draw the lewis structure for sf4. what is the hybridization and formal charge on the sulfur? a. sp3, 1 b. sp3d2, 0 c. sp3d, 1 d. sp3d, 0 e. sp3, 0

Answers

Answer 1

The Lewis structure for SF4 shows that there are four single bonds between sulfur and fluorine atoms, with one lone pair of electrons on sulfur. This gives a total of five electron pairs around sulfur, indicating that the hybridization of the sulfur is d. sp3d, 0 formal charges on the sulfur.

                    ..

F  --------------S--------------  F

                /       \

            F             F

For sulfur in SF4, the valence electrons are 6 (from the periodic table), there is one lone pair of electrons on sulfur, and each fluorine atom contributes one bonding electron pair.

The unbonded electrons =  2

The bonded electrons = 8

To calculate the formal charge on sulfur, we can use the equation:

Formal charge = valence electrons - unbonded electrons - 1/2(bonding electrons)

Putting the values in the equation;

6 - 2 - 8/2 = x

6 - 2 - 2 = +4

Therefore, the formal charge on sulfur is 0.

So, the correct answer is (d) sp3d, 0.

To know more about formal charges, click below.

https://brainly.com/question/11723212

#SPJ11


Related Questions

Consider the following reaction between oxides of nitrogen: NO2(g)+N2O(g)?3NO(g)
Part A
Use data in Appendix C in the textbook to predict how ?G? for the reaction varies with increasing temperature.

Answers

The reaction is spontaneous at all temperatures, so ?G? decreases as temperature increases.

Appendix C provides standard free energy of formation values for various compounds at 298 K. Using these values, we can calculate the standard free energy change (?G°) for the reaction at 298 K. The value of ?G° is negative, indicating that the reaction is spontaneous under standard conditions. Since ?G° is negative, ?G will decrease with increasing temperature according to the equation ?G = ?H - T?S. As the temperature increases, the positive T?S term becomes more dominant, causing ?G to decrease. Therefore, the reaction remains spontaneous at all temperatures, and ?G becomes more negative as the temperature increases.

Learn more about reaction here:

https://brainly.com/question/28984750

#SPJ11

stastart on the single atom tab. observe the decay of polonium-211. after each decay, press the reset nucleus button to watch the process again. write a description of alpha decay for po-211

Answers

Polonium-211 is a radioactive element that undergoes alpha decay.

Alpha decay is a type of radioactive decay where the nucleus emits an alpha particle, which is made up of two protons and two neutrons. This results in the atomic number of the atom decreasing by two and the mass number decreasing by four.
When observing the decay of polonium-211 on the single atom tab, we can see that after each decay, the reset nucleus button can be pressed to watch the process again. During the alpha decay of po-211, the nucleus emits an alpha particle, which is represented as He-4. This alpha particle is ejected from the nucleus, and the resulting daughter nucleus is radon-207.
The process of alpha decay for po-211 occurs spontaneously because the nucleus of the atom is unstable. This instability is caused by the fact that the nucleus contains too many protons and neutrons, which causes the nucleus to be unable to maintain its structure. In order to become more stable, the nucleus emits an alpha particle and transforms into a new, more stable nucleus.

Overall, the alpha decay of po-211 involves the emission of an alpha particle from the nucleus, resulting in a new, more stable nucleus. This process is a natural occurrence that is observed in many radioactive elements.

To learn more about atom:

https://brainly.com/question/1566330

#SPJ11

A photon with enough energy, 5.1 electron volts (eV) of energy -to be precise, will eject an electron from a piece of gold! What frequency and wavelength does light with this energy have? Note: 1eV = 1.60 × 10-19 joules

Answers

Frequency: 1.20 × [tex]10^1^5[/tex] Hz, Wavelength: 249 nm. Calculated using the energy-frequency relationship (E = h * f) and the speed of light-wavelength relationship (c = λ * f).

solution:

Given:

Energy of the photon = 5.1 eV = 5.1 × 1.60 × [tex]10^-^1^9[/tex] J

Speed of light, c = 3.00 × [tex]10^8[/tex] m/s

We can use the energy-frequency relationship for photons:

E = h * f

Where:

E = energy of the photon

h = Planck's constant = 6.63 × [tex]10^-^3^4[/tex] J*s

f = frequency of the photon

Rearranging the equation, we can solve for the frequency:

f = E / h

Substituting the given values:

f = (5.1 × 1.60 × [tex]10^-^1^9[/tex]) / (6.63 × [tex]10^-^3^4[/tex])

 ≈ 1.20 × [tex]10^1^5[/tex] Hz

To find the wavelength, we can use the speed of light-wavelength relationship:

c = λ * f

Where:

c = speed of light

λ = wavelength

Rearranging the equation, we can solve for the wavelength:

λ = c / f

Substituting the known values:

λ = (3.00 × [tex]10^8[/tex]) / (1.20 × [tex]10^1^5[/tex])

 ≈ 249 nm

Therefore, light with an energy of 5.1 eV has a frequency of approximately 1.20 × [tex]10^1^5[/tex] Hz and a wavelength of approximately 249 nm.

For more such questions on Frequency, click on:

https://brainly.com/question/29425795

#SPJ11

The frequency of the photon is 1.23 × 10^16 Hz and the wavelength is 2.42 × 10^-7 meters.

To calculate the frequency of the photon, we can use the formula E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. Rearranging this formula gives us f = E/h. Substituting the values, we get[tex]f = (5.1 × 1.60 × 10^-19)/6.63 × 10^-34 = 1.23 × 10^16 Hz.[/tex]

To calculate the wavelength of the photon, we can use the formula c = λf, where c is the speed of light, λ is the wavelength, and f is the frequency of the photon. Rearranging this formula gives us λ = c/f. Substituting the values, we get[tex]λ = 3 × 10^8/1.23 × 10^16 = 2.42 × 10^-7 meters.[/tex]

Therefore, the light with energy of 5.1 eV has a frequency of 1.23 × 10^16 Hz and a wavelength of 2.42 × 10^-7 meters.

Learn more about electron volts  here:

https://brainly.com/question/31779681

#SPJ11

isopentyl acetate (shown here) is used as a flavoring agent in food. its fragrance is that of bananas. what functional group(s) is(are) present in this compound?

Answers

The functional group present in isopentyl acetate is an ester.

Esters are organic compounds that contain a carbonyl group (C=O) bonded to an oxygen atom, which is then bonded to an alkyl or aryl group. In the case of isopentyl acetate, the ester functional group is formed by the combination of an alcohol group from isopentyl alcohol and an acetyl group from acetic acid.

Esters are known for their pleasant and distinctive fragrances, and isopentyl acetate is no exception. Its fragrance is often described as similar to bananas. This fruity aroma is attributed to the presence of the ester functional group in the compound.

Esters are commonly used as flavoring agents in the food industry due to their pleasant smells and tastes. They contribute to the characteristic flavors of various fruits, including bananas, strawberries, and pineapples.

In summary, isopentyl acetate, which imparts a banana fragrance, contains an ester functional group. Esters are responsible for the fruity aroma and are widely used as flavoring agents in food products.

Learn more about carbonyl group here:

https://brainly.com/question/28213406

#SPJ11

What are the products (if any) formed from mixing aluminum oxide with molten iron?

Answers

When aluminum oxide (Al2O3) is mixed with molten iron (Fe) in a thermite reaction, the following chemical reaction takes place:

2Al2O3 + 3Fe → 3FeO + 4Al

In this reaction, the aluminum oxide is reduced to aluminum metal, and the iron is oxidized to iron(III) oxide (Fe2O3).

The aluminum and iron(III) oxide then react to form iron and aluminum oxide.

Therefore, the products formed from mixing aluminum oxide with molten iron are iron and iron(III) oxide (Fe2O3),as well as any remaining aluminum oxide that did not react.

To know more about aluminum oxide (Al2O3) refer here

https://brainly.com/question/7973915#

#SPJ11

What is the boiling point in celsius of a .321 m aqueous solution of nacl?

Answers

The boiling point of a solution depends on the concentration of the solute particles in the solution.

The boiling point elevation (ΔTb) can be calculated using the following equation:

ΔTb = Kb × molality

where Kb is the molal boiling point elevation constant of the solvent (water, in this case), and molality is the concentration of the solute in moles per kilogram of solvent.

For water, Kb is equal to 0.512 °C/m.

To calculate the boiling point elevation caused by the NaCl in the solution, we need to first determine the molality of the solution.

The molality (m) can be calculated using the following equation:

m = moles of solute / mass of solvent (in kg)

Assuming that we have 1 kg of water as the solvent (since the mass of solute is much smaller than the mass of solvent), the moles of NaCl in the solution can be calculated as:

moles of NaCl = 0.321 mol/L × 1 L = 0.321 mol

The mass of solvent (water) is 1 kg.

So, the molality of the solution is:

m = 0.321 mol / 1 kg = 0.321 mol/kg

Now we can calculate the boiling point elevation caused by the NaCl:

ΔTb = Kb × molality

ΔTb = 0.512 °C/m × 0.321 mol/kg = 0.164 °C

This means that the boiling point of the NaCl solution is 0.164 °C higher than the boiling point of pure water, which is 100 °C at standard atmospheric pressure. Therefore, the boiling point of the solution is:

Boiling point = 100 °C + 0.164 °C = 100.164 °C

So the boiling point of a 0.321 m aqueous solution of NaCl is 100.164 °C.

To know more about boiling point elevation (ΔTb) refer here

https://brainly.com/question/30481261#

#SPJ11

how many moles of electrons are transferred in the electrochemical reaction represented by the balanced equation 3mn(s) 2au3 (aq) → 3mn2 (aq) 2au(s)?

Answers

In the electrochemical reaction represented by the balanced equation 3Mn(s) + 2Au₃⁺(aq) → 3Mn₂+(aq) + 2Au(s), a total of 6 moles of electrons are transferred.

The balanced equation provides the stoichiometric coefficients of the reactants and products, which represent the mole ratios in the reaction. In this case, the coefficient of Mn(s) is 3, and the coefficient of Au³⁺(aq) is 2. This means that for every 3 moles of Mn atoms and 2 moles of Au⁺ ions involved in the reaction, 3 moles of Mn²⁺ ions and 2 moles of Au atoms are produced.

Since the balanced equation does not specify the number of electrons involved in the transfer, we need to consider the changes in oxidation states of the elements to determine the number of electrons spectator ions transferred. In this reaction, each Mn atom loses 2 electrons, going from an oxidation state of 0 to +2, while each Au³⁺ ion gains 3 electrons, going from an oxidation state of +3 to 0.

Therefore, for every 3 moles of Mn atoms that lose 2 electrons each and 2 moles of Au³⁺ ions that gain 3 electrons each, a total of 6 moles of electrons are transferred in the reaction.

Learn more about spectator ions here

https://brainly.com/question/31749911

#SPJ11

Two complex ions exhibit the following absorption maxima Complex A, 701 nm Complex B, 415 nm Which of the following is correct based on this data? Complex B will appear blue Complex A will appear green Complex B will appear purple. Complex A will appear red.

Answers

Based on the given data, Complex A will appear green.

Why Complex A will appear green?

Based on the absorption maxima provided, Complex A will appear green. The absorption maxima represent the wavelengths of light that are most strongly absorbed by the complex ions. Complex A has an absorption maxima at 701 nm, indicating that it absorbs light in the red region of the visible spectrum. According to the subtractive color model and the concept of complementary colors, the color observed is the complementary color of the absorbed light. In this case, since Complex A absorbs red light, which is located opposite to green on the color wheel, the observed color will be green.

This phenomenon can be explained by the fact that when light interacts with a substance, certain wavelengths are selectively absorbed while others are transmitted or reflected. The absorbed wavelengths contribute to the color that is perceived, while the transmitted or reflected wavelengths determine the color that is observed. In the case of Complex A, the absorption of red light results in the perception of its complementary color, green.

Learn more about absorption

brainly.com/question/30697449

#SPJ11

calculate the vapor pressure in a sealed flask containing 15.0 g of glycerol, c3h8o3 , dissolved in 105 g of water at 25.0°c.

Answers

The vapor pressure in a sealed flask containing 15.0 g of glycerol, C₃H₈O₃, dissolved in 105 g of water at 25.0°c is approximately 23.10 mmHg.

To calculate the vapor pressure in the sealed flask, we need to use the Raoult's Law formula: P_solution = X_water * P_water, where X_water is the mole fraction of water in the solution, and P_water is the vapor pressure of pure water at 25.0°C.

First, calculate the moles of glycerol and water:
- Glycerol (C₃H₈O₃) has a molar mass of 92.09 g/mol: moles of glycerol = 15.0 g / 92.09 g/mol = 0.163 moles
- Water (H₂O) has a molar mass of 18.01 g/mol: moles of water = 105 g / 18.01 g/mol = 5.83 moles

Next, calculate the mole fraction of water (X_water):
X_water = moles of water / (moles of water + moles of glycerol) = 5.83 / (5.83 + 0.163) = 0.973

Now, use the vapor pressure of pure water at 25.0°C, which is approximately 23.76 mmHg:
P_solution = X_water * P_water = 0.973 * 23.76 mmHg = 23.10 mmHg

Thus, the vapor pressure in the sealed flask containing 15.0 g of glycerol is approximately 23.10 mmHg.

Learn more about Raoult's Law here: https://brainly.com/question/28304759

#SPJ11

an aqueous solution is 6.00 y mass ethanol, ch3ch2oh, and has a density of 0.988 g/ml. the mole fraction of ethanol in the solution is

Answers

The mole fraction of ethanol in the solution is found to be  0.0244.

How do we calculate?

The mole fraction of ethanol is found below:

n = mass of ethanol / molar mass of ethanol

n = 6.00 g / 46.07 g/mol

n = 0.1305 mol

We then find the number of moles of water:

n for water = mass of water / molar mass of water

n for water = 94.00 g / 18.02 g/mol

n for water = 5.216 mol

The total number of moles in the solution is:

n  = 0.1305 mol + 5.216 mol

n = 5.3465 mol

We find the mole fraction of ethanoas;

mole fraction of ethanol = n of ethanol / total moles

mole fraction of ethanol = 0.1305 mol / 5.3465 mol

mole fraction of ethanol = 0.0244

Learn more about mole fraction at:

https://brainly.com/question/1601411

#SPJ4

2.) A particular unknown element is isolated and put into a reactor vessel it is reacted with various metals and non-metals where no chemistry occurs. It is then heated up: it produces an incredibly powerful blue llet However, overall, it is still unreactive with other elements. What is the likely identity of the unknown element from the following species: F, Zn, Be, Rb, Cu, Se, & xe.

Answers

Based on the given information about the unknown element in a reactor vessel, its reactions with metals and non-metals, and its properties when heated, the likely identity of the unknown element is Xe (Xenon).

The fact that it does not react with other elements and produces a blue light when heated is a characteristic of inert gases. Additionally, the fact that it did not react with both metals and non-metals suggests that it is not an active element, further supporting the idea that it is an inert gas.


Xenon is a noble gas, which explains its unreactive behavior with other elements. Noble gases have a full valence electron shell, making them stable and unreactive with metals and non-metals. The production of a powerful blue light when heated is also characteristic of Xenon, as it emits light when its electrons return to their ground state after being excited by heat.

Learn more about metals at https://brainly.com/question/26984331

#SPJ11

consider the following reaction: i2(g) cl2(g) ⇌ 2icl(g)i2(g) cl2(g) ⇌ 2icl(g) kp=kp= 81.9 at 25 ∘ c∘ c. calculate δgrxnδgrxn for the reaction at 25 ∘ c∘ c under each of the following conditions.

Answers

The value of ΔG°rxn for the given reaction at 25°C can be calculated using the equation ΔG°rxn = -RT ln(Kp), which is -15.9 kJ/mol.

How can find the value of ΔG°rxn for reaction at 25°C?

The value of ΔG°rxn for a reaction of temperature is a measure of the amount of free energy change associated with the reaction at standard conditions. The standard conditions typically include a temperature of 25°C, a pressure of 1 bar, and a concentration of 1 mol/L for each of the reactants and products.

In order to calculate ΔG°rxn for the given reaction, we first need to determine the equilibrium constant Kp at 25°C, which is given as 81.9. We can then use the equation ΔG°rxn = -RT ln(Kp) to calculate the value of ΔG°rxn. Here, R is the gas constant (8.314 J/K·mol), T is the temperature in Kelvin (298 K), and ln denotes the natural logarithm.

Substituting the given values into the equation, we get ΔG°rxn = -8.314 J/K·mol × 298 K × ln(81.9) = -15.9 kJ/mol. This negative value indicates that the reaction is spontaneous and exergonic, meaning that it releases free energy.

Learn more about temperature

brainly.com/question/11464844

#SPJ11

what is the process to determine the number of neutrons in an atom? data sheet and periodic table number of neutrons = a number of neutrons = z number of neutrons = a – z number of neutrons = z – a

Answers

The number of neutrons in an atom can be determined using the formula: number of neutrons = mass number (a) - atomic number (z).

The mass number of an atom is equal to the sum of its protons and neutrons, which can be found on the periodic table or a data sheet. The atomic number, also found on the periodic table, represents the number of protons in an atom.

By subtracting the atomic number from the mass number, we can determine the number of neutrons in the atom. Alternatively, the number of neutrons can also be determined by subtracting the atomic number from the mass number, although this is less commonly used.

Knowing the number of neutrons in an atom is important for understanding its properties and behavior in chemical reactions.

To know more about neutrons, refer here:

https://brainly.com/question/15120322#

#SPJ11

Balance the following equation, and identify the oxidizing and reducing agents.Pb(OH)2−4(aq)+ClO−(aq)→PbO2(s)+Cl−(aq)

Answers

The balanced equation is:

Pb(OH)₂⁻⁴(aq) + 4ClO(aq) → PbO₂(s) + 4Cl(aq) + 2H₂O(l)

In this reaction, Pb(OH)₂ is oxidized to PbO₂, while ClO⁻ is reduced to Cl−. Therefore, the oxidizing agent is ClO⁻, and the reducing agent is Pb(OH)₂⁻⁴.

To know more about refer balanced equation here

brainly.com/question/12192253#

#SPJ11

In the beta decay reaction: , determine the times required for the number of original atoms to be reduced by 25, 50 and 75%, given the half-life of Pb214 is 26. 8 minutes. In the beta decal reaction,  is the neutrino that results from the reaction

Answers

It takes 45.97 minutes, 26.58 minutes, and 92.93 minutes to reduce the number of initial atoms by 25%, 50%, and 75%, respectively.

Beta decay reaction is an example of nuclear decay. The half-life of the given radioactive element Pb214 is given as 26.8 minutes. The values of time required for the number of original atoms to be reduced by 25%, 50%, and 75% can be determined by using the following formula: If N is the number of radioactive atoms present initially, then the number of radioactive atoms left after time t is given as:N = N0 e(-λt)Where, N0 is the initial number of radioactive atoms, λ is the decay constant, and t is the time.

The half-life of the element can be calculated as follows:T1/2 = 0.693/λ= 0.693/0.026 = 26.58 minutesLet's calculate the number of radioactive atoms left after 1 half-life, i.e. after 26.8 minutes.Now, the number of radioactive atoms left can be calculated using the formula:N = N0 e(-λt)N/N0 = e(-λt)0.5 = e(-λ × 26.8)λ = 0.693/26.8 = 0.02585 minutes⁻¹Using this value of λ, the times required for the number of original atoms to be reduced by 25%, 50%, and 75% can be calculated as follows:For 25% reduction:N/N0 = 0.75 = e(-0.02585 t)t = 45.97 minutesFor 50% reduction:N/N0 = 0.50 = e(-0.02585 t)t = 26.58 minutesFor 75% reduction:N/N0 = 0.25 = e(-0.02585 t)t = 92.93 minutes Hence, the times required for the number of original atoms to be reduced by 25%, 50%, and 75% are 45.97 minutes, 26.58 minutes, and 92.93 minutes respectively.

Learn more about atoms here:

https://brainly.com/question/1566330

#SPJ11

How many liters of gas B must react to give 1 L of gas D at the same temperature and pressure? Express your answer as an integer and include the appropriate units.

Answers

One liter of gas D can be produced by reacting one liter of gas B at the same temperature and pressure.

What is the volume of gas B required to produce one liter of gas D at the same temperature and pressure?

To produce gas D from gas B, the reaction must be carried out in a 1:1 stoichiometric ratio. This means that one mole of gas D is produced for every mole of gas B consumed in the reaction. Since both gases are at the same temperature and pressure, the volume ratio can be directly equated to the mole ratio. Therefore, one liter of gas B must react to give one liter of gas D.

It is important to note that the above relationship only holds true for the specific reaction in question. If the reaction were to involve different gases or conditions, the stoichiometric ratio and volume relationship would differ.

Learn more about stoichiometric ratio

brainly.com/question/6907332

#SPJ11

in-lab question 6. write out the rate law for the reaction 2 i − s2o82- → i2 2 so42-. (rate expressions take the general form: rate = k . [a]a . [b]b.) chempadhelp

Answers

The rate law for the reaction [tex]2 I^- + S_2O_8^{2-} = I_2 + 2 SO_4^{2-[/tex] is:

rate = [tex]k[I^-]^2[S_2O_8^{2-}][/tex]

where k is the rate constant and [[tex]I^-[/tex]] and [[tex]S_2O_8^{2-}[/tex]] represent the concentrations of iodide and persulfate ions, respectively. The exponent of 2 on [[tex]I^-[/tex]] indicates that the reaction is second-order with respect to iodide ion concentration.

The exponent of 1 on [[tex]S_2O_8^{2-}[/tex]] indicates that the reaction is first-order with respect to persulfate ion concentration.

The exponents on the concentrations in the rate law equation represent the order of the reaction with respect to each reactant. In this case, the exponent of 2 on [[tex]I^-[/tex]] indicates that the reaction is second-order with respect to iodide ion concentration.

This means that doubling the concentration of iodide ions will quadruple the rate of the reaction, all other factors being equal.

For more question on rate law click on

https://brainly.com/question/16981791

#SPJ11

determine whether each molecule or polyatomic ion in nonpolar? co2 , i2 , sif4

Answers

All three compounds (CO2, I2, and SiF4) are nonpolar due to their symmetric structures and the cancellation of their dipole moments.

Hi! I'm happy to help you determine the polarity of the given molecules and polyatomic ions. The three compounds you mentioned are CO2 (carbon dioxide), I2 (iodine), and SiF4 (silicon tetrafluoride).
1. CO2: Carbon dioxide is a linear molecule with a central carbon atom bonded to two oxygen atoms. Due to the symmetrical distribution of the oxygen atoms and their equal electronegativities, the dipole moments cancel out, making CO2 a nonpolar molecule.
2. I2: Iodine forms a diatomic molecule with two iodine atoms bonded together. Since both atoms are the same element, they share an equal electronegativity, which means that there is no unequal distribution of electrons. Thus, I2 is a nonpolar molecule.
3. SiF4: Silicon tetrafluoride is a tetrahedral molecule with a central silicon atom bonded to four fluorine atoms. The fluorine atoms are arranged symmetrically around the silicon atom, causing the dipole moments to cancel each other out. As a result, SiF4 is also considered a nonpolar molecule.
In summary, all three compounds (CO2, I2, and SiF4) are nonpolar due to their symmetric structures and the cancellation of their dipole moments.

To know more about molecule visit :

https://brainly.com/question/16555534

#SPJ11

when atp is hydrolyzed to adp and phosphate, 7.3 kcal/mol of free energy is released. at least how many atp would need to be linked to a biosynthetic process that took up a total of 25 kcal/mol?

Answers

We need at least 12 ATP molecules to be linked to the biosynthetic process that requires 25 kcal/mol of energy.

To answer this question, we need to use the concept of energy coupling, which involves coupling energetically unfavorable reactions (i.e., those that require an input of energy) with energetically favorable reactions (i.e., those that release energy).

In this case, the biosynthetic process requires an input of 25 kcal/mol, which is energetically unfavorable. To make this process happen, we need to couple it with the hydrolysis of ATP, which releases 7.3 kcal/mol of free energy.

The number of ATP molecules required can be calculated using the following equation: ΔG = ΔG° + RT ln([ADP][Pi]/[ATP])

Where:

ΔG = change in free energy

ΔG° = standard free energy change

R = gas constant

T = temperature

[ADP], [Pi], and [ATP] = concentrations of ADP, phosphate, and ATP, respectively

We can assume that the concentrations of ADP and phosphate are constant, so the equation can be simplified to: ΔG = ΔG° + RT ln([ATP])

Solving for [ATP]: [ATP] = e^((ΔG - ΔG°)/(RT))

Substituting the values given: [ATP] = e((25 - 7.3)/(1.987 x 298)) ≈ 11.3

learn more about energy coupling here:

https://brainly.com/question/3153985

#SPJ11

A gas with an initial pressure of 1200 torr at 155 C is cooled to 0 C. What is the final pressure ?

Answers

Answer:We are given: • P1P1 = 1200 torr. • T1T1 = 155 oCoC = 428 K

Explanation:)

According to MO theory, F2 would (A) have a bond order of 1 and be diamagnetic. (C) have a bond order of 2 and be diamagnetic. (B) have a bond order of 1 and be paramagnetic. (D) have a bond order of 2 and be paramagnetic.

Answers

According to MO theory, F2 would have a bond order of 1 and be diamagnetic. The correct option is A.

The molecular orbital (MO) theory can be used to determine the electronic structure and properties of molecules, including their bond orders and magnetic properties.

In the case of F2, each F atom has 7 valence electrons in its atomic orbitals (1s² 2s² 2p⁵), giving a total of 14 valence electrons for the molecule.

The molecular orbital diagram for F2 can be constructed by combining the 2s and 2p atomic orbitals of each F atom to form molecular orbitals. The diagram would have two electrons in the σ2s bonding orbital, two electrons in the σ2s antibonding orbital, four electrons in the σ2p bonding orbital, and four electrons in the σ2p antibonding orbital.

Counting the electrons in the bonding orbitals and subtracting the electrons in the antibonding orbitals, we get the bond order:

Bond order = 1/2[(number of bonding electrons) - (number of antibonding electrons)]

Bond order = 1/2[(2+4) - (2+4)]

Bond order = 0

Since the bond order of F2 is zero, it is not expected to exist as a stable molecule.

However, if we were to hypothetically assume that F2 exists as a molecule, then based on the bond order of zero, we would expect it to have weak forces of attraction between the two F atoms, and to be a relatively unstable and reactive species.

In addition, since there are no unpaired electrons in the molecule, it would be diamagnetic.

Therefore, the correct answer is (A) F2 would have a bond order of 1 and be diamagnetic.

To know more about MO theory, refer to the link below:

https://brainly.com/question/31117195#

#SPJ11

If 120. 17 g of solid silicon dioxide react with 72. 1g of soils mono-atomic carbon and form the products measuring 80. 193 g of silicon carbide what if the predicted recovery of the second product carbon monoxide

Answers

The mass of carbon monoxide  is -1434.8987 g, which is negative, it indicates that there is a deficit of carbon. This suggests that the reaction did not produce enough carbon monoxide to account for the carbon present in the reactants.

The predicted recovery of the second product, carbon monoxide, can be calculated using the principle of conservation of mass. To do this, we need to determine the total mass of carbon present in the reactants and compare it to the mass of carbon monoxide produced.

First, calculate the total mass of carbon in the reactants:

Total mass of carbon = mass of carbon in silicon dioxide + mass of carbon in carbon

Mass of carbon in silicon dioxide = (mass of silicon dioxide) * (mol of carbon in silicon dioxide) * (molar mass of carbon)

Mass of carbon in silicon dioxide = 120.17 g * (1/1) * 12.01 g/mol = 1442.9917 g

Mass of carbon in carbon = 72.1 g

Total mass of carbon = 1442.9917 g + 72.1 g = 1515.0917 g

Next, calculate the mass of carbon monoxide produced:

Mass of carbon monoxide = mass of carbon in carbon dioxide - total mass of carbon

Mass of carbon monoxide = 80.193 g - 1515.0917 g = -1434.8987 g

Since the mass of carbon monoxide is negative, it indicates that there is a deficit of carbon. This suggests that the reaction did not produce enough carbon monoxide to account for the carbon present in the reactants.

LEARN MORE ABOUT reactants here: brainly.com/question/32459503

#SPJ11

rank the following compounds in decreasing (strongest to weakest) order of basicity. group of answer choices i>iii>ii>iv iii>ii>i>iv iv>iii>ii>i ii>iii>i>iv iv>ii>iii>iv previousnext

Answers

The following radicals in order of decreasing stability, putting the most stable first:  CH₃CH₂ (Primary Radical) > H₂C=CHCH₂ (Allylic Radical)

> CH₃CHCH₃ (Secondary Radical) > (CH₃)₃C (Tertiary Radical)

Radicals are generally more stable when they have more substituents attached to the carbon atom with the unpaired electron. This is because the electron delocalization helps stabilize the molecule. The order of stability for these radicals is:

Tertiary (IV) > Secondary (III) > Allylic (II) > Primary (I)

When three bulky groups are attached to the carbon it is a tertiary radical, when two bulky groups attached it is secondary radical and when only one bulky group is attached, it is a primary radical.

To know more about radical here

https://brainly.com/question/17192138

#SPJ4

The complete question should be

rank the following radicals in order of decreasing stability, putting the most stable first.i. CH3CH₂ ii. H₂C=CHCH₂ iii. CH3CHCH3 IV. (CH3)3CA. II>IV>III>IB. III>II>IV>IC. IV>III>II>ID. IV>III>I>II

consider the function f(x) = ( 0, x < 0 c 4 x 2 , x ≥ 0 for what value of c will f(x) be a probability density function?

Answers

The only value of c that would make the function f(x) a probability density function is c = 0.

How to find c for probability density?

The function f(x) cannot be a probability density function if c is any non-zero value. A probability density function must satisfy two conditions: it must be non-negative for all values of x, and its integral over all possible values of x must be equal to 1.

However, in this case, the function f(x) is equal to 0 for all values of x less than 0, so its integral over all possible values of x is equal to 0.

Therefore, the only value of c that would make f(x) a probability density function is c = 0, in which case the function is equal to 0 for all values of x, and its integral over all possible values of x is also equal to 0.

Learn more about probability density

brainly.com/question/29129585

#SPJ11

Determine the number of hydrogen atoms in an alkane with 7 carbon atoms.
number of hydrogen atoms:
Determine the number of hydrogen atoms in an alkene with one carbon-carbon double bond and 11 carbon atoms.
number of hydrogen atoms:
Determine the number of hydrogen atoms in an alkyne with one carbon-carbon triple bond and 3 carbon atoms.
number of hydrogen atoms:

Answers

There are 16 hydrogen atoms in an alkane with 7 carbon atoms.
There are 20 hydrogen atoms in an alkene with one carbon-carbon double bond and 11 carbon atoms.
There are 4 hydrogen atoms in an alkyne with one carbon-carbon triple bond and 3 carbon atoms.

To determine the number of hydrogen atoms in an alkane with 7 carbon atoms, we need to use the formula CnH2n+2, where n is the number of carbon atoms. In this case, n is 7, so the formula becomes C7H16. Therefore, there are 16 hydrogen atoms in an alkane with 7 carbon atoms.
For an alkene with one carbon-carbon double bond and 11 carbon atoms, we use the formula CnH2n. Here, n is 11, so the formula becomes C11H22. However, since there is a carbon-carbon double bond, we need to subtract two hydrogen atoms from the total number of hydrogen atoms. Therefore, there are 20 hydrogen atoms in an alkene with one carbon-carbon double bond and 11 carbon atoms.
For an alkyne with one carbon-carbon triple bond and 3 carbon atoms, we use the formula CnH2n-2. In this case, n is 3, so the formula becomes C3H4. However, since there is a carbon-carbon triple bond, we need to subtract four hydrogen atoms from the total number of hydrogen atoms. Therefore, there are 4 hydrogen atoms in an alkyne with one carbon-carbon triple bond and 3 carbon atoms.

To know more about Carbon Atoms visit:
https://brainly.com/question/2544405
#SPJ11

the product of a reaction between ch3ch2cooh and ch3ch2oh will produce _________ __________. view available hint(s)

Answers

The product of the reaction between CH₃CH₂COOH and CH₃CH₂OH will produce ethyl ethanoate (CH₃COOCH₂CH₃) and water (H₂O).

This is an esterification reaction, which is a type of condensation reaction that occurs between a carboxylic acid and an alcohol in the presence of an acid catalyst, typically sulfuric acid (H₂SO₄).

The reaction involves the removal of a water molecule from the carboxylic acid and alcohol to form the ester and water. Ethyl acetate is a colorless liquid with a fruity odor and is commonly used as a solvent in various applications, such as in the manufacture of coatings, adhesives, and pharmaceuticals.

To know more about the esterification refer here :

https://brainly.com/question/16010744#

#SPJ11

How does having a period maintain homeostasis in your body?

Answers

Having a period (menstruation) is part of the menstrual cycle in females and plays a role in maintaining homeostasis in the body. It helps shed the lining of the uterus, removing excess tissue and blood, which helps regulate hormone levels and prevent the buildup of potentially harmful substances.

Menstruation is a vital part of the menstrual cycle in females, and its purpose is to maintain homeostasis in the body. During a menstrual period, the lining of the uterus is shed, resulting in the elimination of excess tissue and blood from the body. This process helps to regulate hormone levels, specifically estrogen and progesterone, which are involved in various physiological functions.

By shedding the uterine lining, the body prevents the buildup of potentially harmful substances and ensures the renewal of the endometrium for future reproductive processes. Menstruation is an essential mechanism that helps maintain a balanced environment in the uterus and promotes reproductive health and fertility.

LEARN MORE ABOUT homeostasis here: brainly.com/question/15647743

#SPJ11

1)Given the enthalpies of reaction:
S(s)+O2(g)→SO2(g) ΔH= −297kJ
2S(s)+3O2(g)→2SO3(g) ΔH = − 791 k J
Calculate the enthalpy change (ΔH) for the reaction: 2SO2(g)+O2(g)→2SO3(g)
2)Which of the following is correct?
a) The sign of heat (q) is positive when heat is absorbed by a system
b) The sign of heat (q) is negative when heat is absorbed by a system
c) The sign of heat (q) is positive when heat is released by a system
d) No correct answer

Answers

1.  The enthalpy change for the reaction 2SO₂(g) + O₂(g) → 2SO₃(g) the enthalpies of reaction are S(s) + O₂(g) → SO₂(g) ΔH= −297kJ and 2S(s) + 3O₂(g) → 2SO₃(g) ΔH = − 791 k J is -494 kJ..

2. The correct statement is the sign of heat (q) is positive when heat is absorbed by a system (Option A).

1. To calculate the enthalpy change for the reaction 2SO₂(g) + O₂(g) → 2SO₃(g), we need to use Hess's Law, which states that the enthalpy change for a reaction is equal to the sum of enthalpy changes for each step of the reaction.


First, we need to reverse the equation for the formation of SO₂:

SO₂(g) → S(s) + O₂(g)   ΔH = 297 kJ

This gives us:

S(s) + O₂(g) → SO₂(g)   ΔH = +297 kJ

Next, we need to multiply the equation for the formation of SO₃ by 2 and reverse it:

2SO₃(g) → 2S(s) + 3O₂(g)   ΔH = +791 kJ

2S(s) + 3O₂(g) → 2SO₃(g)   ΔH = -791 kJ

Now, we can add the two equations to get the overall equation:

2SO₂(g) + O₂(g) → 2SO₃(g)   ΔH = -494 kJ

Therefore, the enthalpy change for the reaction 2SO2(g) + O2(g) → 2SO3(g) is -494 kJ.

2) When heat is absorbed by a system, the system gains energy and the temperature of the system increases. This results in a positive value for q, representing the heat gained by the system. Conversely, when heat is released by a system, the system loses energy and the temperature of the system decreases. This results in a negative value for q, representing the heat lost by the system.

Thus, the correct answers are

1. -494 kJ

2. A

Learn more about enthalpy change: https://brainly.com/question/29556033

#SPJ11

what is the boiling point of 765 g of glucose (c6h12o6 180 g/mol) dissolved in 1.00 kg of water? kb of h2o: 0.512 °c/m enter a number to 2 decimal places.

Answers

The boiling point of the solution containing 765 g of glucose dissolved in 1.00 kg of water is 100.52°C.

To find the boiling point of the solution, we need to calculate the molality and then use the formula ΔTb = Kb * molality.
1. Calculate molality:
Molality = moles of solute / mass of solvent (in kg)
Moles of glucose = 765 g / (180 g/mol) = 4.25 mol
Mass of water = 1.00 kg
Molality = 4.25 mol / 1.00 kg = 4.25 m
2. Calculate boiling point elevation (ΔTb):
ΔTb = Kb * molality = 0.512 °C/m * 4.25 m = 2.18 °C
3. Find the new boiling point:
New boiling point = normal boiling point of water + ΔTb = 100°C + 2.18°C = 100.52°C

The boiling point of the solution containing 765 g of glucose dissolved in 1.00 kg of water is 100.52°C.

To know more about boiling point, click here

https://brainly.com/question/2153588
#SPJ11

Calculate the volume of concentrated reagent 18M H2SO4 required to prepare 225 ml of 2.0M solution

Answers

Taking into account the definition of dilution, the volume of the concentrated reagent 18M H₂SO₄ required to prepare 225 ml of 2.0M solutionis 25 mL.

Definition of dilution

Dilution is the process of reducing the concentration of solute in solution, which is accomplished by simply adding more solvent to the solution at the same amount of solute.

The amount of solute does not change, but as more solvent is added, the concentration of the solute decreases and the volume of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentrationVi: initial volumeCf: final concentrationVf: final volume

Initial volume

In this case, you know:

Ci= 18 MVi= ?Cf= 2 MVf= 225 mL

Replacing in the definition of dilution:

18 M× Vi= 2 M× 225 mL

Solving:

Vi= (2 M× 225 mL)÷ 18 M

Vi= 25 mL

In summary, the volume of the concentrated reagent is 25 mL.

Learn more about dilution:

brainly.com/question/6692004

#SPJ1

Other Questions
What are some types of further education Upon arriving at a scene in which the incident command system has been activated, you should expect to:A. be passed from sector to sector, as needed, in between assignments.B. report directly to the incident commander in between assignments.C. be assigned a specific responsibility for the duration of the incident.D. be given general directions and allowed to function independently The U.S. Supreme Court has ruled that master jury lists must reflect a representative and impartial cross section of the community. The jury selection when each side seeks to select jurors who are biased in its favor is found in which of the following? The isotope Iridium has a nuclear mass of 195 and a nuclear number or 77. How many neutrons is in this isotope? As Rome has seen a fair share of leaders within its existence they all have contributed many different aspects to Rome. In an argumentative piece you are to write which leader of Rome was the most influential. In at least 3 paragraphs please divulge your argument in a clear manor. A 10 m resultant vector makes an angle of 245 with the positive x axis. What is the value of the components? Describe the factors that led to lion populations in the crater dropping from 75-100 in 1962 to only 12 one year later. The line through (2,1,0) and perpendicular to bothi+j and j+k. Find the parametric equation and symmetric equation. treatment of the dna sequence 5-atggatcctaagctttagagc-3 with hind iii, ecori, and bamhi will produce how many dna fragments? After a user types a value into a TextBox in an executing program, where is the value stored? a. In the Text property of the TextBox. b. In the Label property of the TextBox. c. In the Name property of the TextBox. d. In the String property of the TextBox. to capture a handwritten signature, a user writes his or her name on a signature capture pad with a stylus or pen that is attached to the device. T/F? how is the separation between applications implemented in android? explain in one sentence. you may notice that if a mercury-in-glass thermometer is inserted into a hot liquid, the mercury column first drops, and then later starts to rise (as you expect). how do you explain this drop? What is the conclusion that follows in a single step from the premises?Given the following premises:1. R (E D)2. R G3. E G how does bni reinforce the importance of selling based on benefits? A cyclist rides 9 km due east, then 10 km 20 west of north. from this point she rides 7 km due west. what is the final displacement from where the cyclist started? what are different types of branded content? how do marketers use branded entertainment and support media, such as directories, out-of-home media, and place-based media, to communicate with consumers? Etrahedral complexes have a smaller crystal field splitting energy than octahedral complexes.a. Trueb. False As a reward, Coach Little gives his students free tickets to Skate World. The number of tickets each student receives is constant. The table shows how many students were chosen to receive rewards and how many tickets were passed out each day. Number of Students Rewarded Number of Tickets 3 6 2 4 6 X 1 2 5 10 How many tickets were passed out when the teacher rewarded 6 students? A. 3 tickets. B. 8 tickets. C. 9 tickets. D. 12 tickets how to realize control of water level is lower than expected?