Answer:
Espera espera espera.......
primer miembro es el independiente
incógnitas es la letra literal x b y c m
coeficiente es el resultado de la división
terminos independientes son aquellos los que no tienen cualquier letra 18 16 8
Step-by-step explanation:
espero que ayude
Convert the following equation into slope-intercept form.
x-26y=52
Consider the expression 63+81 how can you use the distributive property and the gcf to find an equivalent expression?explain how you can check your answer
Step-by-step explanation:
63+81
gcf = 9
63÷9=7, 81÷9=9
so, 63+81 = (9×7)+(9×9)
= 9×(7+9)
63+81 = 144
9x(7+9) = 9×16 = 144
A cone has a volume of 94.2 cubic millimeters and a radius of 3 millimeters. What is its
height?
Answer:
the answer is 97.2
Step-by-step explanation:
Just add 94.2+3
Researchers from a large community college in California are interested in understanding the demographics of students enrolled in their online classes. The researchers collected the following data for the 2017/2018 school year.
Male Female Total
Online Only 2,000 7,000 9,000
Online and in class 8,000 1,000 9,000
Total 10,000 8,000 18,000
What does the data suggest about the relationship between sex and enrollment?
a. Females are more likely to enroll in Online Only courses than males.
b. Females are more likely to enroll in Online and In Class courses than males.
c. There are more females enrolled at the community college than males.
d. Females are equally likely as males to enroll in an Online Only course.
Answer:
a. Females are more likely to enroll in Online Only courses than males.
Step-by-step explanation:
Given
The collected data
Required
Which of the options is true
(a): Female more likely in online only courses
In online courses, we have:
[tex]Female = 7000[/tex]
[tex]Male = 2000[/tex]
By comparison:
[tex]7000 > 2000[/tex]
Hence, this statement is true
Other options are false
At : a.m. the angle of elevation of the sun for one city is . If the height of a monument is approximately , what is the length of the shadow it will cast at that time? Round to the nearest foot.
This question is incomplete, the complete question;
At 11:30 a.m. the angle of elevation of the sun for one city is 55.7°. If the height of a monument is approximately 555 ft, what is the length of the shadow it will cast at that time? Round to the nearest foot.
Answer:
the length of the shadow will be 379 ft
Step-by-step explanation:
Given the data in the question and as represented in the diagram below;
height of monument = 555 ft
angle of elevation = 55.7°
From the image below, this makes a right angled triangle
we know that the some of the interior angles of a triangle is 180
so
∠ABC + ∠BCA + ∠CAB = 180°
90° + 55.7° + ∠CAB = 180°
∠CAB = 180° - 145.7°
∠CAB = 34.3°
Now, using sine rule;
BC / sinA = AB / sinC
so we substitute
BC / sin( 34.3°) = 555 / sin( 55.7° )
BC / 0.563526 = 555 / 0.826098
we cross multiply
BC × 0.826098 = 0.563526 × 555
BC × 0.826098 = 312.75693
BC = 312.75693 / 0.826098
BC = 378.595 ≈ 379 ft
Therefore, the length of the shadow will be 379 ft
Who can answer this? I’ll mark brainliest!!
Answer:
y = 0.48(x - 0.5)² - 3
y = 0.48(x² - x - 6)
Step-by-step explanation:
From the graph the zeros are
x = {-2, 3}
The x coordinate of the vertex is the midpoint of the roots
x = (-2 + 3) / 2
x = 0.5
The y coordinate of the vertex is
y = -3
vertex = (0.5, -3)
--------------------------------------
Merhod I - vertex
Vertex form is
y = a(x - h)² + k
plug in the vertex
y = a(x - 0.5)² - 3
to find a plug in either root
using x = 3
0 = a(3 - 0.5)² - 3
0 = a(2.5)² - 3
0 = 6.25a - 3
3 = 6.25a
a = 3/6.25
a = 0.48
y = 0.48(x - 0.5)² - 3
-----------------------------
Method II - roots
y = a(x + 2)(x - 3)
-3 = a(0.5 + 2)(0.5 - 3)
-3 = a(2.5)(-2.5)
-3 = -6.25a
3/6.25 = a
0.48 = a
y = 0.48(x + 2)(x - 3)
Expand
y = 0.48(x² - x - 6)
1.62 was multiplied by a power of ten to get 16.2. What power of ten was it
multiplied by?
10
100
1,000
Answer:
10
Step-by-step explanation:
Every time you multiply by 10 you move the decimal point one digit to the right. So if you multiply 1.62 by 10 you move the decimal point one digit to the right so it becomes 16.2.
So the answer is 10
Answer:
The answer is 10
Step-by-step explanation:
Every time you multiply by a power of 10 that does not have a negative exponent, the decimal point moves to the right.
How many times, you might wonder. It all just depends on how many zeroes there are. If there's one 0, (10) then the decimal point just moves one over, if were multiplying by 100 then 2 places over, 1000 three places over, and so on.
1.62 * 10 = 16.2, since the decimal point moved one to the right.
10 is therefore the answer, but if you wanted to you could check the other answers as well.
1.62 * 100 = 162
1.62 * 1000 = 1620
Therefore, the answer is 10. Please mark brainliest if possible. Have a nice day.
The question is one the picture
Answer:
y=-1/2x+4
Step-by-step explanation:
The line is going down, which means it's negative. You then do rise over run, go up by 1 and go to the left by 2. To find the y intercept, it's 4 since the coordinate is (0,4).
You intend to estimate a population proportion with a confidence interval. The data suggests that the normal distribution is a reasonable approximation for the binomial distribution in this case. While it is an uncommon confidence level, find the critical value that corresponds to a confidence level of 97.1%.
Answer:
The critical value that corresponds to a confidence level of 97.1% is [tex]Z = 2.18[/tex].
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
97.1% confidence level
So [tex]\alpha = 0.029[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.029}{2} = 0.9855[/tex], so [tex]Z = 2.18[/tex].
The critical value that corresponds to a confidence level of 97.1% is [tex]Z = 2.18[/tex].
B is the midpoint of segment AC trying to find AB using the definition of midpoint.
Answer:
12
Step-by-step explanation:
A midpoint of a line means that each segment connecting from the midpoint to an end is equal. For this problem, this means that AB = BC, as B is the midpoint, and A and B are the ends. Therefore, we can say that:
AB = BC
2x + 6 = 5x - 3
add 3 to both sides
2x + 9 = 5x
subtract 2x from both sides
9 = 3x
divide both sides by 3
3 = x
Plugging 3=x into AB, this means that 2(3) + 6 = AB = 12
simplify 4x-x squared ÷2x-x squared
Answer:
[tex] \frac{4x - x}{2x - x} \\ = \frac{x(4 - 1)}{x(2 - 1)} \\ = \frac{3}{1} \\ = 3[/tex]
Answer:
[tex]\frac{7x}{3} \\[/tex]-[tex]x^{2}[/tex]
Step-by-step explanation:
Fourteen children out of a group of 26 like chocolate ice cream. What would be the numerator of the fraction illustrating proportion of children in this group that do not
like chocolate ice cream?
Answer:
12
Step-by-step explanation:
The amount of children that do like ice cream are 14/26 so the children that do not like ice cream 14/26, and the numerator is 12
HELP MEEEEEEEEEEEEEEEEEEEEEWEW
ASAP there are three marbles in a bag. One is red and two are black. What is the probability of picking a black marble first, putting it back in the bag and then picking a black marble? Use the following probability to find the answer.
Answer:
[tex] \frac{4}{9} [/tex]
Step-by-step explanation:
[tex]p = \frac{favorable \: outcomes}{total \: outcomes} = \frac{4}{9} [/tex]
=============================================================
Explanation:
The probability you get a black marble on the first selection is 2/3 since we have 2 black marbles out of 2+1 = 3 total.
We put the marble back and then we have 2/3 as the probability of selecting another black marble on the second try. Nothing has changed because we put the marble back. That means the events are independent.
So we get (2/3)*(2/3) = 4/9 as the probability of selecting 2 black marbles in a row (with replacement).
Mrs.Montana has five students namely:rodley,cristina,christian,elsa and made .Count all the letters in each name.In which of the following sets the order of the names least to greatest.
ARodley,cristina,Christian,mae,elsa
Bcristina,Christian elsa mae rodley
c Mae elsa rodley cristina Christian
D Christian Cristina rodley mae elsa
Answer:
C
Step-by-step explanation:
Mae, Elsa, Rodley, Cristina, Christian
PLEASE HELP ASAPPP!! I WILL GIVE BRAINLIEST AND POINTS!!
The safety inspector notes that Ray also needs to plan for a vertical ladder through the center of the coaster's parabolic shape for access to the coaster to perform safety repairs. Find the vertex and the equation for the axis of symmetry of the parabola, showing your work, so Ray can include it in his coaster plan.
f(x) = -x2 - 6x
Answer:
The vertex is at (-3, 9).
The axis of symmetry is x = -3.
Step-by-step explanation:
We have the function:
[tex]f(x)=-x^2-6x[/tex]
And we want to determine its vertex and the equation of its axis of symmetry.
The vertex can be found with the following formulas:
[tex]\displaystyle \text{Vertex}=\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)[/tex]
In this case, a = -1, b = -6, and c = 0.
Find the x-coordinate of the vertex:
[tex]\displaystyle x=-\frac{(-6)}{2(-1)}=-3[/tex]
To find the y-coordinate substitute this value back into the function:
[tex]\displaystyle f\left(-\frac{b}{2a}\right)=f(-3)=-(-3)^2-6(-3)=9[/tex]
So, the vertex of the equation is (-3, 9).
The axis of symmetry is goes through the vertex point. So, the equation for the axis of symmetry is simply the x-value. Therefore, the equation is:
[tex]x=-3[/tex]
Step-by-step explanation:
you can arrange f(x) as :
f(x) = 3(x^2 +3x ) +12 = 3 (x +1.5) ^2 + 5.25
so you can see the vertex is at (0,5.25) when x =-1.5
the axis symmetry then lies in x =-1.5
14.32 × 1.2,...........
Answer:
17.18400
Step-by-step explanation:
When rounded to the nearest whole number, it's 17.
Hope this helped :)
In randomly generated list of numbers from 0 to 4, the chance that each
number can occur is
1/4
Answer:
Foss
Step-by-step explanation:
What is the sum of the interior
angle measures of a polygon
that has 20 sides?
Sum = [?]"
Hint: Sum = (n-2)180
Step-by-step explanation:
if N= given Side then,
(20-2)180
18×180
3240° Answer
Answer:
n=20 side
sum=(n-2)180
=(20-2)180
=(18)180
=3240
Which sum or difference is modeled by the algebra tiles?
A. (x2 − 2x + 3) − (-x2 − 4x − 2) = 2x − 1
B. (x2 − 2x − 3) + (x2 − 4x + 2) = 2x − 1
C. (x2 − 2x − 3) − (x2 + 4x + 2) = 2x − 1
D. (x2 − 2x − 3) + (-x2 + 4x + 2) = 2x – 1
im solving now almost done
Answer:
b.) (x2 − 2x − 3) + (x2 − 4x + 2) = 2x − 1
;)
Which represents a quadratic function?
f(x) = -8X^3 – 16x^2 - 4x
f(x) = 3/4+ x^2 - 5
f(x) = 4/x^2-2/x+1
f(x) = 0x^2 - 9x + 7
Answer:
f(x) = 3/4x^2 + 2x -5
quadratic function formula is ax^2+b^2+c
Please please help me I’ve tried soooo many times
value of u = 2
Hope it helps you...
Answer:
u = 2
Step-by-step explanation:
6u + 7 = 29 - 5u
6u + 5u + 7 = 29 - 5u + 5u
11u + 7 = 29
11u + 7 - 7 = 29 - 7
11u = 22
11u ÷ 11 = 22 ÷ 11
u = 2
Only higher experienced need answer theorems all 5 questions. Thank you 200points if repeating the last question.
Answer:
first one : inscribed angles create arc twice their degree
so, 115° created a 230 ° arc
360 - 230 = 130°
that means ∠EDG = 1/2 (130) or 65°
second : ∠ABD = 180 - 112 = 68
The arc created APD is 2 times ∠ABD or 136°, therefore ∠x = 136°.
Central Angles and arcs are equal
360° - 136° = 224°
224° is the arc created by ∠APD. Take 1/2 of 224° and you get 112°
Third: ∠ACB and ∠ AOB create the same arc.
since ∠ACB is 48°, the arc is 96° (twice the angle)
if the arc is 98° then the central angle ∠AOB = 98°
360°-98° = 262°
You need this because ∠APB is 1/2(262-98) or 82°
Fourth : Both inscribed angles create the same arc
so the angles are equal
∠DEG = 38°
Answer:
15° created a 230 ° arc
360 - 230 = 130°
that means ∠EDG = 1/2 (130) or 65°
second : ∠ABD = 180 - 112 = 68
The arc created APD is 2 times ∠ABD or 136°, therefore ∠x = 136°.
Central Angles and arcs are equal
360° - 136° = 224°
224° is the arc created by ∠APD. Take 1/2 of 224° and you get 112°
Third: ∠ACB and ∠ AOB create the same arc.
since ∠ACB is 48°, the arc is 96° (twice the angle)
if the arc is 98° then the central angle ∠AOB = 98°
360°-98° = 262°
You need this because ∠APB is 1/2(262-98) or 82°
Fourth : Both inscribed angles create the same arc
so the angles are equal
∠DEG = 38°
Step-by-step explanation:
Find the distance between the pair of points: (0,1) and (1,0)
Answer:
sqrt(1^2 + 2^2)
[tex]\sqrt{2}[/tex]
Step-by-step explanation:
4/3/8
pls help
i will mark brainliest
Answer:
umm can you be more specific
Step-by-step explanation:
Answer:
32/3
Step-by-step explanation:
4 ÷ 3/8
4 3
___ ÷ ___ (reciprocal method, then change the operation to multiplication)
1 8
4 8
___ × ___ (multiply)
1 3
= 32/3
since 32/3 is already reduced, the final answer would be 32/3.
Suppose a certain state university's college of business obtained the following results on the salaries of a recent graduating class:
Finance Majors Business Analytics Majors
n1 = 140 n2 = 30
x1 = $48,237 x2 = $55,417
s1 = $19,000 s2 = $10,000
Required:
a. Formulate hypotheses so that, if the null hypothesis is rejected, we can conclude that salaries for Finance majors are significantly lower than the salaries of Business Analytics majors. Use α = 0.05. (Let μ1 = the population mean salary for Finance majors, and let μ2 = the population mean salary for Business Analytics majors.
b. What is the value of the test statistic?
c. What is the p-value? (Round your answer to four decimal places.)
d. What is your conclusion?
Answer:
Following are the responses to the given choice:
Step-by-step explanation:
For point a:
[tex]H_0: \mu_1 - \mu_2 = 0\\\\ H_1: \mu_1 - \mu_2 < 0[/tex]
For point b:
[tex]t = -2.953[/tex]
For point c:
[tex]\to p- value = 0.0021[/tex]
For point d:
Reject [tex]H_o[/tex]. It could deduce that the pay of higher banking is considerably lower than the pay of higher project management.
HELPP PLSS ILL MARK BRIANLIEST
Answer:
128cm
Step-by-step explanation:
Your Welcome :)
Raymond is designing a ceramic pot on a coordinate system where each unit corresponds to 1 millimeter. The neck of the
pot has edges with the shape of a hyperbola, where the asymptotes y = 2.75x and y = -2.75x are followed. If the closest
that any part of the neck edges comes to the center of the neck is 32 millimeters, write an equation for the hyperbola used
to model the edges.
9514 1404 393
Answer:
x^2/1024 -y^2/7744 = 1
Step-by-step explanation:
The parent hyperbola relation is ...
x^2 -y^2 = 1
This has asymptotes of y = ±x and x-intercepts of ±1.
For the given hyperbola, we want to scale x by a factor of 32, and y by a factor that is 2.75 times that, or 88. Then the equation could be written as ...
(x/32)^2 -(y/88)^2 = 1
More conventionally, the denominator is shown at full value:
x^2/1024 -y^2/7744 = 1
Question: An expression is shown below: f(x) = x^2 – 6x + 5
Part A: What are the x-intercepts of the graph of f(x)? Show your work.
Part B: Is the vertex of the graph of f(x) going to be a maximum or minimum? What are the coordinates of the vertex? Justify your answers and show your work.
Part C: What are the steps you would use to graph f(x)? Justify that you can use the answers obtained in Part A and Part B to draw the graph.
Answer:
x-int > 1 and 5
vertex > 3,4
maximum
Step-by-step explanation:
you have to factor the equation(x-1)(x-5) > xint is 1 and 5
A particle sits on a smooth surface and is acted upon by a time dependent horizontal force, giving it an
acceleration of a = 2t
2 + 4t where t is in seconds. Given that it is initially at rest and experiences no resistance
to motion, find:
a) The velocity of the particle at time t.
b) The distance travelled by the particle if acted on by the force for 8s
(a) By the fundamental theorem of calculus,
v(t) = v(0) + ∫₀ᵗ a(u) du
The particle starts at rest, so v(0) = 0. Computing the integral gives
v(t) = [2/3 u ³ + 2u ²]₀ᵗ = 2/3 t ³ + 2t ²
(b) Use the FTC again, but this time you want the distance, which means you need to integrate the speed of the particle, i.e. the absolute value of v(t). Fortunately, for t ≥ 0, we have v(t) ≥ 0 and |v(t) | = v(t), so speed is governed by the same function. Taking the starting point to be the origin, after 8 seconds the particle travels a distance of
∫₀⁸ v(u) du = ∫₀⁸ (2/3 u ³ + 2u ²) du = [1/6 u ⁴ + 2/3 u ³]₀⁸ = 1024