Find the largest value of $n$ such that $5x^2+nx+48$ can be factored as the product of two linear factors with integer coefficients.

Answers

Answer 1

Answer:

[tex]n = 241[/tex]

Step-by-step explanation:

Given

[tex]5x^2 + nx + 48[/tex]

Required

Determine the highest value of n

From the given equation, 5 is a prime number;

So, the factors of x² is 5x and x or -5x and -x

Since [tex]5x^2 + nx + 48[/tex] has all shades of positive terms, we'll make use of 5x and x

The factorized expression can then be:

[tex](5x + a)(x + b)[/tex]

Open the brackets

[tex]5x^2 + ax + 5bx + ab[/tex]

Equate this to the given expression

[tex]5x^2 + ax + 5bx + ab = 5x^2 + nx + 48[/tex]

[tex]5x^2 + (a + 5b)x + ab = 5x^2 + nx + 48[/tex]

By direct comparison;

[tex]5x^2 = 5x^2[/tex]

[tex](a + 5b)x = nx[/tex]

[tex]a + 5b = n[/tex]  ---- (1)

[tex]ab = 48[/tex] --- (2)

From (2) above, the possible values of a and b are:

[tex]a = 1, b = 48[/tex]

[tex]a = 2, b = 24[/tex]

[tex]a = 3, b = 16[/tex]

[tex]a = 4, c = 12[/tex]

[tex]a = 6, b = 8[/tex]

[tex]a = 8, b = 6[/tex]

[tex]a = 12, b = 4[/tex]

[tex]a = 16, b = 3[/tex]

[tex]a = 24, b = 2[/tex]

[tex]a = 48, b = 1[/tex]

Of all these values; the value of a and b that gives the highest value of n is;

[tex]a = 1, b = 48[/tex]

So;

Substitute 1 for a and 48 for b in (2) [tex]a + 5b = n[/tex]

[tex]1 + 5 * 48 = n[/tex]

[tex]1 + 240 = n[/tex]

[tex]241 = n[/tex]

[tex]n = 241[/tex]

Hence, the largest value of n is 241

Answer 2

Answer:

Step-by-step explanation:

The two factors of $5x^2+nx+48$ must be in the form $(5x+A)(x+B)$. $A$ and $B$ must be positive integers to form the largest value of $n$. Therefore, $AB=48$ and $5B+A=n$. To form the largest value of $n$, $B$ must equal $48$. Therefore, $A=1$. \[5B+A=5(48)+1=\boxed{241}\]


Related Questions

If segment XY = 5 and segment YZ = 10, what is the length of XZ?

Answers

Answer:

The length of segment XZ is 15 units

Step-by-step explanation:

Given

[tex]XY = 5[/tex]

[tex]YZ = 10[/tex]

Required

Determine XZ

Assuming XY and YZ are on the same plane such that

[tex]XZ = XY + YZ[/tex]

Substitute values for XY and YZ

[tex]XZ = 5 + 10[/tex]

[tex]XZ = 15[/tex]

Hence, the length of segment XZ is 15 units

Find the value of B - A if the graph of Ax + By = 3 passes through the point (-7,2), and is parallel to the graph of x + 3y = -5.

Answers

Answer:

  2

Step-by-step explanation:

The parallel line will have the same coefficients, but a constant suited to the given point:

  x + 3y = constant

That is, A=1, B=3, so B-A = 2.

___

The constant for the parallel line will be -1.

Write the equation of the line that passes through the points (8,0)(8,0) and (-9,-9)(−9,−9). Put your answer in fully reduced point-slope form, unless it is a vertical or horizontal line.

Answers

Answer:

Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].

Step-by-step explanation:

We have to find the equation of the line that passes through the points (8,0) and (-9,-9).

Let the two points be ([tex]x_1,y_1[/tex]) = (8, 0) and ([tex]x_2, y_2[/tex]) = (-9, -9).

Now, we will find the two-point slope using the above two points, i.e;

Slope =  [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

          =  [tex]\frac{-9-0}{-9-8}[/tex]  =  [tex]\frac{9}{17}[/tex]

Now, the equation of the line using one of the point, let's say ([tex]x_1,y_1[/tex]) = (8, 0) is given by;

[tex]y - y_1 = \text{Slope} \times (x - x_1)[/tex]

[tex]y - 0 =\frac{9}{17} \times (x - 8)[/tex]

[tex]y =\frac{9x}{17} - \frac{72}{17}[/tex]

Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].

The mean height of women in a country​ (ages 20​29) is inches. A random sample of women in this age group is selected. What is the probability that the mean height for the sample is greater than ​inches? Assume . The probability that the mean height for the sample is greater than inches is nothing.

Answers

Complete Question

The mean height of women in a country (ages 20-29) is 64.4 inches. A random sample of 75 women in this age ground is selected. what is the probability that the mean height for the sample is greater than 65 inches? assume [tex]\sigma = 2.97[/tex]

Answer:

The value is  [tex]P(X > 65) = 0.039715[/tex]

Step-by-step explanation:

From question we are told that

  The mean is [tex]\mu = 64.4 \ inches[/tex]

  The  sample size is  [tex]n = 75[/tex]

   

The probability that the mean height for the sample is greater than 65 inches is mathematically represented as

     [tex]P(X > 65) = P[\frac{X - \mu }{ \sigma_{\= x} } > \frac{65 - 64.4 }{ \sigma_{\= x} } ][/tex]

Where  [tex]\sigma _{\= x }[/tex] is the standard error of mean which is evaluated as

     [tex]\sigma_{\= x } = \frac{\sigma}{\sqrt{n} }[/tex]

=>   [tex]\sigma_{\= x } = \frac{2.97}{\sqrt{75} }[/tex]

=>    [tex]\sigma_{\= x } = 0.343[/tex]

Generally [tex]\frac{X - \mu }{ \sigma_{\= x } } = Z(The \ standardized \ value \ of \ X )[/tex]

       [tex]P(X > 65) = P[Z> \frac{65 - 64.4 }{0.342 } ][/tex]

So  

    [tex]P(X > 65) = P[Z >1.754 ][/tex]

From the z-table  the value of  

     [tex]P(X > 65) = P[Z >1.754 ] = 0.039715[/tex]

     [tex]P(X > 65) = 0.039715[/tex]

what is the answer to 6y+21+7=4y−20+5y

Answers

Step-by-step explanation:

the answer for 6y+21+7=4y−20+5y is

y =16

A man drove 12 mi directly east from his home, made a left turn at an intersection, and then traveled 7 mi north to his place of work. If a road was made directly from his home to his place of work, what would its distance be to the nearest tenth of a mile?

Answers

Answer:

13.9 miles

Step-by-step explanation:

If we draw out the way he drove, the drive from his home to the intersection represents the long leg of a right triangle and the short leg can be represented by his drive from the intersection to the workplace.

A road from his home to work would represent the hypotenuse.

Since we know the distances of the legs, we can use the pythagorean theorem to find the hypotenuse, or the distance of the new road.

Plug in the values:

a² + b² = c²

12² + 7² = c²

193 = c²

13.9 = c

= 13.9 miles

Find the inverse of the radical function [tex]\sqrt[3]{x-2}[/tex]

Answers

Answer: y=x³+2 or f⁻¹(x)=x³+2

Step-by-step explanation:

To find the inverse of the radical function, we replace y with x and x with y. Then, you solve for y.

[tex]y=\sqrt[3]{x-2}[/tex]                        [replace y with x and x with y]

[tex]x=\sqrt[3]{y-2}[/tex]                        [cube both sides to cancel out the cubed root]

[tex]x^3=y-2[/tex]                          [add both sides by 2]              

[tex]x^3+2=y[/tex]

Now that we have switched the variables and solved for y, we know that the inverse function is y=x³+2 or f⁻¹(x)=x³+2.

Answer:

f^-1(x)=x^3+2

Step-by-step explanation:

. A normal population has a mean of 80.0 and a standard deviation of 14.0. a. Compute the probability of a value between 75.0 and 90.0. b. Compute the probability of a value of 75.0 or less. c. Compute the probability of a value between 55.0 and 70.0. 19. Suppose the Internal Revenue Service reported that the mean

Answers

Answer:

a. 0.40198

b. 0.36049

c. 0.20046

Step-by-step explanation:

To solve for this we make use of the z score formula.

z-score formula is

z = (x-μ)/σ,

where

x is the raw score

μ is the population mean

σ is the population standard deviation.

a. Compute the probability of a value between 75.0 and 90.0.

For x = 75

From the question, we know that

mean of 80.0 and a standard deviation of 14.0.

z = (x - μ)/σ

z = 75 - 80/ 14

z = -0.35714

Using the z score table to find the probability

P-value from Z-Table:

P(x = 75) = P(z = -0.35714)

= 0.36049

For x = 90

z = 90 - 80/14

z = 0.71429

Using the z score table to find the probability

P-value from Z-Table:

P(x = 90) = P(z = 0.71429)

= 0.76247

The probability of a value between 75.0 and 90.0 is:

75 < x < 90

= P( x = 90) - P(x = 75)

= 0.76247 - 0.36049

= 0.40198

Therefore, probability of a value between 75.0 and 90.0 is 0.40198

b. Compute the probability of a value of 75.0 or less.

For x = 75

From the question, we know that

mean of 80.0 and a standard deviation of 14.0.

z = (x - μ)/σ

z = 75 - 80/ 14

z = -0.35714

Using the z score table to find the probability

P-value from Z-Table:

P(x ≤ 75) = 0.36049

c. Compute the probability of a value between 55.0 and 70.0.

For x = 55

From the question, we know that

mean of 80.0 and a standard deviation of 14.0.

z = (x - μ)/σ

z = 55 - 80/ 14

z = -1.78571

Using the z score table to find the probability

P-value from Z-Table:

P(x = 55) = P(z = -1.78571)

= 0.037073

For x = 70

z = 70 - 80/14

z = -0.71429

Using the z score table to find the probability

P-value from Z-Table:

P(x = 70) = P(z = -0.71429)

= 0.23753

The probability of a value between 55.0 and 70.0 is:

55 < x < 70

= P( x = 70) - P(x = 55)

= 0.23753 - 0.037073

= 0.200457

Approximately to 4 decimal place = 0.20046

Find the missing side length using pythagorean theorem. simplify radicals if necessary* PLEASE HELP!!

Answers

Answer:

15

Step-by-step explanation:

a^2 + b^2 = c^2

9=a

12-b

Plug in the numbers

what is the first operation used to evaluate 13-2x3+4 divided by 4+4

Answers

Answer:

  multiplication

Step-by-step explanation:

The evaluation of ...

  13 -2·3 +4/4 +4

starts with the multiplication, because there are no exponents or parentheses.

  13 -6 +4/4 +4

Next is the division:

  13 -6 +1 +4

Finally, the addition and subtraction:

  7 +1 +4

  8 +4

 12

_____

We have assumed your x is not a variable, but is intended to indicate multiplication. We have also assumed that your "divided by" implies no particular grouping, so that the numerator is the first preceding number and only the first following number is in the denominator.

x = 3 / 5 (cb+k)
Solve for b

Answers

Answer:

(5/3 x - k)/c  =b

Step-by-step explanation:

x = 3 / 5 (cb+k)

Multiply each side by 5/3

5/3x =5/3* 3 / 5 (cb+k)

5/3x = (cb+k)

Subtract k

5/3 x - k = cb +k-k

5/3 x - k = cb

Divide by c

(5/3 x - k)/c  = cb/c

(5/3 x - k)/c  =b

Find the arc length of ABC .

Answers

Answer:

C.

Step-by-step explanation:

Since the radius of the circle is 12 units, we can calculate the circumference.

2 * pi * r = 2 * pi * 12 = 24 * pi = 24pi.

The arc angle is 240 degrees, and the whole circle would be 360 degrees. So, we can set up an equation.

[tex]\frac{24\pi }{360} =\frac{x}{240}[/tex]

[tex]\frac{24\pi }{6} =\frac{x}{4}[/tex]

[tex]\frac{4\pi }{1} =\frac{x}{4}[/tex]

1 * x = 4 * 4 * pi

x = 16pi

So, your answer is C.

Hope this helps!

Jerry has reached 39% of his weekly exercise time goal so far this week if he has exercise for a total of 78 minutes this week. What is his weekly exercise time goal in minutes?

Answers

Answer:

his weekly exercise time goal in minutes = 200 minutes

Step-by-step explanation:

Jerry has reached 39% of his weekly exercise time goal.

so far this week ,he has exercise for a total of 78 minutes this week.

39% of total = 78 minutes

100%= x

X=100*78/39

X=100*2

X= 200 minutes

his weekly exercise time goal in minutes = 200 minutes

What is the length ok a bus if the scale is 0.5 inches to 5 feet and the length of the bus is 4.5 inches

Answers

Answer:

4.5 divided by 0.5=9

9 times 5=45

45 feet

Step-by-step explanation:

Answer:

45 feet

Step-by-step explanation:

Set up a proportion:

[tex]\frac{0.5}{5}[/tex] = [tex]\frac{4.5}{x}[/tex]

Cross multiply:

0.5x = 22.5

x = 45

= 45 feet

HELP!! hOW DO YOU FIND FREQUENCY FROM CLASS LIMITS AND CLASS BOUNDARY???? I AM SO CONFUSED.

Data:
70 88 103 64 88 100 78 80 77 69
85 65 71 90 88 75 80 72 60 70
60 75 79

Class width: 7

Class limits
60-66
67-73
74-80
81-87
88-94
95-101
102-108

class boundaries
59.5-66.5
66.5- 73.5
73.5- 80.5
80.5- 87.5
87.5- 94.5
94.5-101.5
101.5-108.5


frequency
____
------
____
____
_____
___
_____

= Total frequency

Side Note: Format is off but it is three columns I need help figuring out this exact problem

JIM, Thank so you so much. How can I private message you?

Answers

Answer: See the image attached below for the filled out table

The third column is optional/extra. It's to show which data values fit in what specific class limit interval.

===================================================

Explanation:

Imagine we had a bunch of cards. Each card will have a number that is from the data set {70, 88, 103, 64, ... etc}

The goal is to sort the cards into 7 boxes. The first box is labeled "60 through 66", the next is "67 through 73", etc.

The first box has 4 cards placed inside it because we have the values {64,65,60,60 } which fit the interval from 60 through 66. Therefore the frequency here is 4.

The next box has the cards labeled {70,69,71,72,70 } inside it. We have 5 cards here, so the frequency is 5.

This pattern is kept up until all of the cards have been sorted into the proper boxes.

What you'll end up with is what you see in the image below. It shows the table of class limits with their corresponding frequencies. I have added a third column to show which values go where, which is optional and likely something you wont put as your answer to the teacher. This third column is just something for you to help keep track of everything.

The number of credits being taken by a sample of 13​ full-time college students are listed below. Find the​ mean, median, and mode of the​ data, if possible. If any measure cannot be found or does not represent the center of the​ data, explain why.                            Find the mean. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. The mean is nothing. ​(Type an integer or decimal rounded to one decimal place as​ needed.) B. The data set does not have a mean. Does the mean represent the center of the​ data? A. The mean represents the center. B. The mean does not represent the center because it is not a data value. C. The mean does not represent the center because it is the smallest data value. D. The mean does not represent the center because it is the largest data value. E. The data set does not have a mean. Find the median. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. The median is nothing. ​(Type an integer or decimal rounded to one decimal place as​ needed.) B. The data set does not have a median. Does the median represent the center of the​ data?

Answers

Answer:

The data is missing in the question, below is the complete question:

The number of credits being taken by a sample of 13​ full-time college students are listed below. Find the​ mean, median, and mode of the​ data, if possible. If any measure cannot be found or does not represent the center of the​ data, explain why. 9    9    12    12    9    10    8    8    8    8    8    8    11    Find the mean. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. The mean is nothing . ​(Type an integer or decimal rounded to one decimal place as​ needed.) B. The data set does not have a mean. Does the mean represent the center of the​ data? A. The mean represents the center. B. The mean does not represent the center because it is the smallest data value. C. The mean does not represent the center because it is not a data value. D. The mean does not represent the center because it is the largest data value. E. The data set does not have a mean. Find the median. Select the correct choice below​ and, if​necessary, fill in the answer box to complete your choice. A. The median is nothing . ​(Type an integer or decimal rounded to one decimal place as​ needed.) B. The data set does not have a median. Does the median represent the center of the​ data? A. The median represents the center. B. The median does not represent the center because it is the largest data value. C. The median does not represent the center because it is not a data value. D. The median does not represent the center because it is the smallest data value. E. The data set does not have a median. Find the mode. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. The​ mode(s) is/are nothing . ​(Type an integer or decimal rounded to one decimal place as needed. Use a comma to separate answers as​ needed.) B. The data set does not have a mode. Does​ (Do) the​ mode(s) represent the center of the​ data? A. The​ mode(s) represent(s) the center. B. The​ mode(s) does​ (do) not represent the center because it​ (they) is​ (are) not a data value. C. The​ mode(s) does​ (do) not represent the center because it​ (one) is the largest data value. D. The​ mode(s) does​ (do) not represent the center because it​(one) is the smallest data value. E. The data set does not have a mode.

Answer:

a.) mean = 9.23

ii) The mean represents the centre (A)

b) Median = 9

ii) The median represents the centre (A)

c) Mode = 8

ii)  The​ mode(s) does​ (do) not represent the center because it​(one) is the smallest data value. (D)

Step-by-step explanation:

Arranging the data in ascending order:

8 8 8 8 8 8 9 9 9 10 11 12 12

a) calculating for mean

[tex]\bar x = \frac{sum\ of\ data}{number\ of\ data}\\ \bar x = \frac{8+8+8+8+8+8+9+9+9+10+11+12+12}{13} \\\bar x =\frac{120}{13} \\\bar x = 9.23[/tex]

ii) does the mean represent the centre of the data?

The measure of central tendency/location is a statistical tool used to accurately depict values that are at the central location of the data set

Yes, the mean represents the centre of the data, because there are no outliers in the data set. Outliers are unusual values compared to the rest of the values in the dataset.

b) calculating the median (M)

[tex]M =( \frac{n\ +\ 1}{2})th\ term\\ \\where:\\n = number\ of\ data\ in\ the\ dataset = 13\\\\\therefore M = \frac{13+1}{2}\\ M = \frac{14}{2} \\M= 7th\ term[/tex]

The 7th term after arranging in ascending or descening order, is the median term

8 8 8 8 8 8 9 9 9 10 11 12 12

∴ Median = 9

ii) Yes, the Median represents the center of the data, because it litterally tells the data at the middle of the distribution  

c) The mode is the data with the highest number of occurrence in the dataset (highest frequency);  8 8 8 8 8 8 9 9 9 10 11 12 12

The data with the highest number of occurrence is 8, which occurred 6 times.

Mode = 8

ii) The mode does not represent the centre of the data because it is the smallest value in the dataset, hence it doesn't tell the value that is the middle term.

Troll Inc. has an outstanding issue of perpetual preferred stock with an annual dividend of $9.50 per share. If the required return on this preferred stock is 6.5%, at what price should the stock sell? * a) $104.27 b) $106.95 c) $109.69 d) $146.15 e) None of the above

Answers

Answer:

d) $146.15

Step-by-step explanation:

From the above Question, we are given the following values:

The annual dividend per share of a perpetual preferred stock = $9.50

The required return rate on this preferred stock = 6.5% = 0.06

The selling price of the stock = ??

The formula to calculate the Selling price of the stock =

Annual dividend per share / Required return rate

= $9.5/ 0.065

= $146.15384615

Approximately $146.15

Therefore, the price at which the stock should sell is $146.15.

Among the four northwestern states, Washington has 51% of the total population, Oregon has 30%, Idaho has 11%, and Montana has 8%. A market researcher selects a sample of 1000 subjects, with 450 in Washington, 340 in Oregon, 150 in Idaho, and 60 in Montana. At the 0.05 significance level, test the claim that the sample of 100 subjects has a distribution that agrees with the distribution of state populations.

Answers

Answer:

Step-by-step explanation:

From the given information:

the null hypothesis and the alternative hypothesis can be computed as follows:

[tex]\mathbf{H_o:}[/tex] The sample have a distribution that agrees with the distribution of state populations.

[tex]\mathbf{H_1:}[/tex] The sample have a distribution that does not agrees with the distribution of state populations.

The Chi-Square test statistics [tex]\mathbf{X^2 = \dfrac{(Observed \ value - Expected \ value )}{(Expected \ value ) ^2 }}[/tex]

Among the four northwestern states, Washington has 51% of the total population, Oregon has 30%, Idaho has 11%, and Montana has 8%. A market researcher selects a sample of 1000 subjects, with 450 in Washington, 340 in Oregon, 150 in Idaho, and 60 in Montana.

The observed and the expected value can be computed as follows:

States           Observed           Expected                        [tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

Washington     450             0.51 × 1000 = 510

Oregon            340              0.30 × 1000 = 300

Idaho                150               0.11  × 1000 = 110

Montana             60              0.08 × 1000 = 80

Total                 1000                                1000

For washington :

[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

[tex]X^2 = \dfrac{(450 -510)^2}{510}[/tex]

[tex]X^2 = \dfrac{3600}{510}[/tex]

[tex]X^{2}=[/tex] 7.06

For Oregon

[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

[tex]X^2 = \dfrac{(340- 300)^2}{300}[/tex]

[tex]X^2 = \dfrac{1600}{300}[/tex]

[tex]X^{2}=[/tex] 5.33

For Idaho

[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

[tex]X^2 = \dfrac{(150- 110)^2}{110}[/tex]

[tex]X^2 = \dfrac{1600}{110}[/tex]

[tex]X^2 =14.55[/tex]

For Montana

[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

[tex]X^2 = \dfrac{(60- 80)^2}{80}[/tex]

[tex]X^2 = \dfrac{400}{80}[/tex]

[tex]X^2 = 5[/tex].00

The Chi-square test statistics for the observed and the expected value can be computed as follows:

States           Observed           Expected                        [tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]

Washington     450             0.51 × 1000 = 510                  7.06

Oregon            340              0.30 × 1000 = 300                5.33

Idaho                150               0.11  × 1000 = 110                 14.55

Montana             60              0.08 × 1000 = 80                  5.00

Total                 1000                                1000                 31.94

The Chi-square Statistics Test [tex]\mathbf{X^2 = 31.94}[/tex]

Degree of freedom = n -  1

Degree of freedom = 4 - 1

Degree of freedom = 3

At 0.05 level of significance, the critical value of :

[tex]X^2_{(df, \alpha) }=X^2_{(3, 0.05)[/tex] = 7.815

Decision Rule: To reject null hypothesis if the test statistics is greater than the critical value

Conclusion: We reject the null hypothesis since test statistics is greater than critical value, therefore, we conclude that there is sufficient information to say that the sample has a distribution that does not agrees with the distribution of state populations.

You have a metal rod thats51/64 inch long, the rod beeds to be trimmed. You cut 1/64 inch long from one end and 1/32 from the other end. Next, you cut the rod into six equal pieces. What will be the final length of each piece?​

Answers

Answer:

Length of each pieces= 1/8 inch

Step-by-step explanation:

Length of metal rod= 51/64 inch

1/64 was cut from one end and 1/32 was cut from the other end

Total cut out= 1/64 + 1/32

Total cut out= (1+2)/64

Total cut out= 3/64 inch

Length remaining= 51/64-3/64

Length remaining= 48/64 inch

So the remaining length was cut into six pieces.

Length of each pieces= (48/64) * 1/6

Length of each pieces= 8/64

Length of each pieces= 1/8 inch

What is 4^6 times 2^3=??

Answers

Answer:

32,768

Step-by-step explanation:

Remember to follow PEMDAS.

First, solve for the exponents for both terms:

[tex]4^6 = 4 * 4 * 4 * 4 * 4 * 4 = 4096[/tex]

[tex]2^3 = 2 * 2 * 2 = 8[/tex]

Multiply the two terms together:

[tex]4096 * 8 = 32768[/tex]

32,768 is your answer.

~

Sheila_____ her case ,look(had pickrd, have, picked​

Answers

Answer:

Had Picked

Step-by-step explanation:

find compound amount annually of p=4000,time=3/2 and rate =10%​ solve it step wise.

Answers

Step-by-step explanation:

Hey, there!!

Principal (p) = 4000

Time = 3/2= 1.5 yrs.

rate = 10%

Now, we have formula,

[tex]c.a = p \times {(1 + \frac{r}{100}) }^{t} [/tex]

Putting their values,

[tex]ca = 4000\times {(1 + \frac{10}{100} )}^{1.5} [/tex]

[tex]ca =4000 \times {(1 + 0.1)}^{1.5} [/tex]

[tex]ca = 4000 \times 1.153689[/tex]

Simplifying them we get,

C.A = 4614.75

Hope it helps...

Solves the following equation for a. Show steps for full credit.
4a + 10 = 2a + 26

Answers

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{a = 8}}}}}[/tex]

Step-by-step explanation:

[tex] \sf{4a + 10 = 2a + 26}[/tex]

Move 2a to left hand side and change it's sign

Similarly, move 10 to right hand side and change it's sign

⇒[tex] \sf{4a - 2a =26 - 10}[/tex]

Collect like terms

⇒[tex] \sf{2a = 26 - 10}[/tex]

Subtract 10 from 26

⇒[tex] \sf{2a = 16}[/tex]

Divide both sides of the equation by 2

⇒[tex] \sf{ \frac{2a}{2} = \frac{16}{2} }[/tex]

Calculate

⇒[tex] \sf{a = 8}[/tex]

Hope I helped!

Best regards!!

For which system of inequalities is (3,-7) a solution?

A. x + y < -4
3x + 2y < -5

B. x + y ≤ -4
3x + 2y < -5

C. x + y < -4
3x + 2y ≤ -5

D. x + y ≤ -4
3x + 2y ≤ -5

Answers

Answer:

D) x + y ≤ -4

    3x + 2y ≤ -5

Step-by-step explanation:

Step(i):-

we will choose the system of inequalities

                                             x + y ≤ -4

                                            3x + 2y ≤ -5

                                             

                                          x + y = -4 ...(i)

                                         3x + 2y = -5..(ii)

Multiply equation (i) with '3'

                                         

                                    3x + 3y = -12

                                    3x  + 2 y = -5

                                   -      -           +

                                    0 +  y =    -7              

Step(ii):-                              

                                       

Substitute   y  = -7  in equation (i)

                        x + y = -4

                       x - 7 = -4

                         x = -4 + 7

                        x = 3

The solution of the given inequalities is ( 3, -7)

                                   

Can a vertical line be diagonal?

Answers

Answer:

No

Step-by-step explanation:

Assuming that the x- and y- axes are respectively horizontal and vertical, a vertical line has an undefined slope and cannot be diagonal.

Note that only a diagonal line can have a slope defined.

According to Bureau of Labor Statistics, 22.1% of the total part-time workforce in the U.S. was between the ages of 25 and 34 during the 3 rd quarter of 2011. A random sample of 80 part-time employees was selected during this quarter. Using the normal approximation to the binomial distribution, what is the probability that fewer than 20 people from this sample were between the ages of 25 and 34?

Answers

Answer:

The  probability is  [tex]P(X < 20 ) = 0.68807[/tex]

Step-by-step explanation:

From the question we are told that

     The proportion of  total part-time workforce is  [tex]\r p = 0.221[/tex]

     The  sample  size is  n  =  80  

   

Generally the mean is mathematically represented as

         [tex]\mu = n* p[/tex]

          [tex]\mu = 0.221 * 80[/tex]

        [tex]\mu = 17.68[/tex]

The  proportion of not part - time   workforce

      [tex]q = 1- p[/tex]

=>   [tex]q = 1- 0.221[/tex]

=>   [tex]q = 0.779[/tex]

The  standard deviation is mathematically represented as

     [tex]\sigma = \sqrt{ 80 * 0.221 * 0.779 }[/tex]

     [tex]\sigma = 3.711[/tex]

Now  applying the normal approximation,

Then the  probability that fewer than 20 people from this sample were between the ages of 25 and 34 is mathematically represented as

     [tex]P(X < 20 ) = P( \frac{X - \mu }{ \sigma } < \frac{ 20 - 17.68 }{ 3.711} )[/tex]

Applying  continuity correction

     [tex]P(X < 20 ) = P( \frac{X - \mu }{ \sigma } < \frac{ (20-0.5 ) - 17.68 }{ 3.711} )[/tex]

       [tex]P(X < 20 ) = P( \frac{X - \mu }{ \sigma } < \frac{ (20-0.5 ) - 17.68 }{ 3.711} )[/tex]

      [tex]P(X < 20 ) = P( \frac{X - \mu }{ \sigma } < 0.4904 )[/tex]

Generally

      [tex]\frac{X - \mu }{ \sigma } = Z ( The \ standardized \ value \ of \ X )[/tex]

So  

    [tex]P(X < 20 ) = P( Z< 0.4904 )[/tex]

From the z-table  

        [tex]P( Z< 0.4904 ) = 0.68807[/tex]

The probability is  

         [tex]P(X < 20 ) = 0.68807[/tex]

Evaluate (64×1/2-125×1/3)×(64×1/2-125×1/3)

Answers

Answer: 841/9

Explanation:

(64x1/2-125x1/3)(64x1/2-125x1/3)
= (64*1/2-125*1/3)^2
= (32 - 125/3)^2
= (96/3 - 125/3)^2
= (-29/3)^2
= 841/9

The length of the base of a right-angle triangle ABC is 6 cm and the length of the hypotenuse is 10 cm find the area of the triangle

Answers

Answer:

The area of the triangle is 24 [tex]\text{cm}^{2}[/tex].

Step-by-step explanation:

We are given that the length of the base of a right-angle triangle ABC is 6 cm and the length of the hypotenuse is 10 cm.

And we have to find the area of the triangle.

As we know that the area of the triangle is given by the following formula;

Area of the triangle =  [tex]\frac{1}{2}\times \text{Base} \times \text{Height}[/tex]

Firstly, we will find the height (perpendicular) of the triangle ABC bu using the Pythagoras Theorem.

[tex]\text{Hypotenuse}^{2} =\text{Perpendicular}^{2} +\text{Base}^{2}[/tex]

[tex]\text{10}^{2} =\text{Perpendicular}^{2} +\text{6}^{2}[/tex]

[tex]100=\text{Perpendicular}^{2} +36[/tex]

[tex]\text{Perpendicular}^{2} =100-36[/tex]

[tex]\text{Perpendicular}^{2} =64[/tex]

[tex]\text{Perpendicular} =\sqrt{64}[/tex]  = 8 cm.

Now, the area of the triangle =  [tex]\frac{1}{2}\times \text{Base} \times \text{Height}[/tex]

                                                =  [tex]\frac{1}{2}\times \text{6} \times \text{8}[/tex]

                                                =  24 [tex]\text{cm}^{2}[/tex]

Hence, the area of the triangle is 24 [tex]\text{cm}^{2}[/tex].

Name the figure. Select all answers that apply.

Answers

Answer:

The answer is Plane P

Step-by-step explanation:

The reason for the answer is because a closed, two-dimensional or flat figure is called a plane shape. Different plane shapes have different attributes, such as the numbers of sides or corners. A side is a straight line that makes part of the shape, and a corner is where two sides meet.

I am in confusion ❤️

Answers

Answer:

The Brain

Step-by-step explanation:

It goes down 3 and moves to the right 2

so its -3/2 =- 1.5

you slope is -1.5❤✔ hope I helped!

Other Questions
The term laissez faire refers to a government that does not intervene with the economy. This allows businesses to grow at a faster rate.O TrueO False a spanish speakers sense of personal space is typically much larger than than of a english speaker Point T is on line segment SU. Given SU = 5x, TU = 2x, and ST = 4x 3,determine the numerical length of TU. Read the excerpt relating to Roger Chillingworth from Chapter 4 of The Scarlet Letter.Even if I imagine a scheme of vengeance, what could I do better for my object than to let thee live,than to give thee medicines against all harm and peril of life,so that this burning shame may still blaze upon they bosom?As he spoke, he laid his long forefinger on the scarlet letter, which forthwith seemed to scorch into Hesters breast, as if it had been red-hot. He noticed her involuntary gesture, and smiled.What does the excerpt reveal about Roger Chillingworth? A camera employs a ............................... lens to form...................... images. a. converging .... real b. converging .... virtual c. diverging .... real d. diverging .... virtual p(a) = 0.60, p(b) = 0.20, and p(a and b) = 0.15 what is p(a or b) choices: A. 0.12, B. 0.65, C. 0.40, or D. 0.80 (Note- This is on AP3X) using the text and what you know about both lockes and hobbes philosophies of the social contract, characterize the major differences in their views of "consent of the governed." explain your answer Integrated logistics management refers to the practices used to control the ______ of products (and the associated costs) so that there is a continuous and uninterrupted flow of ______ from suppliers to manufacturers to the final consumers. it is due in 1 hour so plz do quick in religion, the idea that a person can be saved from sin and go to heaven. Does the table describe x as a function of y?-3-2Does the table describe x as a function of y?O A. Yes, each output y is assigned to exactly one input x.O B. No, more than one output value y is assigned to the input x-valueOC. No, more than one output value x is assigned to the input y-valueOD. Yes, exactly one output x is assigned to each input y.-360717243- 1Click to select and enter your answer(s) and then click Check Answer. How can i find the nature of freedom? When was Jesus born? The identity prototypes that are associated with reputation-based peer groups most likely serve the developmental purpose of CORRECT ANSWER GETS BRAINLIEST!! A zinc salt, E whenproduced a brown gas wiele pungent Smell,Colourless which repondled ae glowing splinteand a residue which was followed to cool.:) Identify the salt &ion for the decompositionof o..) state what would be observed when theresidue was allowed to Cool;) write arequat Explain the Golden Rule for solving equations using an example. NEED HELP QUICK Jackson Company produces plastic that is used for injection-molding applications such as gears for small motors. In 2019, the first year of operations, Jackson produced 4,600 tons of plastic and sold 3,680 tons. In 2020, the production and sales results were exactly reversed. In each year, the selling price per ton was $2,400, variable manufacturing costs were 16% of the sales price of units produced, variable selling expenses were 8% of the selling price of units sold, fixed manufacturing costs were $3,312,000, and fixed administrative expenses were $470,000. (a) Prepare income statements for each year using variable costing. 2. Determine the molarity of the NaOH solution in each trial. a. Trial 1 Molarity: b. Trial 2 Molarity: 3. Calculate the average molarity of the NaOH solution. 4. Label the volumetric flask containing the NaOH solution with the average molarity. The analytics layer of the Big Data stack is experiencing what type of development currently?