if you are given its perimeter.
I
Answer:
If you are only given the perimter, then you can only find the side lengths of a square
Step-by-step explanation:
e.g. say perimeter = 16
16 / 4 = 4 so each length is 4.
SOLVE ASAP PLEASE Point theif = ban
Answer:
Given dimensions of room:
length = 12 ftwidth = 14 ftheight = 8 ftGiven cost of materials:
floor tiles = $4 per ft²wall & ceiling paint = $16 per 146 ft²Total square feet of floor = length × width
= 12 × 14
= 168 ft²
Total cost of flooring = $4 × 168
= $672.00
Total square feet to be painted = area of walls + area of ceiling
= 2(12 × 8) + 2(14 × 8) + (12 × 14)
= 584 ft²
Total cost of paint = (584 ÷ 146) × $16
= $64.00
Total cost to tile and paint the room = $672 + $64
= $736.00
Quadrilateral A B C D is shown. Sides A D and B C are parallel. Sides A B and C D are congruent. Angle A is 115 degrees.
What is the measure of ADC in quadrilateral ABCD?
45°
65°
115°
135°
Since no diagram attached there are two possible options.
Option 1
The quadrilateral is parallelogram.
In this case ∠A and ∠D sum up to 180°, therefore:
∠ADC = 180° - 115° = 65°Option 2
The quadrilateral is isosceles trapezoid.
In this case ∠A is congruent with ∠D, therefore:
∠ADC = ∠A = 115°Answer:
115
Step-by-step explanation:
1. A group of 34 women sells at least one of the following foodstuffs: yam, maize and plantain. Of those, 22 sell yam, 14 sell maize, 18 sell plantain, 7 sell both yam and maize, 9 sell yam and plantain and no one sells all three items.
i. Draw a Venn diagram to illustrate this information
ii. Find the number who sell maize aiind plantain
iii. What is the probability that a woman selected at random from the group sells plantain only?
Please see Explanation
Step-by-step explanation:[tex]a)\ As\ shown\ in\ the\ figure.[/tex]
[tex]b)\ According\ the\ picutre,[/tex]
[tex]we\ know\ only\ 3\ people[/tex]
[tex]sell\ maize\ and\ 5\ people\ sell\ plantain.[/tex]
I hope this helps you
:)
The 3 people sell only maize, 5 people sell only plantain and 4 people sell maize and plantain and the probability that a woman selected at random from the group sells plantain only is 0.147.
It is given that a group of 34 women sells at least one of the following foodstuffs: yam, maize, and plantain.
22 sell yam, 14 sell maize, 18 sell plantain, 7 sell both yam and maize, 9 sell yam and plantain, and no one sells all three items
What is the Venn diagram?It is defined as the diagram that shows a logical relation between sets.
The Venn diagram consists of circles to show the logical relation.
i) Venn diagram is shown in the picture below:
ii) As per the picture 3 people sell only maize, 5 people sell only plantain
and 4 people sell maize and plantain.
iii) Total number of women in the group = 34
The number of women who sells plantain = 5
We know the probability = [tex]\rm \frac{favorable \ event}{total \ outcome}[/tex]
Probability [tex]=\frac{5}{34} \\\\\\= 0.147\\[/tex]
Thus, the 3 people sell only maize, 5 people sell only plantain
and 4 people sell maize and plantain and the probability that a woman selected at random from the group sells plantain only is 0.147.
Learn more about the Venn diagram here:
https://brainly.com/question/1024798
A manager drew this box-and-whisker plot to represent the ages of the company’s 240 employees. How many employees are younger than 42?
24
48
60
75
Answer:
its 60, need proof?
Step-by-step explanation:
Answer: 60
Step-by-step explanation: I took the test and got it right. Goodluck with the rest!
Need help with this question.Find the value of x
Answer:
x=14
Step-by-step explanation:
According to Thales' theorem, the triangle inside 6,7,8 is similar to the triangle 12,x,16:
[tex]\frac{12}{6}= \frac{16}{8} =\frac{x}{7} =2[/tex]
[tex]x=7(2)=14[/tex]
Hope this helps
Find the value of x.
Answer:
6 .x = 121°
Sum of all interior angles of a 7 sided polygon is 900°.
What is the value of x in this figure?
Step-by-step explanation:
Tan = Opposite/ Adjacent
Tan 50 = 100/Adj
Adj = 100/tan50
Similarly, Tan30 = Opposite/ Adjacent
Opposite = 100tan30
therefore X= 100/tan 50 - 100 tan30
Ms Lim bought x pencils and two more pens than pencils. (b) Each pencil costs 60 cents and each pen costs $2. Write down, in terms of x, the total cost in dollars of the pencils and pens which Ms Lim bought
Answer:
0.60x + ((x+2)(2)) = total cost
Step-by-step explanation:
The pencils = 60 cents
0.60x = (0.60, the money, multiplied by x number of pencils)
The pens = 2 dollars
2(x+2) = (2, the money, multiplied by x number of pencils + 2 more pens)
Answer:
($2.60x + $4 = TC(x)
Step-by-step explanation:'
The number of pens bought would be x + 2, where x is the number of pencils bought. Then:
Total cost = ($0.60/pencil)x + ($2/pen)(x + 2) = ($2.60x + $4 = TC(x)
Karen, Lamar, and John sent a total of 160 text messages over their cell phones during the weekend. John sent 4 times as many messages as Lamar. Lamar sent 10 fewer messages than Karen. How many messages did they each send?
Answer:
Karen= 35 messages
Lamar= 25 messages
John= 100 messages
Step-by-step explanation:
[tex]\textcolor{steelblue}{\text{\textcircled{1} Define the variables}}[/tex]
Let the number of messages Karen, Lamar and John send be K, L and J messages respectively.
[tex]\textcolor{steelblue}{\text{\textcircled{2} Form equations with given information}}[/tex]
K +L +J= 160 -----(1)
J= 4L -----(2)
L= K -10 -----(3)
[tex]\textcolor{steelblue}{\text{\textcircled{3} Solve by substitution}}[/tex]
Substitute (3) into (2):
J= 4(K -10)
J= 4K -40 -----(4)
Substitute (3) and (4) into (1):
K +(K -10) +(4K -40)= 160
Simplify:
6K -50= 160
6K= 160 +50
6K= 210
Divide both sides by 6:
K= 210 ÷6
K= 35
Substitute K= 35 into (3):
L= 35 -10
L= 25
Substitute L= 25 into (2):
J= 4(25)
J= 100
[tex]\textcolor{steelblue}{\text{\textcircled{4} Concluding statement}}[/tex]
Thus Karen, Lamar and John sent 35, 25 and 100 messages respectively.
The table shows temperatures below freezing measured in different units. Complete the equation in standard form to represent the relationship between F, a temperature measured in degrees Fahrenheit, and C, a temperature measured in degrees Celsius.
The relationship between the temperature in celsius to the temperature in Fahrenheit is C = (5/9)(F - 32)
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Let F represent temperature measured in degrees Fahrenheit, and C, a temperature measured in degrees Celsius.
At 0°C, the temperature is 32°F. Also at 100°C, the temperature is 212°F, hence:
[tex]C-0=\frac{100-0}{212-32} (F-32)\\\\C=\frac{5}{9} (F-32)[/tex]
The relationship between the temperature in celsius to the temperature in Fahrenheit is C = (5/9)(F - 32)
Find out more on equation at: https://brainly.com/question/297283
Which point is on the graph of the inverse function g–1(x)?
(–3, 0)
(0, –3)
(2, 3)
(3, 4)
Answer:
A
Step-by-step explanation:
The answer is (-3,0) which is A.
Answer:
A
Step-by-step explanation: