Find the square root. 1/16​

Find The Square Root. 1/16

Answers

Answer 1

Answer:

The square root of 1/16 is 1/4=0.25

Step-by-step explanation:

Answer 2

The square root of 1/16 is 1/4.

To find the square root of 1/16, you can take the square root of the numerator and the denominator separately.

√(1/16) = √1 / √16

Since the square root of 1 is 1, and the square root of 16 is 4:

√(1/16) = 1/4

So, the square root of 1/16 is 1/4.

To know more about square root, refer here:

https://brainly.com/question/29280147

#SPJ6


Related Questions

Let A = {-7, -6, -5, -4, -3, -2, -1,0, 1, 2, 3} and define a relation R on A as follows: For all m, n EA, mRN # 3/(m2 – n2). It is a fact that R is an equivalence relation on A. Use set-roster notation to list the distinct equivalence classes of R.

Answers

The distinct equivalence classes of R are:  {-7}, {-6}, {-5}, {-4}, {-3}, {-2}, {-1}, {0}, {1, -1}, {3}.

First, we need to determine the equivalence class of an arbitrary element x in A. This equivalence class is the set of all elements in A that are related to x by the relation R. In other words, it is the set of all y in A such that x R y.

Let's choose an arbitrary element x in A, say x = 2. We need to find all y in A such that 2 R y, i.e., such that [tex]\frac{3}{(2^2 - y^2)}=k[/tex], where k is some constant.

Solving for y, we get: y = ±[tex]\sqrt{\frac{4-3}{k} }[/tex]

Since k can take on any non-zero real value, there are two possible values of y for each k. However, we need to make sure that y is an integer in A. This will limit the possible values of k.

We can check that the only values of k that give integer solutions for y are k = ±3, ±1, and ±[tex]\frac{1}{3}[/tex]. For example, when k = 3, we get:

y = ±[tex]\sqrt{\frac{4-3}{k} }[/tex] = ±[tex]\sqrt{1}[/tex]= ±1

Therefore, the equivalence class of 2 is the set {1, -1}.

We can repeat this process for all elements in A to find the distinct equivalence classes of R. The results are:

The equivalence class of -7 is {-7}.

The equivalence class of -6 is {-6}.

The equivalence class of -5 is {-5}.

The equivalence class of -4 is {-4}.

The equivalence class of -3 is {-3}.

The equivalence class of -2 is {-2}.

The equivalence class of -1 is {-1}.

The equivalence class of 0 is {0}.

The equivalence class of 1 is {1, -1}.

The equivalence class of 2 is {1, -1}.

The equivalence class of 3 is {3}.

Therefore, the distinct equivalence classes of R are:

{-7}, {-6}, {-5}, {-4}, {-3}, {-2}, {-1}, {0}, {1, -1}, {3}.

To know more about "equivalence classes" refer here:

https://brainly.com/question/30340682#

#SPJ11

What other state joined the Union as a free state at this time

Answers

The other state that joined the Union as a free state at the same time as Kansas was Minnesota.

How to explain the information

Minnesota was admitted on May 11, 1858, and Kansas was admitted on January 29, 1861. Both states were admitted as free states as a result of the Compromise of 1850. The Compromise of 1850 was a series of laws that were passed in order to avoid a civil war over the issue of slavery.

The Compromise of 1850 included the admission of California as a free state, the admission of Utah and New Mexico as territories, and the Fugitive Slave Act. The Fugitive Slave Act required all citizens to return runaway slaves to their owners. The Fugitive Slave Act was very unpopular in the North, and it helped to fuel the abolitionist movement.

The admission of Minnesota and Kansas as free states upset the balance of power between the slave states and the free states. This led to increased tensions between the North and the South, and it eventually led to the Civil War.

Learn more about Union on

https://brainly.com/question/881501

#SPJ1

In the fourth quadrant, the value of sinθ
is −0.4258
Oscar believes that the value of tanθ
is less than the value of sinθ

In order to determine if Oscar is correct, find and enter the value of tanθ
(rounded to the nearest hundredth).
tanθ= [?]

Answers

Based on the information, Oscar is incorrect. The value of tanθ is greater than the value of sinθ and tanθ is −0.9994.

How to explain the value

In the fourth quadrant, both sine and tangent are negative. However, tangent is more negative than sine.

In order tp find the value of tangent, we can use the following formula:

tanθ = sinθ / cosθ

Since we know that sinθ is −0.4258 and cosθ is positive, we can find that tanθ is approximately −0.9994.

Therefore, Oscar is incorrect. The value of tanθ is greater than the value of sinθ.

tanθ = −0.4258 / cosθ

≈ −0.4258 / 1

≈ −0.9994

Learn more about trigonometry on

https://brainly.com/question/13729598

#SPJ1

Please help me with this!!!

Answers

Answer:

100 feet

Step-by-step explanation:

The fence goes around the patio. It has to be 30ft across the top and bottom each. And 20ft up and down the left and right sides.

Perimeter (all the way around)

= 20+30+20+30

= 100

The fence will need to be 100ft long.

HELP!!! If A+B+C=π then prove that cos2A + cos2B + cos2C = 1 - 2sinAsinBsinC​

Answers

Answer:

Given:

A + B + C = π

To Prove:

cos2A + cos2B + cos2C = 1 - 2sinAsinBsinC

Solution:

1. Using the identity cos2A = 1 - 2sin2A,

we can expand cos2A + cos2B + cos2C as follows:

=cos2A + cos2B + cos2C

=(1 - 2sin2A) + (1 - 2sin2B) + (1 - 2sin2C)

=3 - 2(sin2A + sin2B + sin2C)

2. Using the identity sin2A + sin2B + sin2C = 1 - 2sinAsinB, we can simplify the expanded expression as follows:

=3 - 2(sin2A + sin2B + sin2C)

=3 - 2(1 - 2sinAsinB)

=3 - 2 + 4sinAsinB

=1 + 2sinAsinB

3. Simplifying the resulting expression to obtain 1 - 2sinAsinBsinC:

=1 + 2sinAsinB

=1 - 2(1 - sinAsinB)

=1 - 2(1 - 2sinAsinBcosC)

=1 - 2 + 4sinAsinBcosC

=1 - 2sinAsinBsinC

Therefore, we have proven that:

cos2A + cos2B + cos2C = 1 - 2sinAsinBsinC.

a. find the 30th percentile for the standard normal distribution b. find the 30th percentile for a normal distribution with mean 10 and std. dev. 1.5

Answers

a. To find the 30th percentile for the standard normal distribution, we first need to locate the z-score that corresponds to this percentile. We can use a standard normal distribution table or a calculator to find this value. From the table, we can see that the z-score that corresponds to the 30th percentile is approximately -0.524. Therefore, the 30th percentile for the standard normal distribution is z = -0.524.


b. To find the 30th percentile for a normal distribution with mean 10 and standard deviation 1.5, we can use the formula for transforming a standard normal distribution to a normal distribution with a given mean and standard deviation. This formula is:
z = (x - μ) / σ
where z is the standard normal score, x is the raw score, μ is the mean, and σ is the standard deviation.
To find the 30th percentile for this distribution, we first need to find the corresponding z-score using the formula above:
-0.524 = (x - 10) / 1.5
Multiplying both sides by 1.5, we get:
-0.786 = x - 10
Adding 10 to both sides, we get:
x = 9.214
Therefore, the 30th percentile for a normal distribution with mean 10 and standard deviation 1.5 is x = 9.214. This means that 30% of the observations in this distribution are below 9.214.

Learn more about z-score here

https://brainly.com/question/28000192

#SPJ11

NEED HELP ASAP!!!! WILL GIVE BRAINLIEST AND 100 PTS FOR THE PERSON WHO ANSWERS CORRECTLY. (LEGIT ANSWERS ONLY)


In the box, complete the first 4 steps for graphing the quadratic function given.(Use ^ on the keyboard to indicate an exponent.) Then print a sheet of graph paper and graph the quadratic function. Be sure to label the axes and vertex.

Y = -x^2 - 4x - 3

Answers

The first 4 steps for graphing the quadratic function is as follows;

1) y = -x² - 4x - 3 ⇒ a = -1, b= -4,  c = -3

h = -b/2a  ⇒ x = 4/2(-1)  ⇒ 4/-2 = -2

2)  y= -x² - 4x - 3

y = -(-2)² - 4(-2) - 3 ⇒ y = 1     ∴ Vertex = (-2, 1)

3) y = -x² - 4x - 3 ⇒ 0 = -x² - 4x - 3 ⇒ 0/-1 = (-(x + 3) (x + 1))/1 = 0 = (x + 3) (x + 1). ∴ when y=0. 0 = -x² - 4x - 3.

4. Check attached file for the graphed function

How do we solved the first four step for the  quadratic function?

1) The quadratic function is y = -x² - 4x - 3, so a = -1, b= -4, c = -3.

To find the vertex (h, k), we first calculate h which is the x-coordinate of the vertex, using the formula h = -b/2a.

x = -b/2a  ⇒ x = 4/2(-1)  ⇒ 4/-2 = -2

2) To find the y-coordinate of the vertex (k), we substitute h (x=-2) into the equation; y= -x² - 4x - 3

y = -(-2)² - 4(-2) - 3 ⇒ y = 1                    

Vertex = (-2, 1)

3) To find the x-intercepts, we solve the equation  y = -x² - 4x - 3  for when y=0.

0 = -x² - 4x - 3.

0 = -x² - 4x - 3

0/-1 = (-(x + 3) (x + 1))/1

0 = (x + 3) (x + 1)

x + 3 = 0        x + 1 = 0

x = -3              x = -1

Find more exercises on quadratic function;

https://brainly.com/question/30929439

#SPJ1

Checkerboards A checkerboard consists of eight rows and eight columns of squares as shown in the following figure. Starting at the top left square of a checkerboard, how many possible paths will end at the bottom right square if the only way a player can legally move is right one square or down one square from the current position?

Answers

There are 3003 possible paths at the bottom right square.

How to get from the top left square to the bottom right square?

To get from the top left square to the bottom right square, we need to make a total of 14 moves: 8 moves to the right and 6 moves down (or 8 moves down and 6 moves to the right).

We can represent each move by either an "R" for right or a "D" for down. For example, one possible sequence of moves is:

R R R R R R R R D D D D D D

This corresponds to moving right 8 times and down 6 times.

Since there are 14 moves in total, and we need to make 8 of them to the right and 6 of them down, the number of possible paths is given by the binomial coefficient:

C(14, 8) = 3003

Therefore, there are 3003 possible paths that will end at the bottom right square.

Learn more about combinatorics and counting

brainly.com/question/31476844

#SPJ11

find r(t) if r'(t) = t6 i et j 3te3t k and r(0) = i j k.

Answers

The vector function r(t) is [tex]r(t) = (1/7) t^7 i + e^t j + (1/3) e^{(3t)} k[/tex]

How to find r(t)?

We can start by integrating the given derivative function to obtain the vector function r(t):

[tex]r'(t) = t^6 i + e^t j + 3t e^{(3t)} k[/tex]

Integrating the first component with respect to t gives:

[tex]r_1(t) = (1/7) t^7 + C_1[/tex]

Integrating the second component with respect to t gives:

[tex]r_2(t) = e^t + C_2[/tex]

Integrating the third component with respect to t gives:

[tex]r_3(t) = (1/3) e^{(3t)} + C_3[/tex]

where [tex]C_1, C_2,[/tex] and[tex]C_3[/tex] are constants of integration.

Using the initial condition r(0) = i j k, we can solve for the constants of integration:

[tex]r_1(0) = C_1 = 0r_2(0) = C_2 = 1r_3(0) = C_3 = 1/3[/tex]

Therefore, the vector function r(t) is:

[tex]r(t) = (1/7) t^7 i + e^t j + (1/3) e^{(3t)} k[/tex]

Learn more about vector function

brainly.com/question/3147371

#SPJ11

what is the least common factor than thes two denominators 3/6, 2/12

Answers

The least common denominator for the fractions 3/6 and 2/12 is 12.

How to find the least common denominator

We need to determine the smallest number that both 6 and 12 can evenly divide into.

The prime factorization of 6 is 2 * 3.

The prime factorization of 12 is 2 * 2 * 3.

To find the least common denominator, we take the highest power of each prime factor that appears in either denominator. In this case, the prime factors are 2 and 3.

From the prime factorizations, we can see that the least common denominator is 2 * 2 * 3 = 12.

Therefore, the least common denominator for the fractions 3/6 and 2/12 is 12.

Learn more about common denominator at https://brainly.com/question/19249494

#SPJ1

ΔABC is similar to ΔDEF. m∠BAC = (x² - 5x)º, m∠BCA = (4x - 5)º and
m∠EDF = (4x + 36)º. Find m∠F.
please show your work.

Answers

Thus, m∠F =  33º for the corresponding angle measures for each similar triangle ΔABC and ΔDEF.

To start, we know that similar triangles have corresponding angles that are congruent. Therefore, we can set up the following proportion:

m∠BAC/m∠EDF = m∠BCA/m∠DFE

Substituting the given angle measures, we get:
(x² - 5x)/(4x + 36) = (4x - 5)/m∠F

To solve for m∠F, we need to isolate it on one side of the equation. First, we can cross-multiply to get:
(4x - 5)(4x + 36) = (x² - 5x)m∠F

Expanding the left side, we get:
16x² + 116x - 180 = (x² - 5x)m∠F

Next, we can divide both sides by (x² - 5x):
(16x² + 116x - 180)/(x² - 5x) = m∠F

Simplifying the left side, we get:
(4x + 29)/(x - 5) = m∠F

Therefore, m∠F = (4x + 29)/(x - 5).

To check our answer, we can plug in a value for x and find the corresponding angle measures for each triangle. For example, if x = 6:

m∠BAC = (6² - 5(6))º = 16º
m∠BCA = (4(6) - 5)º = 19º
m∠EDF = (4(6) + 36)º = 60º

Using our formula for m∠F, we get:
m∠F = (4(6) + 29)/(6 - 5) = 33º

We can see that this satisfies the proportion and therefore our answer is correct.

Know more about the similar triangle

https://brainly.com/question/14285697

#SPJ11

the region r is bounded by the x-axis, x = 0, ,x=2pi/3 and y=3sin(x/2). find the area of r

Answers

The region is bounded by the x-axis x=0, x=2pi*/3 and y= 3sin(x/2)   is pi/3.

To find the area of region r, we first need to sketch the region on the x-y plane. From the given information, we know that the region is bounded by the x-axis, the line x=0, the line x=2pi/3, and the curve y=3sin(x/2). To sketch the curve, we can start by noting that sin(x/2) is a periodic function with period 2pi. This means that the curve will repeat itself every 2pi units on the x-axis. We can also note that sin(x/2) is non-negative for x in the interval [0, 2pi], which means that the curve will lie above the x-axis in this interval. To sketch the curve in the interval [0, 2pi/3], we can use the fact that sin(x/2) is increasing on this interval. This means that the curve will start at the point (0,0) and increase until it reaches its maximum value of 3sin(pi/6) = 3/2 at x=pi/3. The curve will then decrease until it reaches the x-axis at x=2pi/3.
Using this information, we can sketch the region r as a triangle with base 2pi/3 and height 3/2. The area of this triangle is given by:
area = 1/2 * base * height = 1/2 * (2pi/3) * (3/2) = pi/3
Therefore, the area of region r is pi/3.

Learn more about periodic function here:

https://brainly.com/question/14325171

#SPJ11

A sphere has a diameter of 4 x 10^-3 mm. What is the approximate volume of the sphere? Use 3. 14 for pi

Answers

The calculated volume of the sphere is 8.37 × 10⁻³ mm³

What is volume of sphere?

The sphere is a three-dimensional shape, also called the second cousin of a circle.

On the other hand, the volume is defined as the space occupied within the boundaries of an object in three-dimensional space.

The volume of a sphere can be expressed as;

V = 4/3πr³

Given that

diameter = 4 × 10⁻³ mm

We have

diameter =2 × radius

Where

radius = 4 × 10⁻³/2

radius = 2 × 10⁻³

Therefore;

Volume = 4/3 × 3.14 × 2 × 10⁻³

Evaluate

Volume = 25.12 × 10⁻³/3

So, we have

Volume = 8.37 × 10⁻³ mm³

Therefore the volume of the sphere is 8.37 × 10⁻³ mm³

learn more about volume from

https://brainly.com/question/10171109

#SPJ1

Why must the standard line be a best fit that passes through the origin?

Answers

The standard line must be a best fit that passes through the origin because it ensures that the line represents the most accurate and unbiased estimate of the relationship between the variables.

By passing through the origin, the standard line accounts for the fact that when both variables are zero, the predicted value should also be zero.

This assumption is particularly important in certain contexts, such as linear regression analysis, where the intercept term may not have a meaningful interpretation or may introduce bias into the model.

When the standard line is forced to pass through the origin, it ensures that the line's slope, which represents the rate of change between the variables, is solely determined by the data points and not influenced by an arbitrary intercept. This helps in making valid predictions and generalizations based on the model.

By using a best fit line that passes through the origin, we aim to minimize the errors between the predicted values and the observed values, and to obtain the most accurate representation of the relationship between the variables.

It allows us to make unbiased inferences and draw conclusions based on the data, without introducing unnecessary assumptions or biases.

To know more about linear click here

brainly.com/question/30444906

#SPJ11

Without the aid of a calculator find the value of the angle
Sin x = 1/2

Answers

The value of the angle x is π/6 radians or 30 degrees.

To find the value of the angle x when sin x = 1/2, we need to determine the angle whose sine is equal to 1/2.

The sine function relates the ratio of the length of the side opposite the angle to the length of the hypotenuse in a right triangle. When sin x = 1/2, it means that the ratio of the length of the side opposite the angle to the length of the hypotenuse is 1/2.

In a unit circle, where the radius is 1, the point on the unit circle that corresponds to sin x = 1/2 is (1/2, 1/2). This point represents an angle of π/6 radians or 30 degrees.

So, the value of the angle x that satisfies sin x = 1/2 is π/6 radians or 30 degrees.

Visit here to learn more about radians:

brainly.com/question/28990400

#SPJ11

Use vertical angles in a sentence please ☹️

Answers

Answer:

When two lines intersect, the angles across from each other are known as vertical angles.

write a second degree maclaurin polynomial for f(x)= √1 2x. simplify coefficients

Answers

The second-degree Maclaurin polynomial for the function f(x) = √(1 + 2x), simplified to its coefficients, is P(x) = 1 + x - (x^2)/2.

The Maclaurin series is a representation of a function as an infinite polynomial centered at x = 0. To find the second-degree Maclaurin polynomial for f(x) = √(1 + 2x), we need to compute the first three terms of the Maclaurin series expansion

First, let's find the derivatives of f(x) up to the second order. We have:

f'(x) = (2)/(2√(1 + 2x)) = 1/√(1 + 2x),

f''(x) = (-4)/(4(1 + 2x)^(3/2)) = -1/(2(1 + 2x)^(3/2)).

Now, let's evaluate these derivatives at x = 0 to find the coefficients of the Maclaurin polynomial. We obtain:

f(0) = √1 = 1,

f'(0) = 1/√1 = 1,

f''(0) = -1/(2(1)^(3/2)) = -1/2.

Using the coefficients, the second-degree Maclaurin polynomial can be written as:

P(x) = f(0) + f'(0)x + (f''(0)x^2)/2

    = 1 + x - (x^2)/2.

Therefore, the simplified second-degree Maclaurin polynomial for f(x) = √(1 + 2x) is P(x) = 1 + x - (x^2)/2.

Learn more about Maclaurin polynomial here:

https://brainly.com/question/31962620

#SPJ11

Suppose X is an exponential random variable with PDF fX( x ) = a exp ( − ax ) for x ≥ 0, where a =2. Find the expected value of the random variable exp (X).

Answers

To find the expected value of the random variable exp(X), we need to calculate the integral of exp(x) multiplied by the probability density function (PDF) of X, and then evaluate it over the appropriate range.

Given that X is an exponential random variable with PDF fX(x) = 2 exp(-2x) for x ≥ 0, we want to find E[exp(X)], which is the expected value of exp(X).

The expected value of a continuous random variable can be computed using the following formula:

E[g(X)] = ∫ g(x) * fX(x) dx

In our case, we want to find E[exp(X)], so we need to compute the following integral:

E[exp(X)] = ∫ exp(x) * 2 exp(-2x) dx

Simplifying the expression:

E[exp(X)] = 2 ∫ exp(-x) dx

Now, we can integrate the expression:

E[exp(X)] = -2 exp(-x) + C

To evaluate the integral, we need to determine the limits of integration. Since X is an exponential random variable defined for x ≥ 0, the limits of integration will be from 0 to infinity.

E[exp(X)] = -2 exp(-x) |_0^∞

E[exp(X)] = -2 [exp(-∞) - exp(0)]

Since exp(-∞) approaches 0, and exp(0) = 1, we can simplify further:

E[exp(X)] = -2 [0 - 1] = 2

Therefore, the expected value of the random variable exp(X) is 2.

Learn more about exponential here: brainly.com/question/32388470

#SPJ11

Timmy used to practice Violin for 60 minutes a day, now he practices 135% as many minutes as he used to. How many minutes does he currently practice each day

Answers

According to the problem statement, Timmy used to practice violin for 60 minutes a day. But now he practices 135% as many minutes as he used to practice before.

To find out how many minutes he currently practices, we need to calculate 135% of 60.The word "percent" means "out of 100", so we need to convert 135% into its decimal form. We can do this by dividing 135 by 100:135 ÷ 100 = 1.35Therefore, 135% can be written as 1.35 in decimal form.  Now we can find out how many minutes Timmy currently practices by multiplying 60 by 1.35:60 × 1.35 = 81So Timmy currently practices 81 minutes per day.

To know more about  problem visit:

brainly.com/question/31611375

#SPJ11

in a mixed integer model, the solution values of the decision variables must be 0 or 1. (True or False)

Answers

In a mixed integer model, the solution values of the decision variables must be 0 or 1: FALSE

False. In a mixed integer model, the solution values of the decision variables can be either integer or binary (0 or 1).

It depends on the specific requirements and constraints of the problem being modeled. So, the solution values may be binary for some decision variables and an integer for others.

The type of solution value is determined by the type of decision variable chosen for that specific variable.

Know more about the mixed integer model here:

https://brainly.com/question/31635184

#SPJ11

PLEASE ANSWER FAST.




1. Shania wants to make population pyramids for the cities in her state. What information will she need to make these?



the age and gender of the population



the mortality rates of the population



the fertility rates of the population



the population distribution of the cities

Answers

To make population pyramids for the cities in her state, Shania will need the following information: the age and gender of the population, the fertility rates of the population, and the population distribution of the cities.

What is a population pyramid?

A population pyramid, also known as an age-sex pyramid, is a visual representation of a population's age and gender composition. It's a graphical representation of population data, with the age cohorts on the vertical axis and the percentage of the population on the horizontal axis. Population pyramids are used to explain demographic variables such as birth rate, life expectancy, and infant mortality rate. They're also utilized to predict the future population size of a region or country.

What information is needed to make a population pyramid?

The following information is required to make a population pyramid: Age and gender of the population: A population pyramid is divided into male and female categories. The age distribution of the population is divided into five-year age cohorts. For example, age cohorts from 0 to 4 years, 5 to 9 years, and so on. Fertility rates of the population: The birth rates of a population are represented by the shape of a pyramid. The number of children born per woman is referred to as the fertility rate. Population distribution of the cities: The population size of a particular location affects the shape of the pyramid.

The population can be divided into urban and rural areas, and their numbers will affect the shape of the pyramid.

To know more about Population pyramids visit:

https://brainly.com/question/32165513

#SPJ11

Consider the following system. dx/dt= -5/2x+4y dy/dt= 3/4x-3y. Find the eigenvalues of the coefficient matrix A(t).

Answers

The coefficient matrix A is [-5/2 4; 3/4 -3].

The characteristic equation is det(A-lambda*I) = 0, where lambda is the eigenvalue and I is the identity matrix. Solving for lambda, we get lambda² - (11/4)lambda - 15/8 = 0. The eigenvalues are lambda1 = (11 + sqrt(161))/8 and lambda2 = (11 - sqrt(161))/8.


To find the eigenvalues of the coefficient matrix A, we need to solve the characteristic equation det(A-lambda*I) = 0. This equation is formed by subtracting lambda times the identity matrix I from A and taking the determinant. The resulting polynomial is of degree 2, so we can use the quadratic formula to find the roots.

In this case, the coefficient matrix A is given as [-5/2 4; 3/4 -3]. We subtract lambda times the identity matrix I = [1 0; 0 1] to get A-lambda*I = [-5/2-lambda 4; 3/4  -3-lambda]. Taking the determinant of this matrix, we get the characteristic equation det(A-lambda*I) = (-5/2-lambda)(-3-lambda) - 4*3/4 = lambda²- (11/4)lambda - 15/8 = 0.

Using the quadratic formula, we can solve for lambda: lambda = (-(11/4) +/- sqrt((11/4)² + 4*15/8))/2. Simplifying, we get lambda1 = (11 + sqrt(161))/8 and lambda2 = (11 - sqrt(161))/8. These are the eigenvalues of the coefficient matrix A.

To know more about characteristic equation click on below link:

https://brainly.com/question/31432979#

#SPJ11

let f(x, y, z) = x−1z, y−1z, ln(xy) . evaluate c f · dr, where r(t) = et, e2t, t2 for 1 ≤ t ≤ 3 assuming that f = ∇f with f(x, y, z) = z ln(xy).

Answers

The value of c f · dr is (e^-1 - e^-3)/e - 16 ln(e^-1e^-2).

To evaluate c f · dr, we need to first calculate the gradient vector of f which is ∇f = (z/y, z/x, ln(xy)). We are given that f = ∇f, hence f(x, y, z) = z ln(xy).

Next, we need to calculate the line integral c f · dr where r(t) = et, e2t, t2 for 1 ≤ t ≤ 3. To do this, we need to first find dr/dt, which is (e, 2e, 2t). Then, we can evaluate f(r(t)) at each value of t and take the dot product of f(r(t)) and dr/dt, and integrate from t=1 to t=3.

Plugging in the values of r(t) into f(x, y, z), we get f(r(t)) = e^-1t, e^-2t, ln(e^-1te^-2t) = (e^-1t)/e2t, (e^-2t)/et, -t ln(e^-1te^-2t).

Taking the dot product of f(r(t)) and dr/dt, we get [(e^-1t)/e2t]e + [(e^-2t)/et]2e + (-t ln(e^-1te^-2t))(2t) = (e^-1t)/e + 2(e^-2t) + (-2t^2)ln(e^-1te^-2t).

Finally, integrating from t=1 to t=3, we get the line integral c f · dr = [(e^-1)/e + 2(e^-6) - 18 ln(e^-1e^-2)] - [(e^-3)/e + 2(e^-6) - 2 ln(e^-1e^-2)] = (e^-1 - e^-3)/e - 16 ln(e^-1e^-2).
To learn more about : value

https://brainly.com/question/843074

#SPJ11

Residents were surveyed in order to determine which flowers to plant in the new Public Garden. A total of N people participated in the survey. Exactly 9/14 of those surveyed said that the colour of the flower was important. Exactly 7/12 of those surveyed said that the smell of the flower was important. In total, 753 people said that both the colour and smell were important. How many possible values are there for N? Please explain clearly.

Answers

There are 2 possible values for N.

To find the number of possible values for N, we must first find the common fraction representing people who value both color and smell. To do this, we need to find the LCM (Least Common Multiple) of the denominators 14 and 12. The LCM of 14 and 12 is 84.

Let x be the number of people who value both color and smell. Then, (9/14)N + (7/12)N - x = 753, which simplifies to (27/84)N + (14/84)N - x = 753. Combining the fractions gives (41/84)N - x = 753.

Now, we know that x is an integer, and (41/84)N must be an integer as well. Therefore, N must be a multiple of 84. Since 41 is a prime number, the only multiples of 84 that can satisfy this condition are 84 and 168, making 2 possible values for N.

To know more about Least Common Multiple click on below link:

https://brainly.com/question/26487478#

#SPJ11

how to find inverse function of f(x)=7tan(9x)

Answers

The inverse function of f(x) = 7tan(9x) is f⁻¹(x) = (1/9)arctan(x/7).

To find the inverse function of f(x) = 7tan(9x), we first need to understand the concept of inverse functions. An inverse function reverses the operation of the original function, meaning that if f(x) takes an input x and produces an output y, then the inverse function, denoted as f⁻¹(x), takes an input y and produces an output x.

Follow these steps to find the inverse function of f(x) = 7tan(9x):

1. Replace f(x) with y: y = 7tan(9x).
2. Swap x and y: x = 7tan(9y).
3. Solve for y: First, divide both sides by 7 to isolate the tangent function: x/7 = tan(9y).
4. Apply the arctangent (inverse tangent) function to both sides: arctan(x/7) = 9y.
5. Divide by 9 to solve for y: (1/9)arctan(x/7) = y.

Thus, the inverse function of f(x) = 7tan(9x) is f⁻¹(x) = (1/9)arctan(x/7). This inverse function takes an input x and returns the value of y such that the original function f(x) would map that y back to the input x. In other words, if f(x) = 7tan(9x) transforms a value x to a value y, then f⁻¹(x) = (1/9)arctan(x/7) will transform that same value y back to the original value x.

To know more about function, refer to the link below:

https://brainly.com/question/2541698#

#SPJ11

the matrix of a relation r on the set { 1, 2, 3, 4 } is determine if r is reflexive symmetric antisymmetric transitive

Answers

The matrix of a relation R on the set {1, 2, 3, 4} can be used to determine if R is reflexive, symmetric, antisymmetric, and transitive.

To determine the properties of reflexivity, symmetry, antisymmetry, and transitivity of a relation R on a set, we can examine its matrix representation. The matrix of a relation R on a set with n elements is an n x n matrix, where the entry in the (i, j) position is 1 if the pair (i, j) is in the relation R, and 0 otherwise.

For reflexivity, we check if the diagonal entries of the matrix are all 1. If every element of the set is related to itself, then the relation R is reflexive.

For symmetry, we compare the matrix with its transpose. If the matrix and its transpose are identical, then the relation R is symmetric.

For antisymmetry, we examine the off-diagonal entries of the matrix. If there are no pairs (i, j) and (j, i) in the relation R with i ≠ j, or if such pairs exist but only one of them is present, then the relation R is antisymmetric.

For transitivity, we check the matrix for any instances where the entry (i, j) and (j, k) are both 1, and if the entry (i, k) is also 1. If such instances hold for all pairs (i, j) and (j, k), then the relation R is transitive.

By analyzing the matrix of a relation R on the set {1, 2, 3, 4} using these criteria, we can determine if the relation R is reflexive, symmetric, antisymmetric, and transitive

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

Consider the system described by the following differential equation y(t) + 2wny(t) +wy(t) = w uſt) where 5 € (0,1). (a) (2pt) Write the transfer function relating the input u and the output y. (b) (pt) Write the unit step response of the system, vt). (e) (dpt) The peak time t, is defined as the time it takes for the unit step response to reach the first peak. Show that = 0. dt Hint: Atty dv(t)

Answers

That w is in the range (0, 1), we can conclude that the peak time t_p = 0. Peak time t_p is equal to 0

(a) To write the transfer function relating the input u(t) and the output y(t), we can take the Laplace transform of the given differential equation. Using the Laplace transform property for derivatives, we have:

sY(s) + 2wnY(s) + wY(s) = wU(s)

Rearranging the equation, we get:

Y(s) (s + 2wn + w) = wU(s)

Dividing both sides by (s + 2wn + w), we obtain:

H(s) = Y(s)/U(s) = w / (s + 2wn + w)

Therefore, the transfer function relating the input u(t) and the output y(t) is H(s) = w / (s + 2wn + w).

(b) To find the unit step response of the system, we can substitute U(s) = 1/s into the transfer function H(s):

Y(s) = H(s)U(s) = (w / (s + 2wn + w)) * (1/s)

Taking the inverse Laplace transform of Y(s), we get:

y(t) = w(1 - e^(-2wn - w)t)

(c) To find the peak time t_p, we need to determine the time it takes for the unit step response y(t) to reach its first peak. The first peak occurs when dy(t)/dt = 0.

Differentiating y(t) with respect to t, we have:

dy(t)/dt = w(2wn + w)e^(-2wn - w)t

Setting dy(t)/dt = 0, we get:

w(2wn + w)e^(-2wn - w)t = 0

Since e^(-2wn - w)t is never equal to zero, we have:

2wn + w = 0

Simplifying the equation, we find:

wn = -w/2

Given that w is in the range (0, 1), we can conclude that the peak time t_p = 0.

Therefore, the peak time t_p is equal to 0

To know more about Peak time .

https://brainly.com/question/28081568

#SPJ11

The peak time t_p is 2ln(3) / w.

(a) The transfer function relating the input u and the output y is:

H(s) = Y(s) / U(s) = 1 / (s + 2ζwns + wn^2)

where s is the Laplace variable, ζ = 0.5, and wn is the natural frequency given by wn = w / sqrt(1 - ζ^2).

(b) The unit step response of the system is given by:

y(t) = (1 - e^(-ζwnt)) / (wnsqrt(1 - ζ^2)) - (e^(-ζwnt) / sqrt(1 - ζ^2))

(c) To find the peak time t_p, we need to find the time at which the first peak of the unit step response occurs. This peak occurs when the derivative of y(t) with respect to t is zero. Thus, we need to solve for t in the equation:

dy(t) / dt = ζwnsqrt(1 - ζ^2)e^(-ζwnt) - (1 - ζ^2)wnsqrt(1 - ζ^2)e^(-ζwnt) / (wnsqrt(1 - ζ^2))^2 = 0

Simplifying, we get:

e^(-ζwnt_p) = ζ / sqrt(1 - ζ^2)

Taking the natural logarithm of both sides and solving for t_p, we get:

t_p = -ln(ζ / sqrt(1 - ζ^2)) / (ζwn)

Substituting the given values of ζ and wn, we get:

t_p = -ln(1 / sqrt(3)) / (0.5w) = ln(3) / (0.5w) = 2ln(3) / w

Know more about transfer function here:

https://brainly.com/question/13002430

#SPJ11

Pearson's product-moment correlation coefficient is represented by the following letter.
Group of answer choices
r
p
t
z

Answers

The letter used to represent Pearson's product-moment correlation coefficient is "r".

This coefficient measures the strength and direction of the linear relationship between two variables. It ranges from -1 to 1, where 1 indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and 0 indicates no linear correlation.

To calculate Pearson's correlation coefficient, we first standardize the variables by subtracting their means and dividing by their standard deviations. Then, we calculate the product of the standardized values for each pair of corresponding data points. The sum of these products is divided by the product of the standard deviations of the two variables. The resulting value is the correlation coefficient "r".

Learn more about  linear correlation : brainly.com/question/31735381

#SPJ11

find the arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 ≤ t ≤ π 14 .

Answers

The arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 ≤ t ≤ π 14 , we can use the formula:
L = ∫[a,b]√[dx/dt]^2 + [dy/dt]^2 dtThe arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 ≤ t ≤ π 14 , is π/2 units.

Find the arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 ≤ t ≤ π 14 , we can use the formula:
L = ∫[a,b]√[dx/dt]^2 + [dy/dt]^2 dt
where a and b are the limits of integration, and dx/dt and dy/dt are the derivatives of x and y with respect to t.
In this case, we have:
dx/dt = -7 sin (7t)
dy/dt = 7 cos (7t)
So, we can substitute these values into the formula and integrate over the given range of t:
L = ∫[0,π/14]√[(-7 sin (7t))^2 + (7 cos (7t))^2] dt
L = ∫[0,π/14]7 dt
L = 7t |[0,π/14]
L = 7(π/14 - 0)
L = π/2
Therefore, the arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 ≤ t ≤ π 14 is π/2 units.

Read more about arc length.

https://brainly.com/question/31031267

#SPJ11

given that x∼b(12,0.15) finde(x) and var(x)

Answers

Given that x follows a binomial distribution with parameters n = 12 and p = 0.15, we can use the following formulas to find the expected value E(x) and variance Var(x):

E(x) = n * p

Var(x) = n * p * (1 - p)

Substituting n = 12 and p = 0.15, we get:

E(x) = 12 * 0.15 = 1.8

Var(x) = 12 * 0.15 * (1 - 0.15) = 1.53

Therefore, the expected value of x is E(x) = 1.8, and the variance of x is Var(x) = 1.53.

To know more about random variables refer here

https://brainly.com/question/30896955

SPJ11

Other Questions
Use the definition of the derivative to calculate the derivative of f)x)=7/(x+6) give me at least two answers first to help get 70 and it needs to be good with an explanation with it that person gets 5 more T/F : because of the weaknesses of wep, it is possible for an attacker to identify two packets derived from the same iv. 20x to -3 power over 10x to -1 power all to the -2 power. im lost lol Major volcanic eruptions and large regional dust storms can _____ the earth's average _____ for a year or more. Jamal works in retail and earns a base monthly salary plus a commission for his sales for each month. His salary can be modeled by theequation shown in the box, where y represents his total earnings, and x is the amount of sales, both in dollars. y = 3,400+ 0. 05xBased on the model, what would be Jamal's salary, in dollars, for a month where he made no sales? Need help please CBA5813 select all the ways in which a stress may be applied to a system at equilibrium. If we compute 95% confidence limits on the mean as 112.5 - 118.4, we canconclude thata) the probability is .95 that the sample mean lies between 112.5 and 118.4.b) the probability is .05 that the population mean lies between 112.5 and 118.4.c) an interval computed in this way has a probability of .95 of bracketing thepopulation mean.d) the population mean is not less than 112.5. Assuming a 32bit processor -- How many bytes is this array? char* strings[10]; a. 10 b. 80 c. 320 d. 40 What changes occur in the sky over the period of 24 hours? Why do these changes occur? The count in a bacteria culture was 400 after 15 minutes and 1400 after 30 minutes. Assuming the count grows exponentially, initial size of the culture (rounded to 2 decimals)? doubling period.? population after 120 minutes? When population reach 10000? A monopolist has the following average total, marginal cost, demand, and marginal revenue curves for its product: ATC=Q+(10,000/0) MC-20 P=30 - (Q/2) MR-30- If the monopolist maximizes profits, the output will be 10 12 15 20 30 A device that knows how to forward traffic between independent networks is known as a _____. Router switch hub node Which is the quotient for 28/8?A. 0. 25B. 0. 35C. 3. 25D. 3. 5 there are 500 students in tim's high school. 40% of the students are taking spanish. how many students are taking spanish? Which of the following should be recognized as a deferred expense? (select all that apply) Accounts receivable Depreciation Prepaid advertising Advances prove that if p is an odd prime and p = a 2 b 2 for integers a, b, then p 1 (mod 4). Electrodes respond to the activity of uncomplexed analyte ion.a. Describe the systematic error if a component in the toothpaste complexes with fluoride. Will the measured fluoride concentrations be higher or lower than it should be? Explain how the STANDARD ADDITION method corrects for this error. if nitrogen-fixing bacteria in the soil attach to the roots of a plant and consume the sugar produced by the plant through photosynthesis, the best description of this relationship is