Answer:
[tex]\frac{-2x+11}{(x-4)(x+1)}[/tex]
Step-by-step explanation:
I don't think we can factor this so we'll have to multiply to make the denominators the same
[tex]\frac{3(x+1)}{(x^2-3x-4)(x+1)}-\frac{2(x^2-3x-4)}{(x+1)(x^2-3x-4)}\\\\\frac{3x+3-(2x^2-6x-8)}{(x^2-3x-4)(x+1)}=\frac{-2x^2+9x+11}{(x^2-3x-4)(x+1)}\\-2x^2+9x+11=(x+1)(-2x+11)\\\\x^2-3x-4=(x+1)(x-4)\\\frac{(x+1)(-2x+11)}{(x+1)(x-4)(x+1)}=\frac{-2x+11}{(x-4)(x+1)}[/tex]
Let f (x) = x^2 + 3x + 2, and g (x) x - 6. Find and simplify: (f • g) (x)
Answer:
(f • g) (x) = [tex]x^{3}[/tex] - 3[tex]x^{2}[/tex] - 16x - 12
Step-by-step explanation:
(x-6)([tex]x^{2}[/tex] + 3x + 2)
[tex]x^{3}[/tex] + 3[tex]x^{2}[/tex] + 2x - 6[tex]x^{2}[/tex] - 18x -12
[tex]x^{3}[/tex] - 3[tex]x^{2}[/tex] - 16x - 12
A box contains 5 orange pencils, 8 yellow pencils, and 4 green pencils.
Two pencils are selected, one at a time, with replacement.
Find the probability that the first pencil is green and the second pencil is yellow.
Express your answer as a decimal, rounded to the nearest hundredth.
Answer:
total pencil = 5 orange pencils + 8 yellow pencils + 4 green pencils
= 17 pencils
P (g n y) = 4/17 + 8/17
= 0.706
Step-by-step explanation:
1. first find the total number of pencils
2. since there is a replacement the demoinator remains the same
3. find the probability of each green and yellow
4. add the two probability
The perimeter of a rectangular swimming pool is 56 meters. The width is 4 meters less than the length. What is the width of the swimming pool?
Answer:
52mtrs
Step-by-step explanation:
if length is 56meeters and the width is 4meeters less then 56 -4 = 52 so width is 52mtrs
Find the distance between the points (3,4) and (–8,4)
Answer:
distance = 11
Step-by-step explanation:
distance = [tex]\sqrt{[3-(-8)]^{2} +(4-4)^{2}}[/tex]
= [tex]\sqrt{11^{2} }[/tex]
= 11
Find m angle RQH if m angle HQP=95^ and m angle RQP=152^
Answer:
[tex] \large{ \tt{❁ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]
[tex] \large{ \tt{✽ \: m \: \angle \: RQP = m \: \angle \: RQH + m \: \angle \: HQP}}[/tex]
[tex] \large{ \tt{⇾ \: 152 \degree = \: m \: \angle \: \: RQH + 95 \degree}}[/tex]
[tex] \large{ \tt{⇾ \: 152 \degree - 95 \degree = m \: \angle \: RQH}}[/tex]
[tex] \boxed{ \large{ \tt{⇾ \: 57 \degree = m \: \angle \: RQH}}}[/tex]
Our final answer : 57° . Hope I helped! Let me know if you have any questions regarding my answer! :)▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Can someone help asap?
Answers:
sin = -5/13tan = 5/12csc = -13/5sec = -13/12cot = 12/5=============================================
Explanation:
The angle theta is between pi and 3pi/2, excluding both endpoints.
This places theta in the third quadrant (Q3) between 180 degrees and 270 degrees. The third quadrant is in the southwest.
Plot point A at the origin. 12 units to the left of this point, will be point B. So B is at (-12,0). Then five units lower is point C at (-12,-5). Refer to the diagram below. Notice how triangle ABC is a right triangle.
The angle theta will be the angle BAC, or simply angle A.
Since cos(theta) = -12/13, this indicates that
AB = -12 = adjacent
AC = 13 = hypotenuse
Technically, AB is should be positive, but I'm making it negative so that we can then say
cos(angle) = adjacent/hypotenuse
cos(theta) = AB/AC
cos(theta) = -12/13
------------------
If you apply the pythagorean theorem, you should find that BC = 5, which I'll make negative since we're below the x axis. Then we can say
sin(theta) = opposite/hypotenuse
sin(theta) = BC/AC
sin(theta) = -5/13
------------------
If you divide sine over cosine, then you'll get 5/12. The 13's cancel out. This is the value of tangent.
Or you could say
tan(theta) = opposite/adjacent
tan(theta) = BC/AB
tan(theta) = (-5)/(-12)
tan(theta) = 5/12
------------------
To find csc, aka cosecant, you apply the reciprocal to sine
sin = -5/13 which means csc = -13/5
sec, or secant, is the reciprocal of cosine
cos = -12/13 leads to sec = -13/12
and finally cotangent (cot) is the reciprocal of tangent
tan = 5/12 leads to cot = 12/5
------------------
Note: everything but tan and cot is negative in Q3.
Find the difference.
(3x3−2x2+4x−8)−(5x3+12x2−3x−4)=
Answer:
-2x³ - 14x² + 7x - 4
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
(3x³ - 2x² + 4x - 8) - (5x³ + 12x² - 3x - 4)
Step 2: Simplify
[Distributive Property] Distribute negative: 3x³ - 2x² + 4x - 8 - 5x³ - 12x² + 3x + 4Combine like terms (x³): -2x³ - 2x² + 4x - 8 - 12x² + 3x + 4Combine like terms (x²): -2x³ - 14x² + 4x - 8 + 3x + 4Combine like terms (x): -2x³ - 14x² + 7x - 8 + 4Combine like terms: -2x³ - 14x² + 7x - 4the good construction slithers 3/9 kilometers in 3/6 hours . wat is it's speed in terms of kilometers per hour ?
Answer:
The speed in terms of kilometers per hour is 0.666 km / h.
Step-by-step explanation:
Given that the good construction slithers 3/9 kilometers in 3/6 hours, to determine what is it's speed in terms of kilometers per hour, the following calculation must be performed:
3/9 = 0.333 km
3/6 = 0.5 hours
0.666 km / h
Therefore, the speed in terms of kilometers per hour is 0.666 km / h.
Find the missing term in the pattern.
Answer:
20
Step-by-step explanation:
6 + 2 = 8
8 + 3 = 11
11 + 4 =15
15 + 5 =20
Answer:
20
Step-by-step explanation:
the pattern is increase the number by one more than the increase before. so 6,8=2 greater
8-11=3 greater. 11-15=4 greater. so, 15+5=20 (with this answer being 5 greater continuing the pattern.)
Uma lâmpada de incandescência traz os seguintes dados inscritos no seu bulbo. U= 220 V e P = 100 W. Conhecendo as relações U = R. i e P = U. i , pode-se afirmar que o valor da resistência R da lâmpada durante o funcionamento é, em omhs:
Answer:
The resistance is 484 ohm.
Step-by-step explanation:
An incandescent lamp has the following data inscribed on its bulb. U= 220 V and P = 100 W. Knowing the relations U = R. i and P = U. i , it can be stated that the value of the resistance R of the lamp during operation is, in omhs:
P = 100 W
V = 220 V
Let the current is I.
P = V I
100 = 220 I
I = 0.45 A
Now,
V = I R
220 = 0.45 x R
R = 484 ohm
The resistance is 484 ohm.
Write 0.851 as a fraction in simplest form.
Answer:
[tex]\frac{851}{1000}[/tex]
Step-by-step explanation:
First, we can simply multiply that number by 1000, and divide again by 1000 to get a base fraction:
[tex].851\\\\= \frac{1000}{1000} \times .851\\\\= \frac{1000 \times .851}{1000}\\\\= \frac{851}{1000}[/tex]
851 is a secondary prime, having only two factors, both of which are prime. Those factors are 23 and 37, neither of which is a factor of 1000, so this is already in simplest form.
Please I need your help simplify 45 - + 14
Answer:
33
Step-by-step explanation:
45 - + 14 is 45 - 14 is 33
One angle of a triangle is twice as large as another. The measure of the third angle is 60° more than that of the smallest angle. Find the measure of each angle.
The measure of the smallest angle is º
Please help :)
Answer:
The measure of the smallest angle is 30º
Step-by-step explanation:
Let the angles be:
[tex]x \to[/tex] the first angle (the smallest)
[tex]y \to[/tex] the second angle
[tex]z \to[/tex] the third angle
So, we have:
[tex]y = 2x[/tex]
[tex]z=x + 60[/tex]
Required
Find x
The angles in a triangle is:
[tex]x + y +z = 180[/tex]
Substitute values for y and z
[tex]x + 2x +x + 60 = 180[/tex]
[tex]4x + 60 = 180[/tex]
Collect like terms
[tex]4x = 180-60[/tex]
[tex]4x = 120[/tex]
Divide by 4
[tex]x = 30[/tex]
Suppose that you and a friend are playing cards and you decide to make a friendly wager. The bet is that you will draw two cards without replacement from a standard deck. If both cards are diamonds, your friend will pay you $296. Otherwise, you have to pay your friend $17.
What is the expected value of your bet?
Answer:
False because $296=$296
The function in the table is quadratic:
True**
False
Answer:
false...
to be quadratic you need an "x^2" in the
function
(0,1) might be 0^2 + 1
but then 1^2 + 1 = 2 than would be (1,2) NOT (1,3)
Step-by-step explanation:
from the given illustration at the right the law of sines cannot be used since
Answer:
D. No angle opposite the sides is given
Step-by-step explanation:
Given
See attachment for triangle
Required
Why the law of sines cannot be used
From the attached image of a triangle, we can see that all sides are given while none of the angles are given.
Since none of the angles are given, then law of sines doesn't apply
In the diagram below, POR is a diameter, <QPR is a°,<PRS is (4a+12)°. find the value of a
Answer:
22=4
Step-by-step explanation:
0977-=ytb
For a confidence level of 88%, find the critical value for a normally distributed variable. The sample mean is normally distributed if the population standard deviation is known.
Answer:
z = ± 0.772193214
Step-by-step explanation:
Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].
What is the standard deviation?
Standard deviation is the degree of dispersion or the scatter of the data points relative to its mean, in descriptive statistics.
It tells how the values are spread across the data sample and it is the measure of the variation of the data points from the mean.
Here given that,
For a confidence level of [tex]88[/tex]%, find the critical value for a normally distributed variable.
Let us assume that the standard normal distribution having a mean is [tex]0[/tex] and the standard deviation is [tex]1[/tex].
As the significance level is [tex]1[/tex] - confidence interval
Confidence interval is [tex]\frac{80}{100}=0.88[/tex]
i.e., [tex]1-0.88=0.12[/tex]
For the two sided confidence interval the confidence level is [tex]0.44[/tex].
Now, the standard normal probability table the critical value for the [tex]88[/tex]% confidence level is [tex]1.56[/tex].
Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].
To know more about the standard deviation
https://brainly.com/question/13905583
#SPJ5
write 7.263 to 1 decimal place
Answer:
7.3
Step-by-step explanation:
When you round, you look at the number to the right of which you are rounding to.
1 decimal place would be the tenths place.
7.263
So we would look at the 6, in the hundredths place.
6 is larger than 5, so 2 would be bumped up to 3.
7.3.
I hope this helps!
Answer:
7.3
Step-by-step explanation:
rounding up from 7.263 is 7.3
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
p(x, y) y
0 1 2
x 0 0.10 0.03 0.01
1 0 08 0.20 0.06
2 0.05 0.14 0.33
(a) Given that X = 1, determine the conditional pmf of Y�i.e., pY|X(0|1), pY|X(1|1), pY|X(2|1).
(b) Given that two hoses are in use at the self-service island, what is the conditional pmf of the number of hoses in use on the full-service island?
(c) Use the result of part (b) to calculate the conditional probability P(Y ? 1 | X = 2).
(d) Given that two hoses are in use at the full-service island, what is the conditional pmf of the number in use at the self-service island?
Answer:
(a): The conditional pmf of Y when X = 1
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
(b): The conditional pmf of Y when X = 2
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
(c): From (b) calculate P(Y<=1 | X =2)
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
(d): The conditional pmf of X when Y = 2
[tex]p_{X|Y}(0|2) = 0.025[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]
Step-by-step explanation:
Given
The above table
Solving (a): The conditional pmf of Y when X = 1
This implies that we calculate
[tex]p_{Y|X}(0|1), p_{Y|X}(1|1), p_{Y|X}(2|1)[/tex]
So, we have:
[tex]p_{Y|X}(0|1) = \frac{p(y = 0\ n\ x = 1)}{p(x = 1)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.08+0.20+0.06}[/tex]
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.34}[/tex]
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|1) = \frac{0.20}{0.34}[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = \frac{0.06}{0.34}[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
Solving (b): The conditional pmf of Y when X = 2
This implies that we calculate
[tex]p_{Y|X}(0|2), p_{Y|X}(1|2), p_{Y|X}(2|2)[/tex]
So, we have:
[tex]p_{Y|X}(0|2) = \frac{p(y = 0\ n\ x = 2)}{p(x = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.05+0.14+0.33}[/tex]
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.52}[/tex]
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|2) = \frac{0.14}{0.52}[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = \frac{0.33}{0.52}[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
Solving (c): From (b) calculate P(Y<=1 | X =2)
To do this, where Y = 0 or 1
So, we have:
[tex]P(Y\le1 | X =2) = P_{Y|X}(0|2) + P_{Y|X}(1|2)[/tex]
[tex]P(Y\le1 | X =2) = 0.0962 + 0.2692[/tex]
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
Solving (d): The conditional pmf of X when Y = 2
This implies that we calculate
[tex]p_{X|Y}(0|2), p_{X|Y}(1|2), p_{X|Y}(2|2)[/tex]
So, we have:
[tex]p_{X|Y}(0|2) = \frac{p(x = 0\ n\ y = 2)}{p(y = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.01+0.06+0.33}[/tex]
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.40}[/tex]
[tex]p_{X|Y}(0|2) = 0.025[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{X|Y}(1|2) = \frac{0.06}{0.40}[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = \frac{0.33}{0.40}[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]
SHOW PROCESS!!!
Will mark brainly!!
Thank you!
Answer:
Step-by-step explanation:
By applying cosine rule in the given triangle,
c² = a² + b²-2abcosC
c² = (5.6)² + (10.7)² - 2(5.6)(10.7)cos(109.3°)
c² = 185.46
c = 13.6 km
By applying sine rule in the given triangle ABC,
[tex]\frac{\text{sin}A}{a}= \frac{\text{sin}B}{b}= \frac{\text{sin}C}{c}[/tex]
[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]
[tex]\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]
sin(B) = [tex]\frac{10.7\times \text{sin}(109.30)}{13.6}[/tex]
= 0.7425
B = [tex]\text{sin}^{-1}(0.7425)[/tex]
B = 48.0°
[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}109.3}{13.6}[/tex]
sin(A) = [tex]\frac{[\text{sin}(109.3)]\times (5.6)}{13.6}[/tex]
= 0.3886
A = [tex]\text{sin}^{-1}(0.3886)[/tex]
A = 22.9°
in a class of 50 student,35 are boys.what is the ratio of girls to boys in the class?
Answer:
15:35
Step-by-step explanation:
50-35=Girls
50-35=15
1.6000×6+787838837÷748+783998-8387=
2.45000÷45×463×6377+6388-894=
Convert 0.53 hectograms to centigrams.
53 centigrams
0.000053 centigrams
530 centigrams
5,3000 centigrams
Answer:
As for metric prefixes, "hecto" means hundred and "centi" means hundredth.
So, converting .53 hectograms to centigrams requires multiplying it by 10,000.
So, .53 hectograms * 10,000 equals 5,300 centigrams.
Source http://www.1728.org/convprfx.htm
Step-by-step explanation:
Which parabola opens upward?
y = 2x – 4x^2 – 5
y = 4 – 2x^2 –5x
y = 2 + 4x – 5x^2
y = –5x + 4x^2 + 2
Answer:
D) y = –5x + 4x^2 + 2
Step-by-step explanation:
You can tell by the first number being positive or negative. To check use Desmo graphing calculator and enter your equation for next time.
How does the sample size affect the validity of an empirical argument? A. The larger the sample size the better. B. The smaller the sample size the better. C. The sample size is not relevant if it is greater than 30. D. The sample size is not relevant if it is greater than 50.
Answer:
A. The larger the sample size the better.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question:
We have to look at the standard error, which is:
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
This means that an increase in the sample size reduces the standard error, and thus, the larger the sample size the better, and the correct answer is given by option a.
Women's heights are normally distributed with a mean given by p = 63.6 in. and a standard deviation given by o = 2.5 in. (a) If 1' woiman is randomly selected, find the probability that her height is less than 67.4 in. Enter a number correct to 4 decimal places: (b): 1f 64 women are randomly selected, find the probability that they will have a mean height less than 67.4 in. Enter a number correct to 4 decimal places:
Step-by-step explanation:
I am sorry question samajh Nahin a Raha question dijiye
The probability that a certain hockey team will win any given game is 0.3773 based on their 13 year win history of 389 wins out of 1031 games played (as of a certain date). Their schedule for November contains 12 games. Let X = number of games won in November.
Find the probability that the hockey team wins at least 3 games in November. (Round your answer to four decimal places.)
Answer:
0.8895 = 88.95% probability that the hockey team wins at least 3 games in November.
Step-by-step explanation:
For each game, there are only two possible outcomes. Either the teams wins, or they do not win. The probability of the team winning a game is independent of any other game, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The probability that a certain hockey team will win any given game is 0.3773.
This means that [tex]p = 0.3773[/tex]
Their schedule for November contains 12 games.
This means that [tex]n = 12[/tex]
Find the probability that the hockey team wins at least 3 games in November.
This is:
[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]
In which:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{12,0}.(0.3773)^{0}.(0.6227)^{12} = 0.0034[/tex]
[tex]P(X = 1) = C_{12,1}.(0.3773)^{1}.(0.6227)^{11} = 0.0247[/tex]
[tex]P(X = 2) = C_{12,2}.(0.3773)^{2}.(0.6227)^{10} = 0.0824[/tex]
Then
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0034 + 0.0247 + 0.0824 = 0.1105[/tex]
[tex]P(X \geq 3) = 1 - P(X < 3) = 1 - 0.1105 = 0.8895[/tex]
0.8895 = 88.95% probability that the hockey team wins at least 3 games in November.
which pair of fractions are equivalent? 2/3 and 12/9 20/40 and 45/ 55 20/40 and 4/8 5/5 and 25/50
Answer:
[tex]\frac{20}{40} \ and \ \frac{4}{8} \ is \ equivalent[/tex]
Step-by-step explanation:
1.
[tex]\frac{2}{3} \ and \ \frac{12}{9} \\\\\frac{2}{3} \ and \ \frac{4}{3}\\\\Not \ equivalent[/tex]
2.
[tex]\frac{20}{40} \ and \ \frac{45}{55}\\\\\frac{1}{2} \ and \ \frac{9}{11}\\\\Not\ equivalent[/tex]
3.
[tex]\frac{20}{40} \ and \ \frac{4}{8}\\\\\frac{1}{2} \ and \ \frac{1}{2} \\\\Equivalent[/tex]
4.
[tex]\frac{5}{5} \ and \ \frac{25}{50} \\\\\frac{1}{1} \ and \ \frac{1}{2} \\\\not \ equivalent[/tex]
The proportion of brown M&M's in a milk chocolate packet is approximately 14% (Madison, 2013). Suppose a package of M&M's typically contains 52 M&M's
Answer:
7 brown M&Ms.
Step-by-step explanation:
This question is not complete, but I will assume that the final question is how many brown M&Ms will be in this package.
0.14 × 52 is our equation.
The answer is 7.28. We cannot have .28 of a brown M&M in a package (unless you count the broken ones) so there will be, on average, 7 brown M&Ms in a package.
(again, the question is incomplete, so this may not be the answer)