Does anyone know how to solve this?

Does Anyone Know How To Solve This?

Answers

Answer 1

9514 1404 393

Answer:

zeros: {-2, -1, 7}P(x) = (x +2)(x +1)(x -7)

Step-by-step explanation:

Descarte's rule of signs tells you there is 1 positive real root. The rational root theorem tells you any real roots are factors of ±14, so will be ±1, ±2, ±7, or ±14.

We note that the sum of all coefficients is negative, so +1 is not a root.

We note that the sum of coefficients of odd-degree terms is 1-19 = -18, and the sum of coefficients of even-dgree terms is -4-14 = -18. These are the same value, indicating that -1 is a root. The corresponding factor is (x +1).

The result of dividing the factor (x+1) from the polynomial using synthetic division is shown in the first attachment. The coefficients found mean the quotient is ...

  Q(x) = x^2 -5x -14

Factoring this using any method you like gives ...

  Q(x) = (x +2)(x -7)

This means the full set of zeros is {-2, -1, +7} and the factorization is ...

  P(x) = (x +2)(x +1)(x -7)

_____

Additional comment

My personal favorite method of finding the zeros is to let a graphing calculator show them to me. That result is shown in the second attachment.

Does Anyone Know How To Solve This?
Does Anyone Know How To Solve This?

Related Questions

For the following right triangle find the side length x

Answers

Step-by-step explanation:

everything can be found in the picture

Answer:

x=15

Step-by-step explanation:

Hi there!

We're given a right triangle with the measures of the 2 legs (sides that make up the right angle). We're also given the measure of the hypotenuse (the side opposite to the right angle) as x

We need to find x

The Pythagorean Theorem states that if a and b are the legs and c is the hypotenuse, then a²+b²=c²

Let's label the values of a, b, and c to avoid any confusion first

a=12

b=9

c=x

now substitute into the theorem

12²+9²=x²

raise everything to the second power

144+81=x²

add 144 and 81 together

225=x²

take the square root of 225

15=x (note: -15=x is technically also an answer, but since lengths cannot be negative, it's an extraneous solution in this case)

Therefore, the side length of x is 15

Hope this helps! :)

What is an equation of the line that passes through the points (5, 0) and (-5, -8)

Answers

Answer:

Step-by-step explanation:

m = (y2-y1) / (x2-x1)

m = (-8-0) / (-5-5) = 4/5  

note that it does not matter which points you chose to be second or first

then use slope point equation again it does not matter which point from the slope you use

y - y1 = m ( x - x1 )

y - 0 = 4/5 ( x - 5)

y = 4/5x -4

please if you find my answer helpful mark it brainiest

in which quadrant or axis will the poit lie if...​

Answers

Step-by-step explanation:

a.fourth quadrent

b.third quadrent.

A cube with side lengths of 4 cm has a density of 3 grams/cubic centimeters. The mass of the cube is _____ grams?

Answers

9514 1404 393

Answer:

  21 1/3 grams

Step-by-step explanation:

The mass is the product of the volume and the density. The volume of a cube is the cube of its edge dimension.

  M = Vρ

  M = (4 cm)³×(3 g/cm³) = 64/3 g

The mass of the cube is 64/3 = 21 1/3 grams.

Please answer the following.

Answers

Answer:

[tex] \sqrt{4 \times 5 + \sqrt{4 \times 9} } [/tex]

Write as many observations as you can for 5k + 23 - 4

Answers

Answer:

5k+19

Step-by-step explanation:

Subtract 4 from 23

The mapping shows a relationship between input and output values.

Answers

Answer:

where is the photo

Step-by-step explanation:

where’s the answer choices ??

please help me look at the photo!

Answers

First of all multiply both sides by the power of 3 to cancel out the cube roots.

So you will be left out with:

X+4 > -x

Now simplify:

4 > -x-x

4> -2x

4/-2 > -2x/-2

-2 > x

Final answer:

It’s C , x < -2

Good luck and best of wishes!!

solve the question ​

Answers

Answer:

40*40=1600

PLS MARK BRAINLIEST

A pile of 15 boxes is 3 metres high. What is the depth of each box?
5 m
0.002 km
200 cm
200 mm

pls help

Answers

A I seen it on the test

What is cos(A)? please explain

Answers

Answer:

cos(A) = adjacent side / hypotenuse

= 4/5

Answer:

[tex] \small \sf \: cos ( A ) = \green{ \frac{ 4}{ 5}} \\ [/tex]

Step-by-step explanation:

[tex] \small \sf \: cos ( A ) = \frac{ adjacent \: side }{ Hypotenuse} \\ [/tex]

Where, we have given

adjacent side is 4 Hypotenuse is 5

substitute the values that are given

[tex] \small \sf \: cos ( A ) = \green{ \frac{ 4}{ 5}} \\ [/tex]

化學製程中溫度的影響 為研究化學製程中溫度對產量之影響,我們在 3 種溫度下各生產 3批產品,結果如下表。請建立 ANOVA 表。在 0.05 顯著水準檢定不同的溫度是否會影響平均產量。

溫度
50℃ 60 ℃ 70℃
產品1 14 20 13
產品2 15 11 18
產品3 12 15 16

Answers

Answer:

Step-by-step explanation:

產品 1 14 20 13

產品 2 15 11 18

產品 3 12 15 16

what percentage is the following 3 upon 4 of 3 upon 8​

Answers

Step-by-step explanation:

the answer is in the image above

Step-by-step explanation:

3/4×3/8

9/32

9/32×100

~28%

Use the digits 0 - 9 to fill in the blank.
[tex]243 \frac{1}{5} = blank[/tex]

Answers

Answer:

use 0-9 to fill in blanks

Step-by-step explanation:

A trailer is 22 feet long. 9 feet wide,
and 7 feet high. What is the volume of
the trailer?

Answers

Answer:

1386

Step-by-step explanation:

22 × 9 × 7 = 1386 cubic feet

V= L x W x H = 22x9x7 = 1386

Help. Volume question in math.

Answers

Answer:

c-635.25pi

Step-by-step explanation:

volume of cylinder is pi*radius squared*height(here they gave you the diameter so you'll have to divide it by 2 to get the radius)

so pi*(11/2)^2*21

and you end up with 635.25pi

Nikki grows 20 tomato plants.
She measures their heights to the nearest centimeter and writes them down.
15 14 12 17 18
11 16 14 21 19
10 16 16 13 17
9 15 20 19 9
Complete the frequency table.

Answers

Answer:

I found answer

Step-by-step explanation:

1) 9

2) 12

3)15

4)20

PLEASE HELP! I'm lost. :(

In 2005, 1,475,623 students heading to college took the SAT. The distribution of scores in the math section of the SAT follows a normal distribution with mean
µ = 520 and population standard deviation = 115.

What math SAT score is 1.5 standard deviations above the mean? Round answer to a whole number.

Answers

Answer:

A math SAT score of 693 is 1.5 standard deviations above the mean

Step-by-step explanation:

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Mean µ = 520 and population standard deviation = 115.

This means that [tex]\mu = 520, \sigma = 115[/tex]

What math SAT score is 1.5 standard deviations above the mean?

This is X when [tex]Z = 1.5[/tex]. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.5 = \frac{X - 520}{115}[/tex]

[tex]X - 520 = 1.5*115[/tex]

[tex]X = 693[/tex]

A math SAT score of 693 is 1.5 standard deviations above the mean

Find all solutions to the equation.
cos^2 x +2cosx+1=0

Answers

[tex]x= \pi[/tex]

Step-by-step explanation:

[tex]\cos^2x+\cos x+1=0[/tex]

Let [tex]u= \cos x[/tex]

Then [tex]u^2+2u+1=(u+1)^2=0[/tex]

or

[tex]\cos x = -1[/tex]

This gives us [tex]x= \pi[/tex] or all integer multiples of [tex]\pi (n \pi)[/tex]

When wiring a house, an electrician knows that the time she will take is given by the formula Time= 2 hours + 12 minutes per lightswitch. She charges her customers a call out fee of £35, plus £20 per hour. How much should a customer be charged for wiring a house with 10 lightswitches?​

Answers

Answer:

Step-by-step explanation:

Time = 2 hrs + 12 min (10) = 4 hrs.

Cost = 35 + 20*4

Cost = 35+80

Cost = 115

9514 1404 393

Answer:

  £155

Step-by-step explanation:

We can write the function describing the charges as a composition.

  t(s) = 2 + 12/60s = 2 +s/5 . . . . . hours for s switches

  c(h) = 35 +30h . . . . . . . . . . . . . charge for h hours

Then the charge for s switches is ...

  f(s) = c(t(s)) = 35 +30(2 +s/5) = 35 +60 +6s

  f(s) = 95 +6s . . . . . . . charge for installing s switches

The charge for 10 switches is then ...

  f(10) = 95 +6·10 = 95 +60

  f(10) = 155 . . . . pounds

The electrician should charge her customer £155 for wiring a house with 10 switches.

If f(x) = 3x⁴ - 13x, find f(-2)​

Answers

Answer:

answer is

74....................

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

Answers

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege

Mass of a proton: 1.007825 units
Mass of a neutron: 1.008665 units
Calculate the mass Defect of 214 N has actual mass of 14.0031 u.

Answers

Given:-

mass of proton = 1.007825 umass of neuron = 2.008625 u .Actual mass = 14.0031 u

To find:-

The mass defect.

Answer:-

Mass defect arises when the mass of the atom differs from the sum of masses of nucleons . As we know that the nucleus of an atom is made up of neutrons(n) and protons (p) , and the total mass of a atom is the mass of nucleons ( protons and neutrons ) as electrons have mass very low as compared to that of n or p .

If we denote mass number by [tex]\green{A}[/tex] , then ;

[tex]\implies A = n_{\rm neutrons} + n_{\rm protons} [/tex]

Let [tex] Z[/tex] be the atomic number, then ;

[tex]\implies n_p = Z [/tex]

So, the number of neutrons will be;

[tex]\implies n_n = (A-Z) [/tex]

Therefore total mass would be ;

[tex]\implies M = m_pZ +m_n (A-Z) [/tex]

Then the mass defect would be ,

[tex]\implies\underline{\underline{\green{ \Delta M = [Zm_p + (A-Z)m_n - M ] }}} [/tex]

where ,

[tex]Z [/tex] = atomic number[tex] A[/tex] = mass number[tex] m_p [/tex] = mass of a proton[tex] m_n [/tex] = mass of a neutron

_______________________________________

Now we know that the Atomic number of Nitrogen is 7(Z) and its mass number is 14(A) .

Now substitute the respective values,

[tex]\implies \Delta M = 7(1.007825) + (14-7)1.008665 - 14.0031 \\ [/tex]

[tex]\implies \Delta M = 7.054775 + 7(1.008665) - 14.00 31 [/tex]

[tex]\implies \Delta M = 7.054775 + 7.060655 - 14.0031 [/tex]

[tex]\implies \Delta M = 14.11543 - 14.0031 [/tex]

[tex]\implies \underline{\underline{\green{ \Delta M = 0.11233 \ u }}}[/tex]

Hence the mass defect is 0.11233 u .

Also this mass defect appears as energy which is responsible for the binding of nucleons together.

and we are done!

On a coordinate plane, a line goes through (negative 3, negative 3) and (negative 1, 5). What is the equation of the line parallel to the given line with an x-intercept of 4?

Answers

y = mx + c

m = gradient

gradient of line:
[5 - (-3)]/[(-1) - (-3)]
= 8/2
= 4

y = mx + c
subsitute (4, 0)
0 = (4)(4) + c
0 = 16 + c
c = -16

equation of the line:

y = 4x - 16

hope this helped :)



Answer:

4, -16

Step-by-step explanation:

When traveling to work, Cherise averages 60 miles per hour.Because of heavy traffic in the evening, she averages only 40 miles per hour. If the distance from home to work is 80 miles, how much longer does it take Cherise to make the drive home?

Answers

Answer:  40 minutes

============================================================

Explanation:

The distance traveled is d = 80 miles.

When going to work, her speed is r = 60 mph. She takes t = d/r = 80/60 = 4/3 hours which converts to 80 minutes. Multiply by 60 to go from hours to minutes.

Notice how the '80' shows up twice (in "80 miles" and "80 minutes"). This is because traveling 60 mph is the same as traveling 1 mile per minute.

-----------------

Now as she's coming home, her speed becomes r = 40 and she takes t = d/r = 80/40 = 2 hours = 120 minutes.

The difference in time values is 120 - 80 = 40 minutes.

Her commute back home takes 40 more minutes compared to the morning drive to work.

Which best explains whether or not ABC = LMN?

Answers

Answer:

If I've done it right the answer should be A, the figures are congruent because a 270 rotation about the origin a d a reflection of the x-axis

d= (r+c)t
how do i solve for t?

Answers

Answer:

[tex] { \tt{d = (r + c)t}}[/tex]

Divide ( r+c ) on both sides:

[tex]{ \tt{t = { \frac{d}{(r + c)} }}}[/tex]

Answer:

d / ( r + c) = t

Step-by-step explanation:

d = ( r + c ) t

Divide each side by ( r + c)

d / (r + c ) = ( r + c ) t / ( r + c)

d / ( r + c) = t

write 145,567 in expanded notation​

Answers

Answer:

100000+45000+500+60+7

Rafael ate one-fourth of a pizza and Rocco ate one-third of it. What fraction of the pizza did they eat?

They ate

Answers

Answer:

7/12

Step-by-step explanation:

They ate  1/4  and 1/3

1/4 +1/3

Get a common denominator

1/4 *3/3 + 1/3 *4/4

3/12 + 4/12

7/12

pls help! show your work!
(3sqrt4)/(3sqrt5)

Answers

Answer:

3sqaure root 100/5

Step-by-step explanation:

It would look like this picture Below

Other Questions
Please please help help please what is the atomic structure of an element that has atomic number of 11 and neutron number of 12. A rental car costs $36 for one day plus an additional $0.50 per mile. What is the cost of renting a car for two days and driving it a total of 100 miles? Determine the equation of the line perpendicular to y = 1/5x 7 and passes through the point (-3,6). Mrs morel was alone, but she was used to it. Her son and her little girl slept upstairs Find the sum of the first 5 terms of the following geometric series.512 - 256 + 128 +... 5pts) Reaction Characterization (1pts) Select the type of reaction Choose... (1pts) Write the balanced equation for the formation of the Grignard reagent from bromobenzene. Include all reagents and products but not solvents. The ability to overcome all barriers to effective listening is within our control.TrueFalse 5v 1/2 =4+ 3/2 vHow does one person solve this if the like terms are on opposite sides? why is computer system maintenance important Essay of chasing Lincolns killer Please HELPP Match the following.1 linguistic shifts, spelling variances, and dialect changesvocabulary changes2. more direct and simplified sentencespronunciation and spelling changes3. borrowed and coined wordsmeaning changespunctuation changes4. amelioration and pejorationASAP please Which definition best describes vertical angles?O A. A pair of angles whose sum is 180B. A pair of angles that combine to form a straight angleC. A pair of angles whose sum is 90D. A pair of opposite angles formed by intersecting linesSUBM Native Africans kept failing in their resistance to save their lands . Was there any way for them to save themselves from being imperialized ? Pls give an actuel answer to this question. Thx :). WIll give brainest. what is 186.4 ounces oz of water in millliiters (mL) Someone PLEASE HELP ME. The diagram above shows a plan for a park. ABCD is a rectangle.APB and DQC are semicircles centred at X and Y. Given AB = 7 cm and AC = 25 cm. Calculate the perimeter of the park in cm. describe how the products of digestion are used HELP PLS someone help me please Gawain sa Pagkatuto Bilang 5:Panuto: Suriin at ipaliwanag ang mga sumusunod na pahayag. Gawin ito sa iyong sagutang papel.1. "Ang pag-unlad ng mamamayan ay pag-unlad din ng bansa. " ________________________________________________2. "Ang pagkakaroon ng tamang saloobin sa paggawa."________________________________________________guys pasagut nito brainlatest ko lateruulit ulitin ko toh pag di nyo pa sunagut haystt..nakalagay pa sa brainly itoy nakakatulong sa lahat eh bkt di rin nyo masagutkpag ito di nyo sinagut di ko kayo ibrainlatest ito pa ha nakakainis na bwesit