Find the value of x in each case

Find The Value Of X In Each Case

Answers

Answer 1

The answer is 36 degrees

Step 1

Angle GEH=180-2x (angles on a a straight line are supplementary)

Step 2

4x= G^+GE^H(sum of exterior angle)

4x=x+(180-2x)

4x=180-x

4x+x=180

5x=180

x=36 degrees


Related Questions

Translate the sentence into an inequality.
The sum of 5 and c is greater than – 22.
what da hell the answer ?

Answers

Answer:

5 + c > -22

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to Right

Algebra I

Inequalities

Step-by-step explanation:

Step 1: Define

Sum of 5 and c is greater than -22

Identify

Sum = addition

5 + c

Is greater than = inequality

>

Add them all together:

5 + c > -22

The mean number of words per minute (WPM) typed by a speed typist is 149 with a standard deviation of 14 WPM. What is the probability that the sample mean would be greater than 147.8 WPM if 88 speed typists are randomly selected

Answers

Answer:

78.81%

Step-by-step explanation:

We are given;

Population mean; μ = 149

Sample mean; x¯ = 147.8

Sample size; n = 88

standard deviation; σ = 14

Z-score is;

z = (x¯ - μ)/(σ/√n)

Plugging in the relevant values;

z = (147.8 - 149)/(14/√88)

z = -0.804

From z-distribution table attached, we have; p = 0.21186

P(X > 147.8) = 1 - 0.21186 = 0.78814

In percentage gives; p = 78.81%

find from first principle the derivative of 3x+5/√x​

Answers

Answer:

[tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]

General Formulas and Concepts:

Algebra I

Exponential Rule [Powering]:                                                                          [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]Exponential Rule [Rewrite]:                                                                              [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex] Exponential Rule [Root Rewrite]:                                                                     [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:                                                            [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                               [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \frac{3x + 5}{\sqrt{x}}[/tex]

Step 2: Differentiate

Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle \frac{3x + 5}{x^\bigg{\frac{1}{2}}}[/tex]Quotient Rule:                                                                                                   [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{(x^\bigg{\frac{1}{2}})^2}[/tex]Simplify [Exponential Rule - Powering]:                                                          [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{x}[/tex]Basic Power Rule [Derivative Property - Addition/Subtraction]:                   [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})(3x^{1 - 1} + 0) - (\frac{1}{2}x^\bigg{\frac{1}{2} - 1})(3x + 5)}{x}[/tex]Simplify:                                                                                                             [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2}x^\bigg{\frac{-1}{2}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Rewrite]:                                                              [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2x^{\frac{1}{2}}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle \frac{d}{dx} = \frac{3\sqrt{x} - (\frac{1}{2\sqrt{x}})(3x + 5)}{x}[/tex]Simplify [Rationalize]:                                                                                       [tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

Identify the transformation that occurs to create the graph of m(x)
m(x)=f(5x)

Answers

Answer:

m(x) is a dilation of scale factor K = 1/5 of f(x).

Step-by-step explanation:

The transformation is a horizontal dilation

The general transformation is defined as:

For a given function f(x), a dilation of scale factor K is written as:

g(x) = f(x/K)

If K > 1, then we have a dilation (the graph contracts)

if 0 < K < 1, then we have a contraction (the graph stretches)

Here we have m(x) = f(5*x)

Then we have a scale factor:

K = 1/5

So this is a contraction.

Then the transformation is:

m(x) is a dilation of scale factor K = 1/5 of f(x).

An amusement park offers 2 options on tickets into the park. People can either buy 5 admission tickets for $130 or buy 1 admission ticket for $30. How much money will a group of 5 people save by buying 5 admission tickets for $130?

Answers

Answer:

You could save $20

Step-by-step explanation:

For buying them separately for $30 each for 5 people it would be $150 but if you buy the first option you would get 5 admission tickets for only $130

Answer:

20 dollars

Step-by-step explanation:

for the first deal is 5 for $130

and the second is for $30

$30 times 5 (the number of people) = $150

$150-$130= is 20

answer: $20

Which is equivalent to (-m)4x n2 ?

Answers

Answer:

a.) m⁴n²

Step-by-step explanation:

( -m)⁴ × n ²

A negative base raised to an even powers equals a positive.

m ⁴ × n²

multiply the terms

m⁴n²

Answer:

a.) m⁴n²

Step-by-step explanation:

yea

Find the measure of of RA.

Answers

Answer:

RA = 24

Step-by-step explanation:

Since the triangle is isosceles ( 2 equal sides ) , then LU is a perpendicular bisector , so

AU = RU , that is

4r = 18 - 2r ( add 2r to both sides )

6r = 18 ( divide both sides by 6 )

r = 3

Then

RA = 18 - 2r + 4r = 18 + 2r = 18 + 2(3) = 18 + 6 = 24

Calculate the pH of a buffer solution made by mixing 300 mL of 0.2 M acetic acid, CH3COOH, and 200 mL of 0.3 M of its salt sodium acetate, CH3COONa, to make 500 mL of solution. Ka for CH3COOH = 1.76×10–5

Answers

Answer:

Approximately [tex]4.75[/tex].

Step-by-step explanation:

Remark: this approach make use of the fact that in the original solution, the concentration of  [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] are equal.

[tex]{\rm CH_3COOH} \rightleftharpoons {\rm CH_3COO^{-}} + {\rm H^{+}}[/tex]

Since [tex]\rm CH_3COONa[/tex] is a salt soluble in water. Once in water, it would readily ionize to give [tex]\rm CH_3COO^{-}[/tex] and [tex]\rm Na^{+}[/tex] ions.

Assume that the [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] ions in this solution did not disintegrate at all. The solution would contain:

[tex]0.3\; \rm L \times 0.2\; \rm mol \cdot L^{-1} = 0.06\; \rm mol[/tex] of [tex]\rm CH_3COOH[/tex], and

[tex]0.06\; \rm mol[/tex] of [tex]\rm CH_3COO^{-}[/tex] from [tex]0.2\; \rm L \times 0.3\; \rm mol \cdot L^{-1} = 0.06\; \rm mol[/tex] of [tex]\rm CH_3COONa[/tex].

Accordingly, the concentration of [tex]\rm CH_3COOH[/tex] and [tex]\rm CH_3COO^{-}[/tex] would be:

[tex]\begin{aligned} & c({\rm CH_3COOH}) \\ &= \frac{n({\rm CH_3COOH})}{V} \\ &= \frac{0.06\; \rm mol}{0.5\; \rm L} = 0.12\; \rm mol \cdot L^{-1} \end{aligned}[/tex].

[tex]\begin{aligned} & c({\rm CH_3COO^{-}}) \\ &= \frac{n({\rm CH_3COO^{-}})}{V} \\ &= \frac{0.06\; \rm mol}{0.5\; \rm L} = 0.12\; \rm mol \cdot L^{-1} \end{aligned}[/tex].

In other words, in this buffer solution, the initial concentration of the weak acid [tex]\rm CH_3COOH[/tex] is the same as that of its conjugate base, [tex]\rm CH_3COO^{-}[/tex].

Hence, once in equilibrium, the [tex]\rm pH[/tex] of this buffer solution would be the same as the [tex]{\rm pK}_{a}[/tex] of [tex]\rm CH_3COOH[/tex].

Calculate the [tex]{\rm pK}_{a}[/tex] of [tex]\rm CH_3COOH[/tex] from its [tex]{\rm K}_{a}[/tex]:

[tex]\begin{aligned} & {\rm pH}(\text{solution}) \\ &= {\rm pK}_{a} \\ &= -\log_{10}({\rm K}_{a}) \\ &= -\log_{10} (1.76 \times 10^{-5}) \\ &\approx 4.75\end{aligned}[/tex].

For two consecutive numbers, five times the number that is less is 3 more than 4 times the greater number, What are the numbers


This is due on 7/1/2021 at 8AM PST. Someone please help?

Answers

5x-3=12 I hope this is right I tried my best I am sorry if you get it wrong

The variance of the scores on a skill evaluation test is 143,641 with a mean of 1517 points. If 343 tests are sampled, what is the probability that the mean of the sample would differ from the population mean by less than 36 points

Answers

Answer:

The probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216

Step-by-step explanation:

We are given that

The variance of the scores on a skill evaluation test=143,641

Mean=1517 points

n=343

We have to find the probability that the mean of the sample would differ from the population mean by less than 36 points.

Standard deviation,[tex]\sigma=\sqrt{143641}[/tex]

[tex]P(|x-\mu|<36)=P(|\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}|<\frac{36}{\frac{\sqrt{143641}}{\sqrt{343}}})[/tex]

[tex]=P(|Z|<\frac{36}{\sqrt{\frac{143641}{343}}})[/tex]

[tex]=P(|Z|<1.76)[/tex]

[tex]=0.9216[/tex]

Hence,  the probability that the mean of the sample would differ from the population mean by less than 36 points=0.9216

4
5

start fraction, 5, divided by, 4, end fraction hour ==equals
minutes

Answers

Answer:

1.25. It would be 1.25 if ur just talking about dividing in general which is pretty tough

Answer:

\dfrac54=-4c+\dfrac14 4 5 ​ =−4c+ 4 1 ​ start fraction, 5, divided by, 4, end fraction, equals, minus, 4, c, plus, start fraction, 1, divided by, 4, end fraction

Step-by-step explanation:


An airplane can travel 350 mph in still air. If it travels 1995 miles with the wind
in the same length of time it travels 1505 miles against the wind, what is the speed of the wind?

Answers

Answer:

49 mph

Step-by-step explanation:

RT=D

T = D/R

[tex]\frac{1995}{(350 + x) } =\frac{1505}{350-x}[/tex]

1995(350-x) = 1505(350+x)

x=49

Given n(A) = 1300, n(A U B) = 2290, and n(A n B) = 360, find n(B).

Answers

Answer:

n(B) = 1350

Step-by-step explanation:

Using Venn sets, we have that:

[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]

Three values are given in the exercise.

The other is n(B), which we have to find. So

[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]

[tex]2290 = 1300 + n(B) - 360[/tex]

[tex]940 + n(B) = 2290[/tex]

[tex]n(B) = 2290 - 940 = 1350[/tex]

So

n(B) = 1350

Given: triangle ABC with side lengths a, b, and c, and height h
Prove: Area = 1/2absin C

Answers

Answer:

Step-by-step explanation:

                    Statements                                        Reasons

1). ΔABC with side lengths a, b, c, and h      1). Given

2). Area = [tex]\frac{1}{2}bh[/tex]                                                 2). Triangle area formula

3). [tex]\text{sin}C=\frac{h}{a}[/tex]                                                    3). Definition of sine

4). asin(C) = h                                                4). Multiplication property of

                                                                          equality.

5). Area = [tex]\frac{1}{2}ba\text{sin}C[/tex]                                         5). Substitution property

6). Area = [tex]\frac{1}{2}ab\text{sin}C[/tex]                                         6). Commutative property of

                                                                           multiplication.

Hence, proved.

An item is regularly priced at $84. Ashley bought it on sale for 70% off the regular price.
Use the ALEKS calculator to find how much Ashley paid

Answers

Answer:

58.80

Step-by-step explanation:

84 x .7(70%) =58.80

Two statements are logically equivalent when:
A. The two statements are true in virtue of their logical structure alone, i.e. the two statement are always true.
B. The first statement implies the second, i.e. if the first statement is true, so is the second.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
D. The two statements are false in virtue of their logical structure alone, i.e. the two statement are always false.

Answers

Answer:

C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.

Step-by-step explanation:

For two statements to be logically equivalent, their truth values (true or false) must be the same for every variation of their constituent variables. In other words, if the truth tables of both statements are the same for every possible value of their variables, then they are logically equivalent.

For example;

The two statements P ∩ (Q U R) and (P ∩ Q) ∪ (P ∩ R) are logically equivalent.

If P, Q and R are all true, then;

P ∩ (Q U R) = true

(P ∩ Q) ∪ (P ∩ R) = true

If P, Q and R are all true, then;

P ∩ (Q U R) = false

(P ∩ Q) ∪ (P ∩ R) = false

If P = false, Q = true and R = true, then;

P ∩ (Q U R) = false

(P ∩ Q) ∪ (P ∩ R) = false

Checking for all other possible combinations of truth values of P, Q and R will always give the same results for the two statements, therefore, they are logically equivalent.

Detroit's population in 2012 was 699,710 people. Detroit's population in 2016 was 678,045 people.

What is the absolute change from 2012 to 2016?

Round your answer to the nearest person.

Answers

Answer:

The absolute change was of -21,665 people.

Step-by-step explanation:

Absolute change:

Final value subtracted by the initial value.

In this question:

Initial value: 699,710

Final value: 678,045

What is the absolute change from 2012 to 2016?

678045 - 699710 = -21,665

The absolute change was of -21,665 people.

2498x2364
explaine how to solve​

Answers

Answer:

5 905 272

Step-by-step explanation:

you can refer to this lattice multiplication or u can search you tube for the examples of lattice multiplication

ANSWER ASAP IM BEING TIMED
IF I GET AN A ON THIS I WILL DO ANOTHER POINT FREE DROP, PLEASE SHOW YOUR WORK
The lengths of three sides of a quadrilateral are shown below:

Side 1: 1y2 + 3y − 6

Side 2: 4y − 7 + 2y2

Side 3: 3y2 − 8 + 5y

The perimeter of the quadrilateral is 8y3 − 2y2 + 4y − 26.

Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points)

Part B: What is the length of the fourth side of the quadrilateral? (4 points)

Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. (2 points)

Answers

Answer:

Part A

(1y^2+3y-6)+(4y-7+2y^2)+(3y^2-8+5y)

6y^2+12y-21

A manufacturer of nails claims that only 4% of its nails are defective. A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective. Is it fair to reject the manufacturer's claim based on this observation?

Answers

Answer:

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Step-by-step explanation:

A manufacturer of nails claims that only 4% of its nails are defective.

At the null hypothesis, we test if the proportion is of 4%, that is:

[tex]H_0: p = 0.04[/tex]

At the alternative hypothesis, we test if the proportion is more than 4%, that is:

[tex]H_a: p > 0.04[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.

4% is tested at the null hypothesis

This means that [tex]\mu = 0.04, \sigma = \sqrt{0.04*0.96}[/tex]

A random sample of 20 nails is selected, and it is found that two of them, 10%, are defective.

This means that [tex]n = 20, X = 0.1[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \frac{0.1 - 0.04}{\frac{\sqrt{0.04*0.96}}{\sqrt{20}}}[/tex]

[tex]z = 1.37[/tex]

P-value of the test and decision:

Considering an standard significance level of 0.05.

The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.

Looking at the z-table, z = 1.37 has a p-value of 0.9147

1 - 0.9147 = 0.0853

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Answer:

Considering an standard significance level of 0.05.

The p-value of the test is the probability of finding a sample proportion above 0.1, which is 1 subtracted by the p-value of z = 1.37.

Looking at the z-table, z = 1.37 has a p-value of 0.9147

1 - 0.9147 = 0.0853

The p-value of the test is 0.0853 > 0.05, which means that there is not enough evidence to reject the manufacturer's claim based on this observation.

Step-by-step explanation:

An airplane flies 105 miles in ½ hour. How far can it fly in 1 ¼ hours at the same rate of speed?

Answers

Answer:

262.5 miles

Step-by-step explanation:

Correct me if I am wrong

Give an example of a function with both a removable and a non-removable discontinuity.

Answers

Answer:

(x+5)(x-3) / (x+5)(x+1)

Step-by-step explanation:

A removeable discontinuity is always found in the denominator of a rational function and is one that can be reduced away with an identical term in the numerator.  It is still, however, a problem because it causes the denominator to equal 0 if filled in with the necessary value of x.  In my function above, the terms (x + 5) in the numerator and denominator can cancel each other out, leaving a hole in your graph at -5 since x doesn't exist at -5, but the x + 1 doesn't have anything to cancel out with, so this will present as a vertical asymptote in your graph at x = -1, a nonremoveable discontinuity.

what can you infer about angles x and y based on the information in the other triangles?

Answers

x= 60 and y = 120
As we can tell x and y add up to 180 as angles on a line are equal to 180 and we know the value of x as angles in a triangle add up to 180

g(x)=(cosθsinθ)^4 what's the differential

Answers

Answer:

sin²2θ. (cos θ sin θ). cos 2θ

Step-by-step explanation:

finding g'(x)

g'(x)

(x^n)' = nx^(n -1)

= 4 (cosθsinθ)³ . { cosθ. (sinθ)' + sinθ. (cosθ)' }

(cosθ)' = - sinθ (sinθ)' = cosθ

= 4 (cosθsinθ)³ { cosθ. cos θ + sinθ.(-sin θ)}

= 4 (cosθsinθ)³{ cos²θ - sin²θ}

cos²θ - sin²θ = cos 2θ2sinθ cosθ = sin 2θ

= (4 cosθ sinθ)². (cosθ sinθ). { cos²θ - sin²θ}

= sin²2θ. (cos θ sin θ). cos 2θ

Which of the following are best described as lines that meet to form a right
angle?

Answers

Answer:

Two lines that intersect and form right angles are called perpendicular lines.

Answer:

perpendicular lines

Step-by-step explanation:

Definition of perpendicular lines:

Two lines that intersect forming a right angle are perpendicular lines.

Answer: perpendicular lines

Divide 30 in the ratio 1 : 4

Answers

Answer:

6 : 24

Step-by-step explanation:

If we are in the ratio of 1 to 4, the total is 1+4 = 5

Divide 30 by 5

30/5 = 6

Multiply each term in the ratio by 6

1  :4

1*6 : 4*6

6 : 24

Answer:

total ratio:

[tex] = 1 + 4 \\ = 5[/tex]

For the portion of 1:

[tex] = 30 \div \frac{1}{5} \\ = 30 \times 5 \\ = 150[/tex]

For the portion of 4:

[tex] = 30 \div \frac{4}{5} \\ = 30 \times \frac{5}{4} \\ = 37.5[/tex]

= 30 : 7.5

Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull distributions. For the first component the shape parameter is 2.1 and the characteristic life is 100,000 breaking events. For the second component the shape parameter is 1.8 and characteristic life of 80,000. Find the reliability of the system after 2,000 breaking events:

Answers

Answer:

0.9984

Step-by-step explanation:

we have shape parameter for the first component as 2.1

characteristics life = 100000

for this component

we have

exp(-2000/100000)².¹

= e^-0.0002705

= 0.9997

for the second component

shape parameter = 1.8

characteristic life = 80000

= exp(-2000/80000)¹.⁸

= e^-0.001307

= 0.9987

the reliability oif the system after 2000  events

= 0.9987 * 0.9997

= 0.9984

What is the most specific name for a quadrilateral with one pair of parallel sides?

A. trapezoid
B. rectangle
C. parallelogram
D. quadrilateral

help me pls

Answers

It’s C - parallelogram

Answer:

C: parallelogram

Step-by-step explanation:

Can you please help me with this question

Answers

Hirap nyan ah hahahahah

Mathematics puzzle from my calculus text book.

Answers

Answer:

[tex]{ \tt{g(x) = a {x}^{2} + bx + c = 0 }} \\ { \tt{f(x) = {a'x}^{2} + b 'x + c' = 0}} \\ { \boxed{ \bf{f(g(x)) = g(f(x))}}} : \\ { \tt{ =( \frac{a}{a'})x {}^{2} + ( \frac{b}{b'}) x} + \frac{c}{c'} } = 0[/tex]

Other Questions
A rectangle has a height of 4 and a width of x2 + 3x + 2.whats the area of the entire rectangle? How will you face the challenges if you were Johnsy? (50 words).From the story THE LAST LEAF by O.Henry Help me with this question i forgot how to do these hey i have personal question! um is it safe to use a shower head / faucet for a pleasure thing.. like will it lead me to stds/stis.? infections? will it harm anything? help me pls! A gym at a school is being painted. The four walls and the ceiling are to be painted (but not the floor). The gym measures 100 ft x 65 ft x 25 ft. A 5 gallon can of paint costs $151.99 and covers 1750 ft. How many cans should be purchased? What will it cost to paint two coats for this gym (include HST)? Input value for the function machine that gives an output value of 3. Use the completing the square to solve x^2+6x=12. What is the area of a parallelogram if the length is 4+ x and it's height is x+3 Ya hiciste la tarea? S, ____ hice anoche. All of the orbitals in the 3d subshell have a principal quantum number value of 3, an angular momentum quantum number of:_____. For a school show, Garima wants to arrange 42 flower pots in such a way that each column has an equal number of pots. Which of these could be the number of flower pots in a column? What is the common difference between successive terms in the sequence 0.36, 0.26,0.16,0.06,-0.04,-0.14 pls answer if it is correct i will give brainlist Find x from this triangle You gave audition in Indian Music Academy for Western Vocal and got selected. You are the only one candidate selected for Western Vocal. Make a diary entry for the day. What is the name of the form your parent or guardian will need to fill out in order to prove your Texas residency Favaz began business at the start of this year and had the following costs: variable manufacturing cost per unit, $7; fixed manufacturing costs, $60,000; variable selling and administrative costs per unit, $3; and fixed selling and administrative costs, $263,000. The company sells its units for $48 each. Additional data follow. Planned production in units 10,000 Actual production in units 10,000 Number of units sold 9,500 There were no variances. The income (loss) under absorption costing is What is essential for a confederation?smaller political units maintaining their sovereigntythe establishment of a mixed economya large amount of territorysevere restrictions in the sovereignty of each citizen story ending i wish i had listened to my father Capabilities which you have learned and developed are known as:A-skills.B-innate gifts.C-diverse factors.D faulty errors in judgment.