Answer:
a=60 b=60 c=120 is the answer
The width of a rectangle is (2x – 7)inches and its width is (x^2 – 5) inches. Find an expression for the perimeter of the rectangle.
a. 2x^3 + 35
b. x^2 - 2x + 2
c. x^2 + 2x – 12
d. 2x^2 + 4x – 24
Answer:
(2x²+4x-24) in.
Step-by-step explanation:
.
the sum of all the exponents on all the variables of a term
plsss answer
Answer:
Answer: for polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial
A normal distribution has \mu = 65 and \sigma = 10. Find the probability that the average score of a group of n = 4 people is between 70 and 75 (both limits included).
Answer:
The probability that the average score of a group of n = 4 people is between 70 and 75=0.13591
Step-by-step explanation:
We are given that
[tex]\mu=65[/tex]
[tex]\sigma=10[/tex]
n=4
We have to find the probability that the average score of a group of n = 4 people is between 70 and 75.
[tex]P(70<\bar{x}<75)=P(\frac{70-65}{\frac{10}{\sqrt{4}}}<\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{75-65}{\frac{10}{\sqrt{4}}})[/tex]
[tex]=P(\frac{5}{5}<Z<\frac{10}{5})[/tex]
[tex]=P(1<Z<2)[/tex]
[tex]=P(Z<2)-P(Z<1)[/tex]
[tex]=0.97725-0.84134[/tex]
[tex]=0.13591[/tex]
Hence, the probability that the average score of a group of n = 4 people is between 70 and 75=0.13591
Which of the following shows 5x + 17 + 8x – 9 + 2y in simplest terms?
Answer:
5x+8x+17-9+2y
13x+8+2y
Answer:
13x+8+2y
Step-by-step explanation:
5x+8x=13x
17–9=8
2y=2y
[tex]\text{Solve the system of equations:}\\\\\left \{ {{y=3x+5} \atop {y=-4x+7}} \right.\\\\\text{Thank you.}[/tex]
Hi there!
»»————- ★ ————-««
I believe your answer is:
(0.286, 5.587)
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
I have graphed the two equations in a program. When graphed, the lines intersect at point (0.286, 5.587). See the graph attached.⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
9/5C + 32 =59
I'm stuck on how to do this .. please help
Answer:
C= 15
Step-by-step explanation:
[tex] \frac{9}{5} C + 32 = 59 [/tex]
subtracting 32 from both sides
[tex] \frac{9}{5}C = 59 -32 [/tex]
[tex] \frac{9}{5} C = 27[/tex]
Dividing both sides by 9/ 5
[tex]C = 27 \times \frac{5}{9} [/tex]
[tex]C = 3 \times 5[/tex]
[tex]C = 15[/tex]
Select "equivalent" or "not equivalent" to indicate whether the expression above is equivalent or not equivalent to the values or expressions in the last column.
Answer:
equivalent
Step-by-step explanation:
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
Answer:
Falso.
Step-by-step explanation:
Sea [tex]d = \frac{a}{b}[/tex] un número racional, donde [tex]a, b \in \mathbb{R}[/tex] y [tex]b \neq 0[/tex], su opuesto es un número real [tex]c = -\left(\frac{a}{b} \right)[/tex]. En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:
(a) El exponente es cero.
(b) El exponente es un negativo impar.
(c) El exponente es un negativo par.
(d) El exponente es un positivo impar.
(e) El exponente es un positivo par.
(a) El exponente es cero:
Toda potencia elevada a la cero es igual a uno. En consecuencia, [tex]c = d = 1[/tex]. La proposición es verdadera.
(b) El exponente es un negativo impar:
Considérese las siguientes expresiones:
[tex]d' = d^{-n}[/tex] y [tex]c' = c^{-n}[/tex]
Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:
[tex]d' = \left(\frac{a}{b} \right)^{-n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{(-1)\cdot n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}[/tex]
[tex]d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]y [tex]c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{b}{a} \right)\right]^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = - \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' \neq c'[/tex], la proposición es falsa.
(c) El exponente es un negativo par.
Si [tex]n[/tex] es par, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' = c'[/tex], la proposición es verdadera.
(d) El exponente es un positivo impar.
Considérese las siguientes expresiones:
[tex]d' = d^{n}[/tex] y [tex]c' = c^{n}[/tex]
[tex]d' = \left(\frac{a}{b}\right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = - \left(\frac{a}{b} \right)^{n}[/tex]
(e) El exponente es un positivo par.
Considérese las siguientes expresiones:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es par, entonces [tex]d' = c'[/tex] y la proposición es verdadera.
Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.
Find the value of x. Write it as a decimal.
Answer:
68.5
Step-by-step explanation:
Arc ABE = 360 - 2x
Arc AE = 2x
half the difference between the two arcs is 43
43 = [tex]\frac{1}{2}[/tex] [360 -2x - (2x)]
Find the greatest common factor of the
following monomials:
30a^4b^4 28a^6b^5
Which function is graphed below?
algebra 2
Answer:
x=0..............................
id like some help here... if possible.
Answer:
use average seep hours
top = 77/12 = 6.4 (most)
middle = 6 (middle)
bottom = 50/9 = 5.5 (least)
Step-by-step explanation:
A straight line is drawn through the points A(1,1) and B(5,-2). Calculate the gradient
Answer:
-3/4
Step-by-step explanation:
The line passes through the two points which are A(1,1) and B(5,-2) . We know that the slope of the line passing through two points is ,
[tex]\implies Slope =\dfrac{y_2-y_1}{x_2-x_1}\\\\\implies Slope =\dfrac{ -2-1}{5-1}\\\\\implies Slope =\dfrac{-3}{4} \\\\\implies \underline{\underline{ Slope (m) =\dfrac{-3}{4}}}[/tex]
Hence the slope of the line is -3/4 .
Evaluate the function. f(x)=3x^2 −4x Find f(−1)
Answer:
7
Step-by-step explanation:
evaluate the function means substitute x=-1 and calculate
f(x) = 3x²-4x
f(-1) =f(x=-1) = 3(-1)²-4(-1) =3+4 =7, because (-1)²=1 and -4(-1) =4
help me pls i don't ge this
Answer:
9. The area of rectangle S is four times bigger than rectangle R
10. (1, 3)
Step-by-step explanation:
To find the solution of the two linear equations:
y=x+2
y=-2x+5
x+2=y=-2x+5
3x=3
x=1
y=1+2
y=3
(1,3)
The expression 2x and x² have the same value for only two values of x. What are these values?
Answer:
0 and 2
Step-by-step explanation:
Which expression is equivalent to −10x−10+2x+9?
Answer:
-8x - 1
General Formulas and Concepts:
Algebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
-10x - 10 + 2x + 9
Step 2: Simplify
Combine like terms (x): -8x - 10 + 9Combine like term: -8x - 1[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{-10x - 10 + 2x + 9}[/tex]
[tex]\huge\textsf{COMBINE the LIKE TERMS}[/tex]
[tex]\large\textsf{-10x + 2x - 10 + 9}[/tex]
[tex]\large\textsf{-10x + 2x}\\\\\large\textsf{ = \bf -8x}[/tex]
[tex]\large\textsf{-10 + 9}\\\\\large\textsf{ = \bf -1}[/tex]
[tex]\boxed{= \large\textsf{\bf -8x - 1}}\large\checkmark[/tex]
[tex]\boxed{\boxed{\huge\textsf{Answer: \bf -8x - 1 }}}\huge\checkmark[/tex]
[tex]\large\textsf{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
What is the distance between
(
−
5
,
−
5
)
(−5,−5)left parenthesis, minus, 5, comma, minus, 5, right parenthesis and
(
−
9
,
−
2
)
(−9,−2)left parenthesis, minus, 9, comma, minus, 2, right parenthesis?
Answer:
do you have a pic of the problem
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
the answer is the sqare rute of 25 which is 5
Need help on this!! 10 points!!
Answer:
Step-by-step explanation:
The change of base formula is
[tex]log_a(b)=\frac{log_{10}b}{log_{10}a}[/tex] so filling in our given:
[tex]log_{13}}(297)=\frac{log_{10}297}{log_{10}13}[/tex] (Note: you do not have to put the base of 10 in the change of base formula because the "normal" base for a log is 10 and that is how your calculator figures it.)
Do this on your calculator to get
[tex]\frac{log297}{log13}=2.2198[/tex] Not sure how many decimal places you needed!
Help! This is so hard!
1.4
2.8
3.7 by 10
*Others do by your self*
Step-by-step explanation:
1. 3×4/3= 4
2.⅖×20=8
3.6/5×7/18=7/15
4.10/7×9/5=18/7= 2 4/7. Mixed Fraction
5.4/15×25/8=5/6
6.6×¾= 9/2= 4 1/2. Mixed Fraction
What is the slope of the line? What is the y-intercept of the line? y = 2x + 5
Slope intercept form of a line is, y = mx + c where m is the slope and c is constant.
Judging the given equation y = 2x + 5
Slope (m) of the line is 2,
y-intercept of the line,
y = 2x + 5
y = 2×0 + 5
y = 5
Answered by GAUTHMATH
Answer:
m = 2
y intercept = 5
Step-by-step explanation:
The given equation of the line is ,
[tex]\implies y = 2x +5[/tex]
We know that the Standard equation of Slope Intercept Form of the line is,
[tex]\implies y = mx + c[/tex]
Where ,
m is slope c is y interceptOn comparing to the Standard form of the line we get ,
[tex]\implies Slope = 2 [/tex]
[tex]\implies y - intercept= 5[/tex]
These points are linear. Find
the slope.
x1234 5/6
y 0 48 12 16 20
Answer:
m = 4
Step-by-step explanation:
The slope for the linear points is given by :
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have,
y₂ = 4, y₁ = 0, x₂ = 2, x₁ = 1
Putting all the values,
[tex]m=\dfrac{4-0}{2-1}\\\\\implies m=\dfrac{4}{1}\\\\m=4[/tex]
So, the slope of the line is equal to 4.
Determine if the sequence below is arithmetic or geometric and determine the common difference / ratio in simplest form.
19,10,1,...
[tex]\displaystyle\bf \underbrace{19}_910{\underbrace{1}_9} \Longrightarrow This\: is \:an \:\:arithmetic\:\: progression[/tex]
Find the 66th term of the arithmetic sequence 25, 10, -5, ...
Answer:
1000
Step-by-step explanation:
Given data
we have the sequence
25, 10, -5, ...
we want to find the 66th term, let us apply the formula
an = a + (n – 1)d
a= 25
n= 66
d= 15
substitute
a66= 25+(66-1)15
a66= 25+(65)*15
a66= 25+975
a66= 1000
Hence the 66th term is 1000
If < A and < B are a linear pair, and < A = 68 °, then < B = _____.
Select one:
a. 68 °
b. 112 °
c. 101 °
d. 90 °
Answer:
Option b, 112°
Step-by-step explanation:
<A+<B=180
or, 68+<B=180
or, <B=112
Answered by GAUTHMATH
5. Nicholas bought a map of a city. It uses a scale of 1 inch to 8 miles.
Nicholas's house and school are 1/2 inches apart on the map. How far apart
would his house and school be on the map if the scale was 1 inch to 6 miles?
What’s the answer to this?
Scale is 1 inch to 6 mile.
So, ½ inch = 6 mile/2 = 3 mile
____ more than 3455 is two hundred seventy -eight thousand five hundred eighty three
Answer:
275,128
Step-by-step explanation:
"___ more than 3455" is the same as saying "___ added to 3455"
So it will look something like this:
___ + 3,455 = 278,583
Then rearrange the equation to use subtraction to solve it:
278,583 - 3,455 = ____
Plug it in the calculator or solve it by hand, and you have your answer!
(To double check, add 3,455 and 275,128, and you get 278,583)
Hope it helps (●'◡'●)
proportional linear relationships can be represented in how many different forms
Proportional Linear Relationships can be expressed in the following ways:
a graphan equation, or a list of points.What is a proportional linear relationship?From a graphical point of view, a relationship is proportional and linear if the line representing the equation goes via the origin. It is to be noted that a relationship must be linear for it to be proportional and vice versa.
Thus, it is correct to state that Proportional Linear Relationships can be expressed in the following ways:
a graphan equation, or a list of points.An example of an equation that is proportional and linear is:
y = 6x + 8. Note that this linear equation is proportional because it has a constant component.
Learn more about the proportional linear relationships at;
https://brainly.com/question/2143065
#SPJ6
Factorise this equasion
X^2-5
Answer:
(x - [tex]\sqrt{5}[/tex] )(x + [tex]\sqrt{5}[/tex] )
Step-by-step explanation:
x² - 5 ← is a difference of squares and factors in general as
a² - b² = (a - b)(a + b) , then
x² - 5
= x² - ([tex]\sqrt{5}[/tex] )²
= (x - [tex]\sqrt{5}[/tex] )(x + [tex]\sqrt{5}[/tex] )
Of the four choices given, which two, when written as a system, have a solution of (-4,5)?
х
-1
2
3
5
y
2
-1
-2
-4
2x+y=-3
-2x+y=-3
Х
-1
2.
3
7
0
-3
4
-8
2x+y=-3 and
Х
--1
2
3
5
y
2.
-1
-2
-4
0-2x+y=-3 and
х
-1
2
3
5
у
2.
-1
-2
-4
Answer:
both choices with 2x+y = -3
Step-by-step explanation:
to have the solution (-4, 5), that point must be on both equations/functions, meaning it must be on either one.
in other words, if the point is not on at least one of the functions, it cannot be a solution for that system.
the given function
2x + y = -3
looks like for the point (-4, 5)
2×-4 + 5 = -3
-8 + 5 = -3
-3 = -3
correct.
but
-2x + y = -3
looks like for (-4, 5)
-2×-4 + 5 = -3
8 + 5 = -3
13 = -3
wrong. the point is not on this function.
as we can therefore rule out 2 of the answer options, the other 2 most be correct.
The two equations which when written as a system has a solution of (-4, 5) is; 2x + y = -3 and 2x + y = -3
Inequalities
The correct equations must have same output with the given one when we place -4 and 5 for x and y respectively.
Now, for 2x + y = -3
At x = -4, and y = 5 we have;
2(-4) + 5 = -3
Same with the right hand side.
For -2x + y = -3;
At x = -4, and y = 5 we have;
-2(-4) + 5 = 13
Not the same with the right hand side.
Thus, the two equations with 2x + y = -3 are correct
Read more about Inequalities at; https://brainly.com/question/24372553