Pls answer? Last one for today!
Step-by-step explanation:
You look for the common factor of both of them which in this case is 5, therefore it's
5(x+7)..just divide 5 in 5x and in 35
True or False? The total surface area of a cube can be calculated using its volume.
Answer: false
Step-by-step explanation:
Surface Area Formula Surface Area Meaning
SA=2B+Ph Find the area of each face. Add up all areas.
SA=B+12sP Find the area of each face. Add up all areas.
SA=2B+2πrh Find the area of the base, times 2, then add the areas to the areas of the rectangle, which is the circumference times the height.
Help ask anyone have any more answers for the eye level program
Answer:
1) -[tex]\sqrt{32}[/tex]
2) -[tex]\sqrt{108}[/tex]
3) -[tex]\sqrt{80}[/tex]
4) -[tex]\sqrt{112}[/tex]
5) -[tex]\sqrt{40}[/tex]
6) -[tex]\sqrt{99}[/tex]
7) -[tex]\sqrt{50}[/tex]
8) -[tex]\sqrt{150}[/tex]
Step-by-step explanation:
please mark this answer as brainlist
I NEED AN ANSWER ASAP
WILL GIVE BRAINLY THING
Answer:
1) C
2) D
3) A
4) B
hope it helps
Perform the following division 3 3/4 ÷ 2/8
Answer:
[tex]15[/tex]
Step-by-step explanation:
[tex]3\frac{3}{4}\div\frac{2}{8}[/tex]
Turn the mixed number into an improper fraction
[tex]\frac{15}{4} \div\frac{2}{8}[/tex]
keep change flip
[tex]\frac{15}{4} *\frac{8}{2}[/tex]
cancel with GCF
[tex]\frac{15}{1} *\frac{2}{2}[/tex]
simplify
[tex]15*1[/tex]
solve
[tex]15[/tex]
The ages of subscribers to a certain newspaper are normally distributed with mean 35 years and standard deviation 5. What is the probability that the age of a random subscriber is more than 40 years?
Answer:
0.1587
Step-by-step explanation:
Applying,
P(μ>40) = P(μ-(x-μ)/σ)............. Equation 1
Where P(μ>40) = probability of the age of the random subscriber more than 40 years μ = mean, σ = standard deviation, x = random subscriber
From the question,
Given: μ = 35 years, σ = 5 years, x = 40 years.
Therefore,
P(μ>40) = P(35-(40-35)/5) = P(35-(5/5)
P(μ>40) = 1-φ(1)
From the norminal probabilty table,
P(μ>40) = 1-0.8413
P(μ>40) = 0.1587
Part 1: Joe and Hope were both asked to factor the following polynomial completely. Is one of them correct? Both of them? Neither of them? Explain what each of them did was correct and/or incorrect.
Part 2:
Find all the values of k so the the quadratic expression factors into two binomials. Explain the process used to find the values.
3x^2 + kx - 8
If we simplify, both Joe and Hope factored the polynomial correctly but Joe didn't complete it fully.
The first binomial can be further factored:
8x + 12 = 4(2x + 3)Part 2The quadratic expression needs to have two roots in order to be factored as two binomials.
The discriminant must be positive or zero:
D = b² - 4ac ≥ 0We have a = 3, b = k, c = -8
So we get following inequality:
k² - 4*3*(-8) ≥ 0k² + 96 ≥ 0Since k² is positive for any value of k, the solution is any value of k:
k ∈ RHope this attachment helps you.
Please help Quick this is hard so you’ll get brainliest thank you so much
Answer:
number 1: no
number 2: no
number 3: no
Write an expression for the sequence of operations described below.
divide s by q, add r to the result, then triple what you have
Do not simplify any part of the expression.
Answer:
3( [tex]\frac{s}{q}[/tex] + r)
The manager of a donut store believes that 35% of the customers are first-time customers. A random sample of 150 customers will be used to estimate the proportion of first-time customers. Assuming this belief is correct, what is the probability that the sample proportion will be between 0.2 and 0.4
Answer:
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
The manager of a donut store believes that 35% of the customers are first-time customers.
This means that [tex]p = 0.35[/tex]
Sample of 150 customers
This means that [tex]n = 150[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.35[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.35*0.65}{150}} = 0.0389[/tex]
What is the probability that the sample proportion will be between 0.2 and 0.4?
p-value of Z when X = 0.4 subtracted by the p-value of Z when X = 0.2.
X = 0.4
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.4 - 0.35}{0.0389}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a p-value of 0.8997
X = 0.2
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.35}{0.0389}[/tex]
[tex]Z = -3.85[/tex]
[tex]Z = -3.85[/tex] has a p-value of 0.0001
0.8997 - 0.0001 = 0.8996
0.8996 = 89.96% probability that the sample proportion will be between 0.2 and 0.4
Which of the following is the intersection of the line AD and line DE?
Answer:
Point D
Step-by-step explanation:
The intersection(s) of lines represents where they cross or intersect. We can see that lines AD and DE cross or intersect as Point D, hence the answer being Point D.
Answer: Point D
Step-by-step explanation: The intersection of two figures is the set of points that is contained in both figures. In the diagram shown, D is the intersection of lines AD and DE because D is the point contained by both line AD and DE.
Please help
Find the value of x,
m∠5 = x-6, m∠4 = 2x+4, m∠2 = 2x-26
9514 1404 393
Answer:
x = 30 2/3
Step-by-step explanation:
Angles 4 and 5 are complementary, so we have ...
m∠4 +m∠5 = 90°
(2x +4) +(x -6) = 90
3x -2 = 90 . . . . . . . . . collect terms
3x = 92 . . . . . . . . . . add 2; next, divide by 3
x = 92/3 = 30 2/3
Which of the following expressions is not equivalent to the others?
Answer:
Im going to guess the second one
Step-by-step explanation:
It's the only one that does not have more than one negative fraction.
help with this please !
Answer:
c
Step-by-step explanation:
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
the average of two number is xy.if one number is x the other i
Answer:
z = (2xy-x)
Step-by-step explanation:
Let the first number be x and the other number is z.
According to question,
The average of two number is xy i.e.
[tex]\dfrac{x+z}{2}=xy\\\\x+z=2xy\\\\z=2xy-x[/tex]
So, the value of z is (2xy-x) i.e. the other number is (2xy-x).
The volume, V, of a sphere in terms of its radius, r, is given by , V(r)=4/3(pie)r^3. Express r as a function of V, and find the radius of a sphere with volume of 150 cubic feet. Round your answer for the radius to two decimal places.
r(V)=
A sphere with volume 150 cubic feet has radius
_________ feet.
Step-by-step explanation:
If
[tex]V=\dfrac{4\pi}{3}r^3[/tex]
then we can solve for r as
[tex]r = \sqrt[3]{\dfrac{3V}{4\pi}}[/tex]
If the volume of the sphere is 150 ft^3, then the radius is
[tex]r = \sqrt[3]{\dfrac{3(150\:\text{ft}^3)}{4\pi}} = 3.30\:\text{ft}[/tex]
The radius of the given sphere with a volume of 150 cubic feet is 2.29 feet, correct to two decimal places.
Given that
the volume of a sphere = 150 cubic feet.
the radius of the sphere=????
what is a Sphere?a round solid figure, or its surface, with every point on its surface equidistant from its center.
as we know,
the volume of a sphere
[tex]V=\frac{4}{3} *\pi *r^3[/tex]
[tex]r = \sqrt[3]{\frac{3V}{4\pi } }[/tex][tex]r = \sqrt[3]{\frac{3*150}{4\pi } }[/tex][tex]=2.29 feet[/tex]
therefore, the radius of the given sphere is 2.29feet
to get more about sphere refer to the link,
https://brainly.com/question/22807400
What is equal to 30- 6v - 13w
Please answer! I need help on this question.
Answer:
Let x and y denotes the number of cabinet of the type X and Y. Then given problem can be formulated as, ☝
That is, the second pic
Sketch the region as 3 pic
Step-by-step explanation:
oh the same question was there by xxlunaxx4
What is the mean?
7.9.10.12.15.16
Answer:
11.5
Step-by-step explanation:
The mean is the average of the numbers. It is easy to calculate: add up all the numbers, then divide by how many numbers there are. In other words it is the sum divided by the count.
Answer:
11.5
Step-by-step explanation:
Add all them all together.
7+9+10+12+15+16=69
Divide by the amount of numbers there are
69/6=11.5
11.5
posters n tees sold 486 items yesterday; one-third of these were t-shirts.how many t-shirts sold? how many posters?
Answer:
162 t-shirts, 324 posters
Step-by-step explanation:
Assuming they only sold t-shirts and posters, you can find the amount of t-shirts sold by dividing 486 by 3, or multiplying it by 1/3. This equals 162. This is because one third were t-shirts. To find the rest you just subtract 162 from the total of 486, or multiply 162 by 2. (since you already know the amount of 1/3, 2/3 is double that.)
Evaluate:
11x - 8(x - y)
Answer:
11x-8x+8y
3x+8y SEEESH IN DEEZ NU TS
Step-by-step explanation:
what are the two points in the image and what is the midpoint?
One can observe the midpoint is [tex](-3,1)[/tex].
But in order to verify the observation we must use formula to compute the midpoint of the segment formed by the endpoints.
The formula for such midpoint is [tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex] where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are endpoints.
Our endpoints are [tex](-5,-3)[/tex] and [tex](-1,5)[/tex], so our midpoint is
[tex](\frac{-5-1}{2}, \frac{-3+5}{2})=\boxed{(-3,1)}[/tex].
Hope this helps.
When P = 2l + 2w is solved for w, the result is:?
Answer:
[tex]\frac{p-2l}{2}[/tex]
Step-by-step explanation:
move the 2l to the other side by subtracting 2l on both sides. you get P - 2l = 2w. now divide both sides by 2 to get the answer.
How to solve and what is the answer
Answer:
5
Step-by-step explanation:
hiii help pls
thansjdjswjejejdjjdjeee
When 4(9y − 5) = 10(3y + 17) − 40 is solved, the result is:
A=20.
B=25.
C=-10.
D=10.
Answer:
B = 25
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightDistributive Property
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
4(9y - 5) = 10(3y + 17) - 40
Step 2: Solve for y
[Distributive Property] Distribute 4: 36y - 20 = 10(3y + 17) - 40[Distributive Property] Distribute 10: 36y - 20 = 30y + 170 - 40Combine like terms: 36y - 20 = 30y + 130[Subtraction Property of Equality] Subtract 30y on both sides: 6y - 20 = 130[Addition Property of Equality] Add 20 on both sides: 6y = 150[Division Property of Equality] Divide 6 on both sides: y = 25[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{4(9y - 5) = 10(3y + 17) - 40}\\\\\large\textsf{4(9y) + 4(-5) = 10(3y) + 10(17) - 10(40)}\\\\\large\textsf{36y - 20 = 30y + 170 - 40}\\\\\large\textsf{COMBINE the LIKE TERMS}\\\\\large\textsf{36y - 20 = (30 y)+ (170 - 40)}\\\\\large\textsf{36y - 20 = 30y + 130}\\\\\large\textsf{SUBTRACT 30y to BOTH SIDES}\\\\\large\textsf{36y - 20 - 30y = 30y + 130 - 30}}\\\\\large\textsf{Cancel out: 30y - 30y because that gives you 0}\\\\\large\textsf{Keep: 20 - 30y because helps solve for the y-value}[/tex]
[tex]\large\textsf{NEW EQUATION: 6y - 20 = 130}\\\\\large\textsf{ADD 20 to BOTH SIDES}\\\\\large\textsf{6y - 20 + 20 = 130 + 20}\\\\\large\textsf{Cancel out: -20 + 20 because that gives you 0}\\\\\large\textsf{Keep: 130 + 20 because that helps solve for the y-value}\\\\\large\textsf{130 + 20 = \bf 150}\\\\\large\textsf{NEW EQUATION: 6y = 150}\\\\\large\textsf{DIVIDE 6 to BOTH SIDES}\\\\\mathsf{\dfrac{6y}{6}= \dfrac{150}{6}}\\\\\large\textsf{Cancel: }\mathsf{\dfrac{6}{6}\large\textsf{ because that gives you 1}}[/tex]
[tex]\large\textsf{Keep: }\mathsf{\dfrac{150}{6}}\large\textsf{ because it helps solve for the y-value}\\\\\large\textsf{\bf y = }\mathsf{\dfrac{150}{6}}\\\\\large\textsf{OR }\\\\\mathsf{\dfrac{150}{6} }\large\textsf{ = \bf y}\\\\\\\large\textsf{SIMPLIFY ABOVE AND TOU YOU HAVE YOUR Y-VALUE}\uparrow\\\\\\\\\boxed{\boxed{\large\textsf{\huge\textsf{Answer: \bf y = 25} (Option B.)}}}\huge\checkmark\\\\\\\\\large\text{Good luck on your assignment and enjoy your day!}\\\\\\\\\\\frak{Amphitrite1040:)}[/tex]
Consider random samples of size 1200 from a population with proportion 0.65 . Find the standard error of the distribution of sample proportions. Round your answer for the standard error to three decimal places.
Answer:
The standard error of the distribution of sample proportions is of 0.014.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Consider random samples of size 1200 from a population with proportion 0.65 .
This means that [tex]n = 1200, p = 0.65[/tex]
Find the standard error of the distribution of sample proportions.
This is s. So
[tex]s = \sqrt{\frac{0.65*0.35}{1200}} = 0.014[/tex]
The standard error of the distribution of sample proportions is of 0.014.
Question 5
Points 1
duction
st
Which of the following is a polynomial of degree 5?
est
7x+ 5x2-3
0 2x7-5
O x1/7 + 1
0 12x4 - 5x3 + 6x - 4
Answer:
You can go ahead with this!
Step-by-step explanation:
Option A
Is the write answer
Can someone pls help asap i will give Brainliest
Answer:
24/145
Step-by-step explanation:
Trigonometric identities are equalities involving trigonometric functions and remains true for entire values of the variables involved in the equation.
Some trigonometric identities are:
sin(a + b) = sinacosb + cosasinb; sin(a - b) = sinacosb - cosasinb
cos(a + b) = cosacosb - sinasinb; cos(a - b) = cosacosb + sinasinb
Given that sin a = 3/5. sin a = opposite/hypotenuse.
Hence opposite = 3, hypotenuse = 5. using Pythagoras:
hypotenuse² = opposite² + adjacent²
5² = 3² + adjacent²
adjacent² = 16
adjacent = 4
Given that sin a = 3/5. a = sin⁻¹(3/5) = 36.86
cos a = cos 36.86 = 4/5
cos b = -20/29; b = cos⁻¹(-20/29) = 133.6
sinb = sin(133.6) = 21/29
sin(a + b) = sinacosb + cosasinb = (3/5 * -20/29) + (4/5 * 21/29) = -12/29 + 84/145
sin(a + b) = 24/145