Find the equation of the line that goes through (2,9) and (-1,5) in point-slope form

Answers

Answer 1

Answer:

y-9=4/3(x-2)

Step-by-step explanation:

First, find your slope:

The formula for finding slope is [tex]m=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex].

Our coordinate point for our x₁ and y₁ values will be (2,9) and our coordinate point for our x₂ and y₂ values will be (-1,5).  Now, let's plug those into our formula:

[tex]m=\frac{5-9}{-1-2}=\frac{-4}{-3}=\frac{4}{3}[/tex]

Your slope is 4/3.

Next, plug in your x₁ and y₁ values in for point-slope form.  The equation in variable form is "y-y₁=m(x-x₁)".  So, plugging in our point (2,9) for x₁ and y₁, we get:

y-9=4/3(x-2)


Related Questions

what is 7 over 2 as a decimal

Answers

Answer:

3.5

Step-by-step explanation:

I recommend using a calculator. Divide 7/2.

answer is 3.5. checked and it is correct

simplify the answer z-4/4+8

Answers

Answer:

= z/12 - 1/3

Step-by-step explanation:

z-4/(4+8)

= z-4/12

= z/12 - 4/12

= z/12 - 1/3

20+x= (-15)
what does x eqaul?

Answers

Answer:

x= -35 because you have tk get x alone. so you subtract 20 from -15

Answer:

x = -35

Step-by-step explanation:

20 + x = -15

(20 + x) - 20 = -15 - 20

x = -35

log(16x+2) - log(4x+2)= log(2x+4)​

Answers

Same as my answer last time:

Answer:

NO solution

Step-by-step explanation:

log(16x+2) - log(4x+2) = log((16x+2)/(4x+2)).

remove log

(16x+2)/(4x+2) = 2x + 4

multiply both sides by 2x + 1

8x + 1 = (2x + 4)(2x + 1)

distribute

8x + 1 = 4x^2 + 10x + 4

move to one side

4x^2 + 2x + 3 = 0

factor

but you can't

so you try to use quadratic formula, but you find that the discriminate is less than zero.

So there is no solution when x is a real number.

A rectangular piece of metal is 20 in longer than it is wide. Squares with sides 4 in long are cut from the four corners and the flaps are folded upward to form an open box. If the volume of the box is 1200 in3,
what were the original dimensions of the piece of metal?

Answers

Answer:

width = 12.5

Step-by-step explanation:

rectangular volume = height * width * length

1200 = 4 * w * (20 + 4)

1200 = 4 * w * 24

1200 = 96w

12.5=w

100 is deposited into an investment account on January 1, 1998. You are given the following information on investment activity that takes place during the year:
April 19,1998 October 30, 1998
Value immediately prior to deposit 95 105
Deposit 2X X
The amount in the account on January 1, 1999 is 115. During 1998, The annual effective dollar weighted yield is 0%, and the annual effective time weighted yield is y. Calculate y.

Answers

Answer:

y = - 0.681 % ≈ -0.7 %

Step-by-step explanation:

Given:

                                                               April 19,1998            October 30, 1998

Value immediately prior to deposit                95                               105

                     Deposit                                       2X                                 X

amount in the account on January 1, 1999 = 115

effective dollar weighted yield = 0%

annual effective time weighted yield = y

To find:

Calculate y

Solution:

Given that the dollar weighted return is 0%

100 is deposited into investment account on January 1, 1998. So, add 100 to the deposits 2X X

100 + 2x + x = 115

3x = 115 - 100

3x = 15

x = 15/3

x = 5

Compute y

1 + y = (95/100)(105/105)(115/110)

1 + y = 0.95 * 1 * 1.045

1 + y = 0.99318

y = 0.99318 - 1

y = - 0.0068 * 100

y = - 0.681 % ≈ -0.7 %

y = -0.7 %

A manufacturing plant has 25 fuses. 12 failures occurred within 30 days. After each failure, the molding fuse is immediately replaced. What is the MTTF for the fuses

Answers

Answer:

MTTF for the fuses =  62.5

Step-by-step explanation:

Given:

Total fuses = 25

Number of failures = 12

Number of days = 30

Find:

MTTF for the fuses.

Computation:

MTTF for the fuses = Total operation time / Number of failures

MTTF for the fuses =  (25 × 30) / 12

MTTF for the fuses =  62.5

How much is 2/3 cups plus 1 1/4 cups

Answers

Answer:

[tex]1\frac{11}{12}[/tex]

Step-by-step explanation:

[tex]\frac{2}{3}+1\frac{1}{4}=\frac{2}{3}+\frac{5}{4}=\frac{8}{12}+\frac{15}{12}=\\ \\=\frac{8+15}{12}=\frac{23}{12}=1\frac{11}{12}[/tex]

Simplify 5x + 3x + 2 +4

Answers

Hi

add "x" with "x" and numbers with numbers

5x+3x+2+4 = 8x+6

Answer: [tex]8x+6[/tex]

Add

[tex]5x+3x=8x\\2+4=6\\8x+6[/tex]

Khalid wants to buy a long sandwich for a party. Store A sells a 5 foot sandwich for $42.50. Store B sells a 6 foot sandwich for $49.50. Which store has the better buy? Show your work.

Answers

Store A: 1 foot= 42.50÷5 = $8.50

Store B= 1 foot= 49.50÷6 = $8.25

Answer:

Store B has a better buy because the price for 1 foot sandwich is cheaper than Store A.

what is the greatest common factor of 6d² and 18d

Answers

gcd  =  6  ⋅  d

Step-by-step explanation:

We have that  

6 d ^2  =  6  ⋅  d  ⋅  d and  18 d  =  3  ⋅  6  ⋅  d  hence the  gcd  =  6  ⋅  d

(Hope this helps <3)

I WILL GIVE YOU LOTS OF Points

Answers

Answer:

D

Step-by-step explanation:

7^2 + 4^2 = [tex]\sqrt{65\\[/tex]

assume it is a triangle and x is the hypotenuse and use Pythagorean theorem

Answer:

D

Step-by-step explanation:

7^2 + 4^2 =

assume it is a triangle and x is the hypotenuse and use Pythagorean theorem

someone Help if u know the answer pls put the step by step
6 = √v-2

Answers

Answer:

64

Step-by-step explanation:

I am assuming the -2 is outside the sqrt.

8 = sqrt(v)

v = 64

what is the simplest form of fraction ​

Answers

Answer:

A fraction is in simplest form when the top and bottom cannot be any smaller, while still being whole numbers. To simplify a fraction: divide the top and bottom by the greatest number that will divide both numbers exactly (they must stay whole numbers).

FOR EXAMPLE

5/10 = 1/2

HERE 1/2 IS THE SIMPLEST FRACTION

the length of tangent is 15 cm drawn from point whose distance from center of circle is 17 cm find the radius of circle​

Answers

Answer:

Then what is the radius of the circle? Since, the tangent of any point of a line is perpendicular to the radius through the point of contact. Hence, radius of the circle = 8 cm.

1. What is the name of a number that can be written in the form a+bi where a and b are nonzero real numbers?
A. a complex number
B. a real number
C. an imaginary unit
D. a pure imaginary number

2. Which of the following statements is not true?
A. In order for a+bi to be a complex number, b must be nonzero.
B. A complex number is a number that can be written in the form a+bi where a and b are real numbers.
C. For a complex number written in the form a+bi, the value of a is called the real part of the complex number.
D. Every real number is also a complex number.

3. What is the real part of 4−5i?

4. What is the imaginary part of 7−6i?

5. Determine if the statement below is true or false. If it is false, rewrite it so it is true. Rewriting −10−−−−√ in terms of i results in −10i.
A. This statement is true.
B. This statement is false. Rewriting −10−−−−√ in terms of i results in 10i.
C. This statement is false. Rewriting −10−−−−√ in terms of i results in −10−−−−√i.
D. This statement is false. Rewriting −10−−−−√ in terms of i results in 10−−√i.

Answers

Re-writing question 5:

5. Determine if the statement below is true or false. If it is false, rewrite it so it is true. Rewriting √-10 in terms of i results in −10i.

A. This statement is true.

B. This statement is false. Rewriting √-10 in terms of i results in (√10)i.

C. This statement is false. Rewriting √-10 in terms of i results in −10√i.

D. This statement is false. Rewriting √-10 in terms of i results in 10√i.

Answer:

1) C. an imaginary number

2) A. In order for a + bi to be a complex number, b must be nonzero

3) 4

4) -6

5) B. The statement is false. Rewriting √-10 in terms of i results in (√10)i

Step-by-step explanation:

1. When a number can be expressed in the form a+bi where a and b are real numbers, then the number is said to be a complex number.

For example, the following are complex numbers where i = √-1 ;

i. 3 + 5i

ii. 4 - 7i

iii. -3 - 9i

Well, even real numbers are a subset of complex numbers. For example,

=> 5 can be written as 5 + 0i

=> -12 can be written as -12 + 0i

-- But when a and b are non-zero real numbers or at least b is a non-zero real number, then the number is said to be an imaginary number.

-- If a is zero, then the number is a purely imaginary number

-- If b is zero, then the number is a purely real number

2. For a number to be called a complex number;

i. it can be written in the form a + bi where a and b are real numbers,

ii. either a or b, or both, may be zero,

iii. a is the real part of the complex number,

iv. b is the imaginary part of the complex number.

v. it could also be a real number since every real number is also a complex number.

3. Given 4 - 5i

The real part is 4

and the imaginary part is -5

4. Given 7 - 6i

The real part is 7

and the imaginary part is -6

5. Rewrite √-10 in terms of i

Remember that i = √-1

Therefore,

√-10 = √(-1 x 10) = √-1 x √10

=> √-10 = √-1 x √10

=> √-10 = i x √10

=> √-10  = (√10)i

Hello, I need some help resolving this problem of Trigonometric Identities. Use the reciprocal identities to resolve it SinA+cosA*cotA= cscA

Answers

Answer:

Please see steps below

Step-by-step explanation:

Start by writing all trig functions in the equation in terms of their simplest forms using the two basic trig functions: [tex]sin(\alpha) \,\,and\,\,cos(\alpha)[/tex]:

[tex]sin(\alpha)+ cos(\alpha)\,\frac{cos(\alpha)}{sin(\alpha)} = \frac{1}{sin(\alpha)}[/tex]

Now work on the left side (which is the most complicated one), trying to simplify it using the properties for adding fractions with different denominators:

[tex]sin(\alpha)+ cos(\alpha)\,\frac{cos(\alpha)}{sin(\alpha)}=sin(\alpha)+\frac{cos^2(\alpha)}{sin(\alpha)} =\frac{sin^2(\alpha)}{sin(\alpha)} +\frac{cos^2(\alpha)}{sin(\alpha)}=\frac{sin^2(\alpha)+cos^2(\alpha)}{sin(\alpha)}=\frac{1}{sin(\alpha)}[/tex]

where in the last step we have used that the Pythagorean identity for:

[tex]sin^2(\alpha)+cos^2{\alpha)=1[/tex]

Notice that we arrived at the expression: [tex]\frac{1}{sin(\alpha)}[/tex], which is exactly what appears on the other side of the initial equation/identity we needed to prove, so the prove has been completed.

use each of the digits 5 4 3 2 1 exactly once to create two different five digit numbers. Write each number on the line and compare the two numbers by using the symbols < > =​

Answers

Answer:

12345 < 54321

21435 > 12534

:

Step-by-step explanation:

Given the digits:

1, 2, 3, 4 and 5

We have to use every digit only once and have to make two different five digit numbers.

Using these 5 numbers only once without repetition, we have many numbers possible.

Let us have a look at a few sets and let us compare them.

Set 1: 12345 and 54321

We can see that 12345 is lesser than 54321.

Therefore, we can write (using lesser than sign):

12345 < 54321

Set 2: 21435 and 12534

We can see that 21435 is greater than  12534.

Therefore, we can write (using greater than sign):

21435 > 12534

Which option is an example of an experiment

Answers

Answer: Testing the effectiveness of a mouthwash by allowing one group to use it and comparing the results with those of a group that doesn't use it.

Step-by-step explanation: It's the most effective

Solve the following quadratic equation 3x²-8x+5=0

Answers

To solve this equation, let's factor the left side.

Although you can factor it in different ways, I will show you a trick.

First, forget about the 3 and we have x² - 8x + 5.

Now, multiply the 3 by the constant to get 15.

So we have x² - 8x + 15.

Now factor to get (x - 5)(x - 3).

Now divide each of the constants in the

binomials by the leading coefficient, 3.

So we have (x - 5/3)(x - 3/3).

Simplify to get (x - 5/3)(x - 1).

Now move any denominators in front of the x in the binomial.

Moving the 3 in front of the x, we have 3x.

So our answer is (3x - 5)(x - 1) = 0.

So either 3x - 5 = 0 or x - 1 = 0.

Solving from here, we get x = 5/3 or x = 1.

what is 1/16 times 1/4 as a fraction?

Answers

Answer:

[tex]\frac{1}{16}[/tex] x [tex]\frac{1}{4}[/tex] = [tex]\frac{1}{64}[/tex]

multiply 16 by 4 to get the denominator

The fraction 1/16 times 1/4 is equal to 1/64.

To find the product of 1/16 and 1/4, we can multiply the numerators (top numbers) together and the denominators (bottom numbers) together.

1/16 x 1/4

= (1 x 1) / (16 x 4)

The product of the numerators is 1 x 1 = 1, and the product of the denominators is 16 x 4 = 64.

So, the result is:

1/16 x 1/4 = 1/64

Therefore, 1/16 times 1/4 is equal to 1/64.

Learn more about fraction here:

https://brainly.com/question/29019463

#SPJ6

3 packs of soda cost $10 less than 5 packs of soda. Write an equation and solve to find the cost of one pack of soda *
1 point

Answers

Answer:

3s = 5s - 10

Step-by-step explanation:

-5x-6(-6+3x)=105 what is the answer

Answers

Answer:

x = -3

Step-by-step explanation:

expand -23x + 36 = 105

subtract 36 from both sides -23x +36 -36 = 105 - 36

Simplify -23x = 69

Divid both sides by -23: -23x / - 23 = 69 / -23

x = -3

Find the following products: a) (−12) × (−11) × (10) b) (−25) × (−8) × (−2) WITH EXPLANATION

Answers

Step-by-step explanation:

Hey, there!!

a. (-12)×(-11)×10

Here, (-)×(-)=(+)

(-12)×(-11)=132

so,

=132×10

=1320.

For b.

(-25)×(-8)×(-2)

(-)×(-)=(+)

(-25)×(-8)=200

so,

=200×(-2) { (+)×(-)=(-)}.

= -400.

Therefore, the answer of a. no. is 1320, and no. b is (-400).

Hope it helps....

Two different red-light-running signal systems were installed at various intersection locations with the goal of reducing angle-type crashes. Red-Light-Running System A resulted in 60% angle crashes over a sample of 720 total crashes. Red-Light-Running System B resulted in 52% angle crashes over a sample of 680 total crashes. Was there a difference between the proportions of angle crashes between

Answers

Complete Question

Two different red-light-running signal systems were installed at various intersection locations with the goal of reducing angle-type crashes. Red-Light-Running System A resulted in 60% angle crashes over a sample of 720 total crashes. Red-Light-Running System B resulted in 52% angle crashes over a sample of 680 total crashes. Was there a difference between the proportions of angle crashes between the two red-light-running systems installed? Use an alpha of 0.10.

Answer:

Yes there is a difference between the proportions of angle crashes between the two red-light-running systems installed

Step-by-step explanation:

From the question we are told that

   The first sample  proportion  is  [tex]\r p_ 1 = 0.60[/tex]

   The  second sample proportion is  [tex]p_2 = 0.52[/tex]

    The first sample size is  [tex]n_1 = 720[/tex]

     The second sample size is  [tex]n_2 = 680[/tex]

     The  level of significance is  [tex]\alpha = 0.10[/tex]

     

The null hypothesis is [tex]H_o : \r p_1 - \r p_2 = 0[/tex]

The  alternative hypothesis is  [tex]H_a : \r p_1 - \r p_2 \ne 0[/tex]

Generally the pooled proportion is mathematically represented as

       [tex]p_p = \frac{(\r p_1 * n_1 ) + (\r p_2 * n_2)}{n_1 + n_2 }[/tex]

=>     [tex]p_p = \frac{(0.6 * 720) + ( 0.52 * 680)}{720 +680 }[/tex]

=>    [tex]p_p = 0.56[/tex]

 Generally the test statistics is evaluated as        

       [tex]t = \frac{ ( \r p_1 - \r p_2 ) - 0 }{ \sqrt{ (p_p (1- p_p) * [ \frac{1}{n_1 } + \frac{1}{n_2 } ])} }[/tex]

        [tex]t = \frac{ (0.60 - 0.52 ) - 0 }{ \sqrt{ (0.56 (1- 0.56) * [ \frac{1}{720} + \frac{1}{680 } ])} }[/tex]    

       [tex]t = 3.0[/tex]

The  p-value obtained from the z-table is  

      [tex]p-value = P(Z> t ) = 0.0013499[/tex]

From the question we see that [tex]p-value < \alpha[/tex] so the null hypothesis is rejected

 Hence we can conclude that there is a difference between the proportions

         

Determine if the following relation is a function.

Answers

yes it is a function

Answer:

It is a function.

Step-by-step explanation:

It is proven via the vertical line test.

A ladder 10 m long,leans against a vertical wall at an angle of 70° to the ground.if the ladder slips down the wall 4m,find,correct to 2 significant figure
(a) the new angle which the ladder makes with the ground

(b) the distance the ladder slipped back on the ground from it's original position

Answers

Answer:

(a) the new angle the ladder makes with the ground is [tex]32.7^o[/tex]

(b) the ladder slipped back about 5 meters

Step-by-step explanation:

Notice that the ladder doesn't change its length in the process.

So let's start from the initial situation , finding the distance from the ground at which the ladder touches the wall when the angle with the ground is 70^o. Notice that this situation is represented by a right angle triangle with the right angle between the wall and the ground (see attached image), and that we can use the sine function to find the side opposite to the 70 degree angle:

[tex]sin(70^o)=\frac{opposite}{hypotenuse} \\sin(70^o)=\frac{h}{10}\\h=10\, sin(70^o) \approx 9.4 \,\,m[/tex]

therefore 9.4 meters is approximately the height at which the ladder touches the wall initially.

Now, if the tip of the ladder goes down the wall 4 meters, it is now at 9.4 m - 4 m = 5.4 m from the ground. We can therefore use again the sine function to solve for the new angle:

[tex]sin(x)=\frac{opposite}{hypotenuse} \\sin(x)=\frac{5.4}{10} \\sin(x)=0.54\\x=arcsin(0.54)\\x= 32.7^o[/tex]

To answer the second question we need to find the original distance from the wall that the bottom of the ladder was originally, and for that we can use the cosine function:

[tex]cos(70^o)=\frac{adjacent}{hypotenuse} \\cos(70^o)=\frac{x}{10}\\x=10\,cos(70^o)\\x\approx 3.4 \,\,m[/tex]

Now fro the new position of the bottom of the ladder relative to the wall:

[tex]cos(32.7^o)=\frac{adjacent}{10} \\adjacent=10\,cos(32.7^o)\\adjacent\approx 8.4\,\,m[/tex]

then the difference in between those two distances is what we need:

8.4 m - 3.4 m = 5 m

Question 1 (1 point)
Danny wants to buy a truck in 4 years. He is going to put away $2,500.00 into his savings account that will pay him 6.75% interest compounded
monthly. How much will he have when he withdraws the funds to give a down payment?

Answers

Answer:

Amount after 4 years = $3274.125

Step-by-step explanation:

Time t= 4 years

Principal amount p= $2500

Interest rate R= 6.75%

Number of times compounded n= 4*12

Number of times compounded n= 48

Amount A = p(1+r/n)^(nt)

A= 2500(1+0.0675/48)^(48*4)

A= 2500(1+0.001406)^(192)

A= 2500(1.001406)^192

A= 2500(1.30965)

A= 3274.125

Amount after 4 years = $3274.125

A scientist was in a submarine, 95.7 feet below sea level, studying ocean life. Over the next ten minutes, she went down 25.3 feet. How many feet was she now below sea level?

Answers

Answer: she is now 121 feet below sea level.

Step-by-step explanation:

Given, A scientist was in a submarine, 95.7 feet below sea level, studying ocean life.

Over the next ten minutes, she went down 25.3 feet.

Then, she was (95.7+25.3) feet below sea level now.  [we will add both distances ]

Then, she was 121 feet below sea level now.

Hence, she is now 121 feet below sea level.

Through a host of various investors, you have finally raised enough capital to begin producing the next summer blockbuster. You have a budget of 279 million dollars, which you must allocate between filming and editing. The general consensus among experts is that filming tends to cost twice as much as editing. How much money should you allocate to filming?

Answers

Answer:

  $186 million

Step-by-step explanation:

The ratio of costs is ...

  filming : editing = 2 : 1

So, the filming cost as a fraction of the total cost is ...

  filming : total cost = 2 : (2+1) = 2/3

The allocation to filming is ...

  (2/3)($279 million) = $186 million

Other Questions
A man drove 8 miles directly east from his home, made a left turn at an intersection, and then traveled 8 miles due north to his place of work. If a road was made directly from his home to his place of work, what would its distance be? ______ miles Choose all of the statements that correctly define the geometric term. 1)Two rays joined at the same end point form an angle.2) Intersecting lines that form right angles are parallel lines 3) A continuous section of the circumference of a circle is a circular arc. 4)Lines that never intersect or cross each other perpendicular. 5)A circle is the locus of all points a fixed distance from a given center point. NEED ANSWER ASAP!!8) A _____ has a nucleus, a corona, and a tail.meteorscometstarsplanetasteroid Use h(x) = x2 +4 to find x when h(x) = 29. Mary was shopping in a clothing store. She had $100 to spend. She found three items she liked: $99 for a pair of shoes, $98 for a jacket, and $96 for a dress. After over an hour of shopping, she decided to buy the jacket for $98. What was her opportunity cost? What does change and what does NOT change during a translation? * Proteins and fats are important for the cel. Which organelle below does NOT play a role in the production of one or more of these important substances? What is the value of x? A. 36 B. 12 C. 32 D. 28 Which of the following are activities that were undertaken by the Freedmen's Bureau? Where would you go in QuickBooks Online to see the range of default and extra lists that are available? a) Sales Center, then Settings and All Lists b) + New button and All Lists c) Gear icon and All Lists d) Sales Center, then Settings and Add Lists what are non metal and metals viruses lack all of these characteristics of living things except What is the value of the y-coordinate of point A Which article provides the basis for the fifth amendment to the constitution, which states that no person can "be deprived of life, liberty, or property, without due process of law?" K= 1/2mv^2 K=1/2(210kg)(10.5 m/s)^2answer:unit: Which is not one of the three Ps?A: PolyuriaB: PolycardiaC: PolydipsiaD: Polyphagia What helps the plasma membrane function? channels and chain-like structures O pumps and gelatin-like material O nuclei and endoplasmic reticula O chloroplasts and mitochondria How does work affect energy between objects so it can cause a change in the form of energy? Work transfers energy. Work changes energy. Work increases energy. Work decreases energy. If 9 is p present of 17 then p is a number between Which of the following is the correct equation for the Pythagorean Theorem, where a and b are the side lengths and c is the length of the hypotenuse?A. a^2-b^2=c^2B. (a+b)^2=c^2C.(a-b)^2=c^2D. a^2+b^2=c^2