Determine the domain of the function graphed above.
Answer:
the domain of given f is (-2,4)
Find m angle NML; m angle QML=115^ and m angle NMQ=28^
Answer:
We're provided - m ∠ QML = 115° , m ∠ NMQ = 28° and we're asked to find out m ∠ NML. Set up an equation and solve for m ∠ NML.[tex] \large{ \tt{❀ \: m \: \angle \: NML= m \: \angle \:QML + m \: \angle \: NMQ}}[/tex]
[tex] \large{ \tt{⤇m \: \angle \:NML= 115 \degree + 28 \degree }}[/tex]
[tex] \boxed{ \large{ \tt{⤇ \: m \: \angle \:NML = 143 \degree }}}[/tex]
Hence , Our final answer is 143° . Hope I helped! Let me know if you have any questions regarding my answer and also notify me , if you need any other help! :)▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Simultaneous equations 5x-4y=19
x+2y=8
Answer:
x = 5 and y = 1.5
Step-by-step explanation:
hope this helps please like and mark as brainliest
Multiplying 10x² and (2x²)² we get …..
Hi there!
[tex]\large\boxed{40x^{6}}[/tex]
Begin by simplifying (2x²)²
2² · (x²)² <-- Power rule for exponents, multiply them together:
4 · x⁴ = 4x⁴
Multiply by 10x². ADD exponents when multiplying.
10x² · 4x⁴ = 40 · x²⁺⁴
40x⁶
An experimenter flips a coin 100 times and gets 59 heads. Find the 98% confidence interval for the probability of flipping a head with this coin.
Answer:
The 98% confidence interval for the probability of flipping a head with this coin is (0.4756, 0.7044).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
An experimenter flips a coin 100 times and gets 59 heads.
This means that [tex]n = 100, \pi = \frac{59}{100} = 0.59[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.59 - 2.327\sqrt{\frac{0.59*0.41}{100}} = 0.4756[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.59 + 2.327\sqrt{\frac{0.59*0.41}{100}} = 0.7044[/tex]
The 98% confidence interval for the probability of flipping a head with this coin is (0.4756, 0.7044).
According to the Venn Diagram below and given that P(A) = .4 as well as
P(B) = .3 what is P(AUB)?
Hello,
P(A)=0.4
P(B)=0.3
P(AUB)+P(A∩B)=P(A)+P(B)
P(AUB)=0.4+0.3-0.1=0.6
Answer C
The correct answer is option (C).
P(A ∪ B) = 0.6
Formula to find P(A ∪ B):If A, B are two different events then P(A U B) = P(A) + P(B) - P(A ∩ B)
We have been given, P(A) = 0.4, P(B) = 0.3
From given Venn diagram,
P(A ∩ B) = 0.10
Now, P(A U B) = P(A) + P(B) - P(A ∩ B)
⇒ P(A U B) = 0.4 + 0.3 - 0.10
⇒ P(A ∪ B) = 0.6
Therefore, the correct answer is option (C) .6
Learn more about here:
https://brainly.com/question/1605100
#SPJ2
The systolic blood pressure of adults in the USA is nearly normally distributed with a mean of 120 and standard deviation of 18 . Someone qualifies as having Stage 2 high blood pressure if their systolic blood pressure is 160 or higher. a. Around what percentage of adults in the USA have stage 2 high blood pressure
Answer:
The percentage of adults in the USA have stage 2 high blood pressure=98.679%
Step-by-step explanation:
We are given that
Mean, [tex]\mu=120[/tex]
Standard deviation, [tex]\sigma=18[/tex]
We have to find percentage of adults in the USA have stage 2 high blood pressure.
[tex]P(x\geq 160)=P(Z\geq \frac{160-120}{18})[/tex]
[tex]P(x\geq 160)=P(Z\geq \frac{40}{18})[/tex]
[tex]P(x\geq 160)=P(Z\geq 2.22)[/tex]
[tex]P(x\geq 160)=1-P(Z\leq 2.22[/tex]
[tex]P(x\geq 160)=0.98679[/tex]
[tex]P(x\geq 160)=98.679[/tex]%
Hence, the percentage of adults in the USA have stage 2 high blood pressure=98.679%
What is each of the four sections created by the intersecting lines called?
Answer:
Quadrants
Step-by-step explanation:
When two lines intersect such that they are perpendicular to each other, then quadrants are said to be formed. So that a given space would be divided into four quadrants when two perpendicular lines are drawn on it.
Each section which is called quadrant is at right angle to one another. So that the addition of their angles at the meeting point is the sum of four right angles i.e [tex]360^{o}[/tex]. Thus each of the four sections created by the intersecting lines is called a quadrant.
Helppp more points 20 math
Answer:
root(250)
answer choice C
Step-by-step explanation:
explanation in the pic above.
Pierre Martina is comparing the cost of credit to the cash price of an item. If Pierre makes a down payment of $70 and pays $34 a
month for 24 months, how much more will that amount be than the cash price of $695? (Input the amount as a positive value.)
Amount of difference
Answer:
$191
Step-by-step explanation:
Find how much she will be paying over the 24 months:
34(24)
= 816
Add the down payment to this:
816 + 70
= 886
Find the difference between this and 695:
886 - 695
= 191
So, the difference will be $191 more
express the ratio as a fraction in the lowest terms 100cm:5m
Step-by-step explanation:
we know that 1m=100cm
so 1m:5m(final)
1:5
Answer:
1/5
Step-by-step explanation:
Since 100cm = 1m
then
100cm:5m becomes 1m:5m
which in fraction is 1/5
Graph the linear equation find three points that solve the equation then plot on the graph. x-y=0
Answer:
Step-by-step explanation:
> the equation given is x-y =0
> three points that will solve the equation could be
if x= -2 , y = -2 then x-y = 0 is -2 -(-2) =0 so it works point (-2,-2)
if x=1, y = 1 then x-y = 0 is 1-1 =0 is true so we have point (1, 1)
if x=2 ,y= 2 then x-y = 0 is 2-2 =0 is true so we have point (2, 2)
A rectangular prism is 3 feet long, 4 feet wide, and 4 feet high. What is it's surface area?
Answer:
80 ft
Step-by-step explanation:
The formula for finding the surface area of a rectangular prism is:
A = 2(wl + hl + hw)
A = 2({4x3} + {4x3} + {4x4})
A = 2 (12 + 12 + 16)
A= 2 ( 40)
A = 80 feet
Angles A and B are complementary. If sin A = 4x + 10 and cos B = 2x + 16, what is the value of x? (
Answer:
x is 10.66
Step-by-step explanation:
What are complementary angles?
They are angles that up to 90
So we have Sin A and Cos B
4x + 10+ 2x + 16= 90
collect like terms
6x+ 26= 90
6x= 90-26
6x= 64
x= 64/6
x= 10.66
Hence the value of x is 10.66
Answer:
not 10.66
Step-by-step explanation:
A certain lottery has 37 numbers. in how many different ways can 4 of the numbers be selected?
Help and explain !!!!!!
Answer:
x = -4 or x = 5
Step-by-step explanation:
To solve the absolute value equation
|X| = k
where X is an expression in x, and k is a non-negative number,
solve the compound equation
X = k or X = -k
Here we have |2 - 4x| = 18
In this problem, the expression, X, is 2 - 4x, and the number, k, is 18.
We set the expression equal to the number, 2 - 4x = 18, and we set the expression equal to the negative of the number, 2 - 4x = -18. Then we solve both equations.
2 - 4x = 18 or 2 - 4x = -18
-4x = 16 or -4x = -20
x = -4 or x = 5
Answer:
x = -5 . x= 4
Step-by-step explanation:
because |4| = 4 and |-4| = 4
you can see that TWO inputs can get an output of (lets say) 4
The absolute value function can be seen as a function that ignores negative signs
so to get an OUTPUT of "18" using the absolute value function
there are really two ways of getting there
"2-4x = 18" AND "2-4x = -18"
if you solve both of those you will find that -5 and 4 will
produce the 18 and -18
Situation:
You invest $4,000 in an account that
pays an interest rate of 5.5%,
compounded continuously.
Calculate the balance of your account after 15
years. Round your answer to the nearest
hundredth.
Answer:
[tex]{ \bf{A=(P + \frac{r}{100} ) {}^{n} }} \\ { \tt{ = (4000 + \frac{5.5}{100} ) {}^{15} }} \\ \\ { \tt{ = \: 1.074 \times {10}^{54} \: dollars}}[/tex]
Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial (1+3x)^(-1/3)
Answer:
First term=1
Second term=-x
Third term=[tex]2x^2[/tex]
Fourth term =[tex]-\frac{28}{3!}x^3[/tex]
Step-by-step explanation:
We are given that function
[tex]f(x)=(1+3x)^{-1/3}[/tex]
We have to find the first four non zero terms of the Maclaurin series for the binomial.
Maclaurin series of function f(x) is given by
[tex]f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\frac{1}{3!}f'''(0)x^3+....[/tex]
[tex]f(0)=(1+3x)^{\frac{-1}{3}}=1[/tex]
[tex]f'(x)=-\frac{1}{3}(1+3x)^{-\frac{4}{3}}(3)=-(1+3x)^{-\frac{4}{3}}[/tex]
[tex]f'(0)=-1[/tex]
[tex]f''(x)=\frac{4}{3}\times 3 (1+3x)^{-\frac{7}{3}}[/tex]
[tex]f''(0)=4[/tex]
[tex]f'''(x)=-4\times \frac{7}{3}\times 3(1+3x)^{-\frac{10}{3}}[/tex]
[tex]f'''(0)=-28[/tex]
Substitute the values we get
[tex](1+3x)^{-\frac{1}{3}}=1-x+\frac{4}{2!}x^2+\frac{-28}{3!}x^3+...[/tex]
[tex](1+3x)^{-\frac{1}{3}}=1-x+2x^2+\frac{-28}{3!}x^3+...[/tex]
First term=1
Second term=-x
Third term=[tex]2x^2[/tex]
Fourth term =[tex]-\frac{28}{3!}x^3[/tex]
A statistician calculates that 7% of Americans are vegetarians. If the statistician is correct, what is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%
Answer:
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A statistician calculates that 7% of Americans are vegetarians.
This means that [tex]p = 0.07[/tex]
Sample of 403 Americans
This means that [tex]n = 403[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.07[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.07*0.93}{403}} = 0.0127[/tex]
What is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%?
Proportion below 7 - 3 = 4% or above 7 + 3 = 10%. Since the normal distribution is symmetric, these probabilities are equal, which means that we find one of them, and multiply by 2.
Probability the proportion is below 4%
p-value of Z when X = 0.04.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.04 - 0.07}{0.0127}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091
2*0.0091 = 0.0182
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
were should i go shopping for fidgets
Answer:
Amazon
Step-by-step explanation:
What was the original price of the car? Show all work
Answer:
I got u, it is litearly 16540/83.8 = $19737.5
Step-by-step explanation:
its very simple sincen 100-16.2=83.8
please help!! What is the equation of the line that passes through (0, 3) and (7, 0)?
Answer: y= -3/7x + 3
Step-by-step explanation:
I used some graph paper for this, mark the two points and use a ruler to connect the lines. y=-3/7x is slope, and 3 is the y intercept.
Answer:
3x + 7y -2=0
Step-by-step explanation:
Two points are given to us and we need to find the Equation of the line passing through the two points . The points are (0,3) and (7,0) . We can use here two point form of the line as ,
[tex]\implies y-y_1 = \dfrac{y_2-y_1 }{x_2-x_1} ( x - x_1) \\\\\implies y - 3 =\dfrac{3-0}{0-7}(x - 0 ) \\\\\implies y - 3 =\dfrac{-3}{7}x \\\\\implies 7y - 2 = -3x \\\\\implies \underline{\underline{3x + 7y -2 = 0 }}[/tex]
PLZZZ HELPP EVEN IF I HAVE TO WASTE MY POINTS JUST HELP ME
Answer:
soln,
x=63°
Step-by-step explanation:
yea , 63° is the answer you asked
If [infinity]∑n=0cn9n is convergent, does it follow that the following series are convergent? (a) [infinity]∑n=0cn(−3)n
Given: The series ∑cₙ[tex]9^n[/tex] is convergent
To find: The series ∑cₙ[tex](-3)^n[/tex] is convergent or not.
Solution: If the radius of convergence R the we can conclude that R≥4
So, the series will converge as -3<9.
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
Y
p(x,y) 0 1 2
x 0 0.10 0.04 0.02
1 0.08 0.20 0.06
2 0.06 0.14 0.30
a. What is P(X = 1 and Y = 1)?
b. Compute P(X ≤ 1 and Y ≤ 1).
c. Give a word description of the event {X ≠ 0 and Y ≠ 0}, and compute the probability of this event.
d. Compute the marginal pmf of X and of Y. Using pX(x), what is P(X ≤ 1)?
e. Are X and Y independent rv’s? Explain.
Answer:
a. 0.2
b. 0.42
c. 0.7
d. the solution is in the explanation
e. x and y are not independent
Step-by-step explanation:
a. from the joint probability mass function table,
p(x=1) and p(Y= 1)
= p(1,1) = 0.2
b. prob(0,0)+prob(0,1)+prob(1,0)+prob(1,1)
= 0.10 + 0.04 + 0.08 + 0.20
= 0.42
P(X ≤ 1 and Y ≤ 1) = 0.42
c. prob {X ≠ 0 and Y ≠ 0}
= prob(1,1) + prob(1,2) + prob(2,1) + prob(2,2)
= 0.20 + 0.06 + 0.14 + 0.30
= 0.7
d. we have to calculate the marginal pmf of x and y here.
we have the x values as 0,1,2
prob(x=0) = 0.1 + 0.04 + 0.02
= 0.16
prob(x=1) = 0.08 + 0.2 + 0.06
= 0.34
prob(x=2) = 0.06+0.14+0.3
= 0.50
we have y values as 0,1,2
prob(y=0) = .1+.08+.06
= 0.24
prob(y=1) = .04+.2+.14
= 0.38
prob(y = 2) = 0.02+0.06+0.3
= 0.38
P(X ≤ 1) = prob(x=0)+prob(x=1)
= 0.34+0.16
= 0.50
e. from the joint table we have this,
prob(1,1) = 0.2
prob(x=1) = 0.34
prob(y=1) = 0.38
then prob(x=1)*prob(y=1)
= 0.34*0.38
= 0.1292
therefore prob(1,1) is not equal to prob(x=1)*prob(y=1)
0.2≠0.1292
x and y are not independent
NO LINKS OR ANSWERING WHAT YOU DON'T KNOW!!!!!
7. Suppose y varies inversely with x, and y = 39 when x = 1/3. What is the value of y when x = 26.
a. 3
b. 2
c. 1/2
d. 13
8. Suppose y varies inversely with x, and y = 25 when x = -1/5. What inverse variation equation relates x and y?
a. y = 5/x
b. y = -5/x
c. y = 5x
d. y= -5x
Answer:
Problem 7) C
Problem 8) B
Step-by-step explanation:
Recall that inverse variation has the form:
[tex]\displaystyle y=\frac{k}{x}[/tex]
Where k is the constant of variation.
Problem 7)
We are given that y = 39 when x = 1/3. Thus:
[tex]\displaystyle 39=\frac{k}{{}^{1}\!/ \!{}_{3}}[/tex]
Solve for k:
[tex]\displaystyle k=\frac{1}{3}(39)=13[/tex]
Hence, our equation is:
[tex]\displaystyle y=\frac{13}{x}[/tex]
Then when x = 26, y equals:
[tex]\displaystyle y=\frac{13}{(26)}=\frac{1}{2}[/tex]
Problem 8)
We are given that y = 25 when x = -1/5. Thus:
[tex]\displaystyle 25=\frac{k}{-{}^{1}\!/ \!{}_{5}}[/tex]
Solve for k:
[tex]\displaystyle k=-\frac{1}{5}(25)=-5[/tex]
Hence, our equation is:
[tex]\displaystyle y=-\frac{5}{x}[/tex]
The lebgth of a rrctangle is 3 inches more than its width.The perimeter of the rectangle is 34 inches.
Step-by-step explanation:
there is the answer. good luck
15×115-(-3)}(4-4)÷3{5+(-3)×(-6
Answer:
15×115+3{0÷3}5-3×(-6)
15×115+3of 0 of 5-3×(-6)
15×115+0 of 5-3×(-6)
15×115+0+18
1725+0+18
1743
Find the area of the region in two ways. a. Using integration with respect to x. b. Using geometry. 9-x
Answer: hello your question is incomplete attached below is the complete question
answer :
a) [tex]\int\limits^3_0 {(10-x)-(x+4)} \, dx[/tex] ( option D )
b) A = 1/2 (6)(3) ( option B )
c) Area of shaded region = 9
Step-by-step explanation:
a) Using integration with respect to x
Area = [tex]\int\limits^7_4 {(y-4)} \, dy + \int\limits^a_7 {(10-y)} \, dy[/tex] ( note a = 10 )
= y^2/2 - 4y |⁷₄ + 10y - y^2/2 |¹⁰₇
= 33/2 - 12 + 30 - 51/2 = 9
hence the best integral from the options attached is option D
[tex]\int\limits^3_0 {(10-x)-(x+4)} \, dx[/tex]
= [ 10x - x^2 /2 - x^2/2 - 9x ] ³₀
= 30 - 9/2 - 9/2 - 12 = 9
b) Using Geometry
Area = 1/2 * base * height
= 1/2 * 6 * 3
= 9
A regular hexagon has sides of 5 feet. What is the area of the hexagon? 12.5 ft 2 37.5 ft 2 25 ft 2 50 ft 2
Answer: [tex]37.5\sqrt{3}[/tex]
This value is exact. We can write this as 37.5*sqrt(3)
This approximates to roughly 64.9519
The units for the area are in square feet.
==========================================
Explanation:
Split the regular hexagon into 6 identical equilateral triangles.
Each equilateral triangle has side length x = 5 ft.
The exact area of one of the equilateral triangles is
A = 0.25*sqrt(3)*x^2
A = 0.25*sqrt(3)*5^2
A = 0.25*sqrt(3)*25
A = 0.25*25*sqrt(3)
A = 6.25*sqrt(3)
Multiply this by 6 to get the exact area of the regular hexagon.
6*A = 6*6.25*sqrt(3) = 37.5*sqrt(3) which is the exact area in terms of radicals or square roots.
If your teacher meant to say choice B is 37.5*sqrt(3), then that would be the final answer. If your teacher only said 37.5 without the sqrt(3) term, then there's a typo.