The function is an exponential decay function. Then the correct option is B.
What is an exponent?Let a be the initial value and x be the power of the exponent function and b be the increasing factor.
The exponent is given as,
y = a(b)ˣ
At (-1, 50), then the equation is given as,
50 = a / b ...1
At (1, 2), then the equation is given as,
2 = ab ....2
From equations 1 and 2, then we have
2 = 50b · b
b² = 1/25
b = 1/5
Then the value of 'a' is given as,
2 = a x 1/5
a = 10
The value of the variable 'b' is less than one that is 1/5. Then the function is an exponential decay function. Then the correct option is B.
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ1
Find the solution of the system x' = -4y, y' = -6x
where primes indicate derivatives with respect to t, that satisfies the initial condition x(0-2, y(0) =-2. y = ___
x = ___
Based on the general solution from which you obtained your particular solution, complete the following two statements: The critical point (0,0) is A. stable B. asymptotically stable C. unstable and is a A. center B. spiral C. node D. saddle point
Answer: The system of differential equations can be rewritten as a matrix equation:
[x', y']^T = [-4y, -6x]^T
The characteristic equation is obtained by setting the determinant of the matrix [A - λI] equal to 0, where A is the coefficient matrix, λ is an eigenvalue, and I is the identity matrix:
det([A - λI]) = det([-λ -4y; -6x, -λ]) = λ^2 + 24 = 0
Thus, λ = ±2i√6. The general solution to the system is then given by:
x(t) = c1cos(2√6t) + c2sin(2√6t)
y(t) = -2c1sin(2√6t) + 2c2cos(2√6t)
where c1 and c2 are constants determined by the initial conditions. Using the initial condition x(0) = -2, y(0) = -2, we can solve for c1 and c2:
-2 = c1cos(0) + c2sin(0)
-2 = -2c1sin(0) + 2c2cos(0)
c1 = -2
c2 = -2
So the particular solution to the system is:
x(t) = -2cos(2√6t) - 2sin(2√6t)
y(t) = 4sin(2√6t) - 4cos(2√6t)
The critical point (0,0) is a center, as the solution spirals towards the origin as t increases.
Step-by-step explanation:
Please help me with this question
The measure of angle ∠2 will be 111° by the supplementary property.
What are lines and angles?Lines are straight with little depth or width. Perpendicular lines, intersecting lines, transversal lines, and other types of lines will be covered. An angle is a shape formed by two rays emerging from a common point. In this field, you may also come across alternate and corresponding angles.
Supplementary angles are those that total 180 degrees. Angles 130° and 50°, for example, are supplementary angles because the sum of 130° and 50° equals 180°.
The value of the angle will be calculated as,
∠2 = 180 - 69
∠2 = 111°
Therefore, the value of the ∠2 is 111°.
To know more about lines and angles follow
https://brainly.com/question/28769265
#SPJ1
Find what is multiplied by to get ÷. Then, multiply to solve the problem. Do not reduce your answer. Enter your answers.
The Fraction 9/18 should be multiplied by 1/4 to get the value Equivalent to 9/18 ÷ 2.
What is Fraction?The fractional bar is a horizontal bar that divides the numerator and denominator of every fraction into these two halves.
The number of parts into which the whole has been divided is shown by the denominator. It is positioned in the fraction's lower portion, below the fractional bar.How many sections of the fraction are displayed or chosen is shown in the numerator. It is positioned above the fractional bar in the upper portion of the fraction.We have to solve,
9/18 ÷ 2
As, Fraction does not support the division as usually number does.
So, we have to perform the multiplication by reciprocating the number,
9/18 x 1/2
= 9/ 36
= 1/4
Learn more about fraction here:
https://brainly.com/question/19634536
#SPJ9
Determine whether the following arguments are best interpreted as being inductive or deductive. Also state the criteria you use in reaching your decision (i.e., the presence of indicator words, the nature of the inferential link between premises and conclusion, or the character or form of argumentation).Because the apparent daily movement which is common to both the planets and the fixed stars is seen to travel from the east to the west, but the far-slower single movements of the single planets travel in the opposite direction from west to east, it is therefore certain that these movements cannot depend on the common movement of the world but should be assigned to the planets themselves.(Johannes Kepler, Epitomy of Copernican Astronomy)
The argument provided by Johannes Kepler is deductive.
This is because it uses a logical inferential link between the premises and the conclusion. Kepler presents two premises. The first premise states that the daily movement which is common to both the planets and the fixed stars is seen to travel from the east to the west. The second premise states that the far-slower single movements of the single planets travel in the opposite direction from west to east. Kepler then draws the conclusion that these movements cannot depend on the common movement of the world but should be assigned to the planets themselves.
Kepler's argument does not contain any indicator words that are commonly used in inductive arguments, such as "probably," "usually," or "likely." Instead, the argument is based on the logical connection between the premises and the conclusion. Kepler is using deductive reasoning to draw a certain conclusion from the premises that he presents. Thus, the argument is best interpreted as being deductive.
For more such questions on Kepler's law
https://brainly.in/question/15594852
#SPJ4
The argument is deductive.
The deductive nature of the argument is demonstrated by the inferential link between the premises and conclusion. The premises state that the apparent daily movement of both the planets and fixed stars is from east to west, and the single movements of the planets travel from west to east. The conclusion follows deductively from these premises, as Kepler asserts that the movements of the planets cannot depend on the common movement of the world and must instead be assigned to the planets themselves.
There are no indicator words in the argument that explicitly signal inductive reasoning. Instead, the argument is based on deductive reasoning, with the premises providing evidence that supports the conclusion in a logically necessary way.
The argument is deductive.
For similar question on deductive nature,
https://brainly.com/question/24353091
#SPJ4
Cho used 2 1/2 cups of flour to bake a cake. She used 3 1/4 cups of flour to bake a loaf of bread. How much more flour did Cho
use to bake the loaf of bread than to bake the cake?
1/4 cup
5² cups
1 3/4 cups
3/4 cup
Answer:3/4
Step-by-step explanation:Cho used 5/2
She used 13/4 to bake a loaf.
How much more is 13/4-5/2
=13-10/4
=3/4
Hope it helps!
blood carries a drug into an organ at a rate of 3 cm^3/sec and leaves at the same rate. the organ has a liquid volume of 150 cm^3. the concentration of the drug in the blood entering the organ is 1/3 gm/cm3. what is the mass of the drug in the organ at time t if there was no trace of the drug initially?
The mass of the drug in the organ at time t depends on the concentration of the drug in the blood entering the organ and the rate at which the blood is entering and leaving the organ. This can be calculated by multiplying the volume of the organ by the concentration of the drug in the blood.
At time t, since the rate at which the blood is entering and leaving the organ is 3 cm^3/sec, the amount of drug in the organ is equal to the amount of drug entering the organ plus the amount of drug that was initially in the organ. As there was no trace of the drug initially, the mass of the drug in the organ at time t is 3 cm^3/sec multiplied by the concentration of the drug in the blood (1/3 gm/cm3) multiplied by the volume of the organ (150 cm^3).
Therefore, the mass of the drug in the organ at time t is 150 gm.
To learn more about the mass:
https://brainly.com/question/17783053
#SPJ4
in the form, y=a(1+r)^t PLEASEEEEEE
Answer:
y
a= ——
(r + 1 )t
Step-by-step explanation:
divide both sides
Factor xy-y+3x-3
Answer needs filled in
(Y+_) (x+_)
I got this answer off of
Refer to Questionnaire color Problem 16.8. a. Prepare a bar-interval graph of the estimated factor level means Y. where the interval correspond to the confidence limits in (17.7) with a = .05. What does this plot suggest about the effect of color on the response rate? Is your conclusion in accord with the test result in Problem 16.8e (from homework 2)? b. Estimate the mean response rate for blue questionnaires: use a 90 percent confidence interval. c. Test whether or not D = M3-u2 = 0: use a = .10. State the alternatives, decision rule, and conclusion. In light of the result for the ANOVA test in Problem 16.8e, is your conclusion surprising?
This bar-interval graph suggests that there may be a difference in response rate between the three colors of paper. For a 90% confidence interval, the critical value is 1.64. Number of observations n = 15 and number of groups k = 3, so the degrees of freedom is n-k = 15-3 = 12.
A bar-interval graph of the estimated factor level means can be created as follows:
Calculate the mean response rate for each color of paper:
Blue: (28 + 26 + 31 + 27 + 35)/5 = 30%
Green: (34 + 29 + 25 + 31 + 29)/5 = 29.4%
Orange: (31 + 25 + 27 + 29 + 28)/5 = 28%
Calculate the standard deviation for each color:
Blue: [tex]\sqrt{(((28-30)^2 + (26-30)^2 + (31-30)^2 + (27-30)^2 + (35-30)^2)/4)} = \sqrt{(6.8)} = 2.6[/tex]
Green: [tex]\sqrt{(((34-29.4)^2 + (29-29.4)^2 + (25-29.4)^2 + (31-29.4)^2 + (29-29.4)^2)/4)} = \sqrt{(11.96)} = 3.4[/tex]
Orange: [tex]\sqrt{(((31-28)^2 + (25-28)^2 + (27-28)^2 + (29-28)^2 + (28-28)^2)/4)} = \sqrt{(6)} = 2.4[/tex]
Calculate the standard error for each color:
Blue: 2.6/[tex]\sqrt{(5)}[/tex] = 1.5
Green: 3.4/[tex]\sqrt{(5)}[/tex] = 1.9
Orange: 2.4/[tex]\sqrt{(5)}[/tex] = 1.3
Calculate the 95% confidence interval for each color:
Blue: [30 - 1.96 * 1.5, 30 + 1.96 * 1.5] = [26.9, 33.1]
Green: [29.4 - 1.96 * 1.9, 29.4 + 1.96 * 1.9] = [25.2, 33.6]
Orange: [28 - 1.96 * 1.3, 28 + 1.96 * 1.3] = [25.4, 30.6]
This bar-interval graph suggests that there may be a difference in response rate between the three colors of paper. The 95% confidence interval for the mean response rate of blue paper does not overlap with the confidence intervals of the green or orange paper, which suggests that there is a significant difference in response rate between the colors.
To estimate the mean response rate for blue questionnaires with a 90% confidence interval, we can use the same calculations as above, but use a different critical value for the standard normal distribution. For a 90% confidence interval, the critical value is 1.64. The 90% confidence interval for the mean response rate of blue questionnaires is [30 - 1.64 * 1.5, 30 + 1.64 * 1.5] = [27.3, 32.7].
To test whether or not D = M3 - M2 = 0, we can use a t-test with n-k degrees of freedom, where n is the number of observations and k is the number of groups. In this case, n = 15 and k = 3, so the degrees of freedom is n-k = 15-3 = 12. The null hypothesis is H0: D = 0 and the alternative hypothesis is Ha: D ≠ 0. The decision rule is to reject.
To know more about bar-interval graph:
https://brainly.com/question/4364386
#SPJ4
____ The given question is incomplete, the complete question is given below:
a. Prepare a bar-interval graph of the estimated factor level means Y. where the interval correspond to the confidence limits with a = .05. What does this plot suggest about the effect of color on the response rate? Is your conclusion in accord with the test result?
b. Estimate the mean response rate for blue questionnaires: use a 90 percent confidence interval.
c. Test whether or not D = M3-u2 = 0: use a = .10. State the alternatives, decision rule, and conclusion. In light of the result for the ANOVA test e, is your conclusion surprising? Explain.
In an experiment to investigate the effect of color of paper (blue, green, orange) on response rates for questionnaires distributed by the "windshield method" in supermarket parking lots, 15 representative supermarket parking lots were chosen in a metropolitan area and each color was assigned at random to five of the lots. The response rates (in percent) follow. Assume that ANOVA model is appropriate. i 1 2 3 4 5 1 Blue 28 26 31 27 35 2 Green 34 29 25 31 29 3 Orange 31 25 27 29 28
Vinay breaks 6 X 7 into (6 x 3) + (6 x 4) to solve the problem. What is
another way Vinay could break apart 6 X 7? Show your work.
Answer:
(7 × 3) + (7 × 3)
Step-by-step explanation:
6 × 7 = 42
7 × 3 = 21
7 × 3 = 21
21 + 21 = 42
HURRYYY Is the given value equal to −42−5? Select Yes or No for each value.
In each of the following, find (if possible) conditions on a, b, and c such that the system has no solution, one solution, and infinitely many solutions.a. -x + 3y + 2z = -8 { x +z = 2 3x + 3y + az = b b. x + ay = 0{y + bz=0 z + cx = 0
For the first equation, -x + 3y + 2z = -8, the conditions for no solution are if a=0, b=-8, and c is not equal to 8. If a=0, b=-8, and c=8, then there will be one solution. If a does not equal 0, then there will be infinitely many solutions.
For the second equation, x + ay = 0, the conditions for no solution are if a=0, b=0, and c does not equal 0. If a=0, b=0, and c=0, then there will be one solution. If a does not equal 0, then there will be infinitely many solutions.
In both equations, the conditions for no solution involve setting the coefficients of the variables in the system to 0. If the coefficients of any of the variables in the system are set to 0, then the system will not have a solution. If two of the coefficients are set to 0, then the system will have one solution. Otherwise, there will be infinitely many solutions. This is because if all the coefficients of the variables in the system are not 0, then the system can be reduced to a simpler form, with infinitely many solutions.
To learn more about solutions:
https://brainly.com/question/28853236
#SPJ4
earrange the following lines of code to produce a method that computes the volume of a balloon with a given width and height Height o Width Note that the volume of an ellipsoid with radi a, b, cis V = nabe return volume) import java.util.Scanner public class Balloon double c = width/2; public static double balloon Volume(double width, double height) * Computer the volume of a balloon para wloth the horizontal dianter of the balloon para height the vertical diameter of the balloon ) 2 ( double = height/2; double volume. 4. Math.PI...cc/3; public public static void main(Stringt] args) Scanner in new Scanner
By rearranging the given lines of code, we have created a method that takes in the width and height of a balloon and calculates its volume using the formula for the volume of an ellipsoid.
To start, we need to import the Scanner class from the Java.util package, as we will be taking input from the user. Then, we define a public class called "Balloon" and initialize a variable "c" to be half the value of the width input.
Next, we create the method "balloonVolume" which takes in two parameters: width and height. We specify that width is the horizontal diameter of the balloon and height is the vertical diameter of the balloon. We then set two variables, "a" and "b" to be half the value of width and height respectively.
Using the formula for the volume of an ellipsoid, which is V = 4/3 * pi * a * b * c, we calculate the volume of the balloon and store it in the variable "volume." Finally, we return the volume.
In the main method, we create a Scanner object and prompt the user to input the width and height of the balloon. We then call the "balloonVolume" method and pass in the user's input as arguments. The method calculates the volume of the balloon and returns it, which we can then print out to the user.
To know more about volume here.
https://brainly.com/question/11168779
#SPJ4
Find the 20 % trimmed mean of the following data. If necessary, round to one more decimal place than the largest number of decimal places given in the data. Lengths of Longest 3-Point Kick for NCAA Division 1-A Football 30 32 34 40 41 43 43 4445 45 461% 47 521 5153t 56t 56 57 60 Copy Data Answer How to enter your answer TablesKeypad
46.53 is the Trimmed mean after removing, 20% of the trimmed mean from all the given lengths of 3-Point Kick for NCAA Division 1-A Football.
The given data is:
Lengths of 3-point kicks = 30 32 34 40 41 43 43 44 45 45 46 47 52 51 53 56 56 57 60.
Trimmed mean = 20%
The trimmed mean is defined as the statistical measure of central tendency. That means calculating the mean value of the given tendency of observations.
Trimmed observations = 20 x (20/100) = 4
These, trimmed observations denote that 2 observations must be trimmed from both sides when they are arranged in ascending order.
Ascending order of lengths = 30 32 34 40 41 43 43 44 45 45 46 47 51 52 53 56 56 57 60.
The trimmed Mean = (34 40 41 43 43 44 45 45 46 47 51 52 53 56 56)/ 15
Trimmed mean = 698/15 = 46.53
Therefore, we can conclude that 46.53 is the Trimmed Mean after removing, 20% of the trimmed mean.
Learn more about Trimmed Mean:
brainly.com/question/14586610
#SPJ4
Hoyt inc. Has a process costing system for the
Answer:
high BBC dry GB by in just he just had not had on
Step-by-step explanation:
no exception
Given P(B) = 7/8 and P(AꓵB) = 3/8 find P(A | B) =
Step-by-step explanation:
P(A | B) = P(AꓵB)/P(B) = 3/8 / 7/8 = 3/8 × 8/7 = 3/7
Let R be a region in quadrant I with centroid (4,3) and area unit square. Find the volume of the solid generated when this region is rotated around y = -5 :) o 20 7 12 b) O 7 o 32 7 36 d) 16
The volume of the solid generated when the region R is rotated around y = -5 is 7π/4. so the correct answer is (b).
To find the volume , we can use the method of cylindrical shells.
Consider a vertical slice of R at x = a, where a is a point on the x-axis. Let h be the height of this slice and r be the distance from the line y = -5 to the point (a, h). Then the volume of the cylindrical shell generated by rotating this slice around the line y = -5 is given by:
V(a) = 2πrh Δa
where Δa is the thickness of the slice. Note that we multiply by 2 because the slice can generate a shell both above and below the line y = -5.
To find the values of h and r in terms of x, we can use the fact that the centroid of R is (4, 3), which means that the equation of the line passing through the centroid and the point (x, h) is given by:
(y - 3) = m(x - 4)
where m is the slope of the line. Since the line passes through the point (x, h), we have:
(h - 3) = m(x - 4)
Solving for h, we get:
h = mx - (4m - 3)
To find the slope m, we can use the fact that R has area 1. Since R lies in quadrant I, we know that m > 0. Then we have:
1 = ∫[0, 4] h dx = ∫[0, 4] (mx - (4m - 3)) dx
Simplifying, we get: 1 = (1/2) m(4^2) - (4m - 3)(4)
Solving for m: m = 1/8
Substituting this into the equation for h, h = (x/8) - 11/8
To find the distance r from the line y = -5 to the point (x, h), we have:
r = h + 5 = (x/8) - 3/8
Now we can integrate V(a) over the interval [0, 4] to get the total volume:
V = ∫[0, 4] V(a) da = ∫[0, 4] 2πr(h + 5) Δa
Substituting for r and h, we get:
V = ∫[0, 4] 2π[(x/8) - 3/8][(x/8) - 11/8 + 5] Δx
Simplifying, V = π/2 ∫[0, 4] (x^2/64) - (27/64)x + 2.25 Δx
Integrating, V = π/2 [(1/192)x^3 - (27/128)x^2 + 2.25x] [0, 4]
V = (π/2) [(1/12) - (27/32) + 9]
V = 7π/4
Therefore, the volume of the solid generated when the region R is rotated around y = -5 is 7π/4. Answer: (b)
To know more about volume:
https://brainly.com/question/11168779
#SPJ4
x : P(x):
0 0.05
1 0.25
2 0.15
3 0.55 Find the standard deviation of this probability distribution. Give your answer to at least 2 decimal places
Answer:
the standard deviation of this probability distribution is approximately 1.39.
Step-by-step explanation:
To find the standard deviation of a probability distribution, we use the formula:
σ = sqrt[Σ(x - μ)^2P(x)]
where σ is the standard deviation, x is the value of the random variable, P(x) is the probability of that value, μ is the mean of the distribution.
First, we need to find the mean of the distribution:
μ = ΣxP(x)
= 0(0.05) + 1(0.25) + 2(0.15) + 3(0.55)
= 1.9
Next, we can calculate the standard deviation:
σ = sqrt[Σ(x - μ)^2P(x)]
= sqrt[(0 - 1.9)^2(0.05) + (1 - 1.9)^2(0.25) + (2 - 1.9)^2(0.15) + (3 - 1.9)^2(0.55)]
= sqrt[0.9025 + 0.1225 + 0.0225 + 0.8925]
= sqrt(1.94)
≈ 1.39
Therefore, the standard deviation of this probability distribution is approximately 1.39.
Which is the better deal?(Proportional Reasoning)
Deal A: % gallons of gas for %15.70 or Deal B. 11 gallons of gas for $42.00.Explain and Show work
Deal A is better if the cost of one gallon of gas under Deal A is less than $3.82.
What is Percentage?percentage, a relative value indicating hundredth parts of any quantity.
Deal A offers % off the price of the gas. Let's say the regular price per gallon is $x. Then, the discounted price per gallon would be:
x - 0.5x = 0.5x
So, the cost of one gallon of gas under Deal A would be 0.5x.
We don't know the regular price per gallon, but we do know that the cost of % gallons under Deal A is $15.70. So, we can set up the following proportion:
% / 1 = $15.70 / 0.5x
% = 15.7 / 0.5x
Deal B offers 11 gallons of gas for $42.00. So, the cost of one gallon of gas under Deal B would be:
$42.00 / 11 = $3.82 (rounded to two decimal places)
Therefore, Deal A is better if the cost of one gallon of gas under Deal A is less than $3.82.
To learn more on Percentage click:
https://brainly.com/question/28269290
#SPJ1
What's the possible values of y when x = 1296
( be it real or complex number )
[tex] {y}^{2} = \sqrt{x} [/tex]
When two variable quantities have a constant ratio, their relationship is called a direct variation. It is said that one variable varies directly as the other. The formula for direct variation is
y
=
k
x
, where
k
is the constant of variation.
y
=
k
x
Solve the equation for
k
, the constant of variation.
k
=
y
x
Replace
x and ywith the values.k=−42Divide −4by 2.k=−2Use the formula y=kxto substitute −2for k and −6for x.y=(−2)⋅(−6)Multiply −2by −6.y=12
Sixty percent of a city's population of 84,000 live
within 5 miles of the library. How many people live
within 5 miles of the library? Solve the problem
with either a math drawing or a percent table, or
both, explaining your reasoning.
Multiply 84,000 by 0.6 thus the answer is 50,400
9. IN A GROUP OF 60 STUDENTS, 31 SPEAK FRENCH, 23 SPEAK SPANISH AND 14 SPEAK NEITHER FRENCH NOR SPANISH DETERMINE THE NUMBER STUDENTS WHO SPEAK- (a) BOTH FRENCH AND SPANISH (FRENCH ONLY (SPANISH ONLY (FUS) = ?
The number of students that speak both French and Spanish are 7 students, 24 students speak French only, and 16 students speaks Spanish only.
How to determine the number of students that speaks the different languagesTo solve this problem, we can use the formula for the size of a union of two sets:
|A ∪ B| = |A| + |B| - |A ∩ B|,
where |A| represents the number of elements in set A.
Let F be the set of students who speak French, S be the set of students who speak Spanish, and N be the set of students who speak neither language. Then, we have:
|F| = 31,
|S| = 23,
|N| = 14.
We want to find the number of students who speak both French and Spanish, as well as the number who speak French only and the number who speak Spanish only. Let B be the set of students who speak both French and Spanish, F-only be the set of students who speak French only, and S-only be the set of students who speak Spanish only. Then:
|B| = (unknown),
|F-only| = (unknown),
|S-only| = (unknown).
We know that the total number of students is 60, so:
|F ∪ S ∪ N| = 60.
Using the formula for the size of a union, we get:
|F ∪ S ∪ N| = |F| + |S| + |N| - |F ∩ S| - |(F ∩ N) ∪ (S ∩ N)|.
We can simplify this expression using the fact that |N| = |(F ∩ N) ∪ (S ∩ N)|, since the sets (F ∩ N) and (S ∩ N) are disjoint:
60 = 31 + 23 + 14 - |B| - |N|.
|N| = 14.
Substituting |N| = 14, we get:
|B| = |F ∩ S| - 9.
So, to find |B|, we need to determine |F ∩ S|. We can use the formula for the size of an intersection:
|F ∩ S| = |F| + |S| - |F ∪ S|.
Substituting the known values, we get:
|F ∩ S| = 31 + 23 - |F ∪ S|.
|F ∪ S| = 31 + 23 - |F ∩ S|.
|F ∪ S| = 54 - |B|.
Substituting this into the expression for |F ∪ S ∪ N|, we get:
60 = 31 + 23 + 14 - |B| - 14 - |B|.
2|B| = 54 - 31 - 23 + 14 = 14.
|B| = 7.
So there are 7 students who speak both French and Spanish.
To find |F-only| and |S-only|, we can use the following formulas:
|F-only| = |F| - |B|,
|S-only| = |S| - |B|.
Substituting the known values, we get:
|F-only| = 31 - 7 = 24,
|S-only| = 23 - 7 = 16.
Therefore, there are 7 students who speak both French and Spanish, 24 students who speak French only, and 16 students who speak Spanish only.
Learn more about set theory at:https://brainly.com/question/29774143
#SPJ1
The probability of a certain flower having eight petals is 0.45. In a randomly selected batch of 240 of these flowers how many would be expected not to have eight petals? i need the answer for high school and i have no idea what the answer could be. ive asked my parents and they don't seem to know
We would expect approximately 132 flowers in the batch to not have eight petals.
What is the probability about?If the probability of a flower having eight petals is 0.45, then the probability of a flower not having eight petals is 1 - 0.45 = 0.55.
So, for we to find the expected number of flowers that do not have eight petals in a randomly selected batch of 240 flowers, we have to multiply the total number of flowers (240) by the probability of a flower not having eight petals (0.55):
Expected number of flowers without eight petals = 240 × 0.55
Expected number of flowers without eight petals = 132
Therefore, we would expect approximately 132 flowers in the batch to not have eight petals.
Learn more about probability from
https://brainly.com/question/24756209
#SPJ1
Mikhael wanted to rewrite the conversion factor “1 yard ≈ 0.914 meter” to create a conversion factor to convert meters to yards. He wrote “1 meter ≈ .”Tellhow Mikhael should finish his conversion, and explain how you know
1 meter = 1.094 yard create a conversion factor to convert meters to yards.
A meter example is what?Any instrument that detects and may store an electric or magnetic amount, such voltage or current, is referred to as a meter. Examples of meters include an ammeter and a voltmeter. One may refer to using this kind of device as "metering" or one could state that the volume being measured is now being "metered".
The dimensions of a yardThe yard (symbol: yd) is just an English unit of length that is equal to 3 feet or 36 inches according to the British imperial and American customary systems of measurement. According to an international agreement, it has been exactly regulated to 0.9144 metres since 1959. precise 0.9144 meters. One mile is 1,760 yards in length. One mile is 1,760 yards in length.
Given
[tex]1 yard=0.914 meter[/tex]
Create a convert meter to yard expression
[tex]1 yard=0.914 meter[/tex]
Divide both side by 0.914
[tex]\frac{1yard}{0.914} =\frac{0.914 meter}{0.914}[/tex]
[tex]\frac{1 yard}{0.914}= 1meter[/tex]
[tex]1.09409190372=1meter[/tex]
[tex]1meter=1.09409190372 yard[/tex]
[tex]1meter = 1.094 yard[/tex] Approx.
To know more about yard and meter visit:
https://brainly.com/question/20699213
#SPJ1
The evolution of a population with constant migration rate M is described by the initial value problem dP/dt = kP + M. P(0) = Po. (a) Solve this initial value problem; assume k is constant. (b) Examine the solution P(t) and determine the relation between the constants k and M that will result in P() remaining constant in time and equal to Po- Explain, on physical grounds, why the two constants k and M must have opposite signs to achieve this constant equilibrium solution for P(t).
(a) Solving initial value problem, P(t) = (1/k) [(kPo + M)e^(kt) - M]
(b)To keep P(t) constant and equal to Po, k must be negative and M must be positive.
(a) To solve the initial value problem:
dP/dt = kP + M, P(0) = Po
We can rewrite the differential equation as:
dP/(kP + M) = dt
Integrating both sides, we get:
(1/k) ln|kP + M| = t + C
where C is a constant of integration. Solving for P, we get:
P(t) = (1/k) (e^(k(t+C)) - M/k)
To find the value of C, we use the initial condition P(0) = Po:
Po = (1/k) (e^(kC) - M/k)
Solving for C, we get:
C = (1/k) ln(kPo + M) - (1/k) ln|kPo|
Substituting this back into the expression for P(t), we get:
P(t) = (1/k) [(kPo + M)e^(kt) - M]
(b) To determine the conditions under which P(t) remains constant and equal to Po, we set P(t) = Po and solve for k and M:
Po = (1/k) [(kPo + M)e^(kt) - M]
Simplifying and rearranging, we get:
(k - 1)e^(kt) = M/Po
If k = 1, then we get 0 = M/Po, which is impossible unless M = 0 (i.e., there is no migration). Therefore, we assume k ≠ 1.
Taking the natural logarithm of both sides, we get:
kt + ln(k - 1) = ln(M/Po)
Solving for k, we get:
k = [ln(M/Po) - ln(k - 1)]/t
To keep P(t) constant and equal to Po, k must be negative (i.e., P(t) is decreasing) and M must be positive (i.e., there is net migration into the population). Physically, this makes sense because if the migration rate is positive, then more individuals are entering the population than leaving, which will tend to increase the population size. Conversely, if the growth rate k is negative, then the population is decreasing in the absence of migration, so the positive migration rate can counteract this decrease and maintain a constant population size.
To learn more about constant here:
https://brainly.com/question/30579390
#SPJ4
There are 24 students in the class 3/6
of the students are boys how many students are boys
Answer:
12
Step-by-step explanation:3/6 is 1/2 when u simplify it. Then u divide 24 in half and get 12
Karina read a total of 20 2/4 pages in her science and social studies books combined. She read 12 3/4 pages in her science book. How many pages did she read in her social studies book?
______ pages
Answer:
10 1/4
Step-by-step explanation:
Kara recently started a selling her baked goods at the local farmer's market. Her earnings at the end of the first day
were $13. At the end of the second day, her earnings were $20.
Which equation would you use to figure out by how much Kara's second day of earnings exceeded her first day of
earnings?
$13+$20=e
O $13-e = $20
O $20+e=$13
O $20-$13=e
k
Answer: 20-13=e
Step-by-step explanation: 20-13 is 7 so e=7 so you plug in 7 for e and which ever one makes sense, is the right answer so 20-13=e
Luke has a situation on his hands. A pipe in his house froze and cracked from cold weather. Now he has a water leak. The leak has been releasing 2/3 of a liter of water every 2 hours. If w represents the amount of water lost and h represents the number of hours, which equation represents this proportional relationship?
A. w=3h
B. w=1/3h
C. h=1/3w
D. 2/3w=2h
Answer: The equation that represents this proportional relationship is D: 2/3w = 2h.
To find the average rate of change of a function on a given interval, we can calculate the difference between the values of the function at the endpoints of the interval, and divide it by the difference between the values of the independent variable (in this case x) at the endpoints of the interval.
For the function y = 1/x on the interval [1, 3], we can use this method to find the average rate of change:
y(3) - y(1) = 1/3 - 1 = -2/3
x(3) - x(1) = 3 - 1 = 2
Average rate of change = (y(3) - y(1)) / (x(3) - x(1)) = (-2/3) / 2 = -1/3
So, the average rate of change of the function y = 1/x on the interval [1, 3] is -1/3.
Step-by-step explanation:
Write each of the following vector equations as a matrix equation. That is, write it in the form "Ax = b". Specify what the matrix A, the vector x, and the vector b are. (a) x1 3 + x2 7 + x3 -2 = 1-2 3 1 -1(b) x1 3 + x2 5 = 2-2 0 -38 9 8(c) x1 - 3x2 + 5x3 = 1 - x2 + 3x4 = 7(d) x1-2x2 + x3 = 02x2 - 8x3 = 8-4x1 + 5x2 + 9x3 = -9
The following are the vector equations as a matrix equation.
(a)[tex]& \Rightarrow\left[\begin{array}{ccc}3 & 7 & -2 \\-2 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right]=\left[\begin{array}{c}1 \\-1\end{array}\right][/tex]
[tex]$A=\left[\begin{array}{ccc}3 & 7 & -2 \\ -2 & 3 & 1\end{array}\right][/tex] , [tex]x=\left[\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right]$[/tex] [tex]$b=\left[\begin{array}{c}1 \\ -1\end{array}\right]$[/tex]
(b) [tex]$\Rightarrow\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right]\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
[tex]$A=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right][/tex], [tex]x = \left[\begin{array}{l}x_1 \\ x_2\end{array}\right]$[/tex] [tex]$b=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
(c) [tex]$\Rightarrow\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right]\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
[tex]$A=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right][/tex], [tex]x = \left[\begin{array}{l}x_1 \\ x_2\end{array}\right]$[/tex] [tex]$b=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
(d) [tex]& \Rightarrow\left[\begin{array}{ccc}1 & 1-2 & 1 \\0 & 2 & -8 \\-4 & 5 & 9\end{array}\right]\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right]=\left[\begin{array}{c}0 \\8 \\-9\end{array}\right][/tex]
[tex]A=\left[\begin{array}{ccc}1 & 1-2 & 1 \\0 & 2 & -8 \\-4 & 5 & 9\end{array}\right], x=\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right] x[/tex] [tex]b=\left[\begin{array}{c}0 \\8 \\-9\end{array}\right] \\[/tex]
As per the given data here we have to determine each of the following vector equations as a matrix equation.
That means we have write them in the form of matrix equation that is in the form of Ax = b
a)
[tex]3 x_1+7 x_2-2 x_3=1 \\[/tex]
[tex]-2 x_1+3 x_2+1 x_3=-1[/tex]
Write the equations in the matrix form
[tex]& \Rightarrow\left[\begin{array}{ccc}3 & 7 & -2 \\-2 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right]=\left[\begin{array}{c}1 \\-1\end{array}\right][/tex]
This is in the form of Ax = b .
Here, [tex]$A=\left[\begin{array}{ccc}3 & 7 & -2 \\ -2 & 3 & 1\end{array}\right][/tex] , [tex]x=\left[\begin{array}{l}x_1 \\ x_2 \\ x_3\end{array}\right]$[/tex] and [tex]$b=\left[\begin{array}{c}1 \\ -1\end{array}\right]$[/tex]
b)
[tex]& 3 x_1+5 x_2=2 \\[/tex]
[tex]& -2 x_1+0 x_2=-3 \\[/tex]
[tex]& 8 x_1+9 x_2=8[/tex]
Write the equations in the matrix form
[tex]$\Rightarrow\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right]\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
This is in the form of Ax = b.
Here, [tex]$A=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right][/tex], [tex]x = \left[\begin{array}{l}x_1 \\ x_2\end{array}\right]$[/tex] and [tex]$b=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$[/tex]
(c)
[tex]& x_1-3 x_2+5 x_3=1 \\[/tex]
[tex]& -x_2+3 x_4=7 \\[/tex]
[tex]& \Rightarrow 0 x_1-x_2+0 x_3+3 x_4=7 \\[/tex]
Write the equations in the matrix form
[tex]& \Rightarrow\left[\begin{array}{llll}1 & -3 & 5 & 0 \\0 & -1 & 0 & 3\end{array}\right]\left[\begin{array}{l}x_1 \\x_2 \\x_3 \\x_4\end{array}\right]=\left[\begin{array}{l}1 \\7\end{array}\right][/tex]
This is in the form of Ax = b
Here, [tex]} A=\left[\begin{array}{llll}1 & -3 & 5 & 0 \\0 & -1 & 0 & 3\end{array}\right], x=\left[\begin{array}{l}x_1 \\x_2 \\x_3 \\x_4\end{array}\right][/tex] and [tex]b=\left[\begin{array}{l}1 \\7\end{array}\right] \\&\end{aligned}$$[/tex]
d)
[tex]& x_1-2 x_2+x_3=0 \\[/tex]
[tex]& 2 x_2-8 x_3=8 \\[/tex]
[tex]& -4 x_1+5 x_2+9 x_3=-9 \\[/tex]
Write the equations in the matrix form
[tex]& \Rightarrow\left[\begin{array}{ccc}1 & 1-2 & 1 \\0 & 2 & -8 \\-4 & 5 & 9\end{array}\right]\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right]=\left[\begin{array}{c}0 \\8 \\-9\end{array}\right][/tex]
This is in the form of Ax = b
Here, [tex]A=\left[\begin{array}{ccc}1 & 1-2 & 1 \\0 & 2 & -8 \\-4 & 5 & 9\end{array}\right], x=\left[\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right] x[/tex] and [tex]b=\left[\begin{array}{c}0 \\8 \\-9\end{array}\right] \\[/tex]
Therefore all the vector equations are written as a matrix equations
For more questions on matrix equations
https://brainly.com/question/12962407
#SPJ4