consider the bvp for the function given by ″ 49=0,(0)=2,(47)=2.

Answers

Answer 1

I'm sorry, but the given equation ″ 49=0,(0)=2,(47)=2 does not seem to be complete. Could you please provide more information or the complete equation so that I can assist you properly?


Related Questions

A sample size that is one-fourth the original size causes the margin of error to quarter halve double quadruple remain unchanged

Answers

If a sample size is one-fourth the original size, the margin of error will be affected. Specifically, the margin of error will be affected inversely proportional to the square root of the sample size.

Halving the sample size (from the original) will cause the margin of error to increase by a factor of square root of 2, approximately 1.41.

Doubling the sample size (from the original) will cause the margin of error to decrease by a factor of square root of 2, approximately 0.71.

Quadrupling the sample size (from the original) will cause the margin of error to decrease by a factor of square root of 4, approximately 0.5.

Therefore, if the sample size is reduced to one-fourth the original size, the margin of error will be doubled, because the square root of 4 is 2. Conversely, if the sample size is increased fourfold, the margin of error will be halved, because the square root of 1/4 is 1/2.

Learn more about sample size here:

https://brainly.com/question/30885988

#SPJ11

a pair of dice are rolled one time find the probaility of odds against a sum of 7

Answers

The required answer is every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To find the probability of odds against a sum of 7 when rolling a pair of dice one time, we need to first determine the number of ways to get a sum of 7 versus the number of ways to get any other sum.
There are a total of 36 possible outcomes when rolling a pair of dice, as there are six possible outcomes for each die (1, 2, 3, 4, 5, or 6). To get a sum of 7, there are 6 possible combinations: 1+6, 2+5, 3+4, 4+3, 5+2, and 6+1. Therefore, the probability of rolling a sum of 7 is 6/36 or 1/6.

To find the odds against rolling a sum of 7, we can use the formula:
Odds against = (number of ways it won't happen) : (number of ways it will happen)
So the number of ways it won't happen (i.e. rolling any sum other than 7) is 36-6, or 30. Therefore, the odds against rolling a sum of 7 are:
Odds against = 30 : 6
Simplifying, we get:
Odds against = 5 : 1
This means that for every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To know more about the probability . Click on the link.

https://brainly.com/question/30034780

#SPJ11

Graph absolute value y=|3x+5|

Answers

Answer:

Answer in the picture.

Step-by-step explanation:

In Picture.

Answer:

The graph of the absolute value is described in the image .

need help asap. low geometry grade

Answers

Answer:

see answers below

Step-by-step explanation:

B = 180 -90 - 40 = 50° (angles in triangle add up to 180). so, 50 + 40 + 90 = 180.

Sine rule:   a/SIN A  =  b/SIN B  =   c/SIN C

b/sin 50 = 25/sin 40

b = (25 sin 50) / sin 40

= 29.8.

In a right-angled triangle, a ² + b ² = c ²

c ² = 25² + b²

= 1512.67

c = √1512.67

= 38.9

a sequence is defined recursively as follows: a) write the first 5 members of the sequence. b) What is the explicit formula for this sequence? Use mathematical induction to verify the correctness of the formula that you guessed.

Answers

a) The first five members of the sequence is

a1 = a0 + 2
a2 = a1 + 2 = a0 + 4
a3 = a2 + 2 = a0 + 6
a4 = a3 + 2 = a0 + 8
a5 = a4 + 2 = a0 + 10

b) The explicit formula for this sequence is:
an = 2n + a0, for n ≥ 0

A recursive sequence is a sequence where each term is defined in terms of the previous term(s). In this case, we have a sequence that is defined recursively.

Let's assume that the first term of the sequence is a0 and that the recursive formula for the sequence is given by:
an+1 = an + 2, for n ≥ 0

To find the first few terms of the sequence, we can apply the recursive formula repeatedly. Starting with a0, we get:
a1 = a0 + 2
a2 = a1 + 2 = a0 + 4
a3 = a2 + 2 = a0 + 6
a4 = a3 + 2 = a0 + 8
a5 = a4 + 2 = a0 + 10

From this, we can see that the sequence is simply the sequence of even numbers, starting with a0. So, the explicit formula for this sequence is:
an = 2n + a0, for n ≥ 0

To verify this formula using mathematical induction, we need to show that it holds for the base case (n = 0) and for the induction step (n+1).

For the base case, we have:
a0 = 2(0) + a0
a0 = a0

For the induction step, we assume that the formula holds for n and show that it also holds for n+1.

Assume that:
an = 2n + a0

Then, we have:
an+1 = an + 2    (by the recursive formula)
an+1 = 2n + a0 + 2   (substituting in the formula for an)
an+1 = 2(n+1) + a0   (simplifying)

Therefore, the formula holds for all n ≥ 0.

In conclusion, we have found the first 5 members of the sequence by applying the recursive formula, and we have found the explicit formula for the sequence by identifying a pattern in the first few terms. We have also used mathematical induction to verify the correctness of the formula.

know more about explicit formula here:

https://brainly.com/question/30411195

#SPJ11

Determine if f(x)=3x−−√−4x satisfies the mean value theorem on [ 1, 25 ] . if so, find all numbers c on the interval that satisfy the theorem.

Answers

the mean value theorem holds for f(x) on the interval [1, 25], and the number c that satisfies the theorem is c = 85/3.

To apply the mean value theorem on the interval [1, 25], we need to check if the function f(x) is continuous on [1, 25] and differentiable on (1, 25).

First, we can check for continuity. The function f(x) is a composition of two functions, namely f(x) = g(h(x)), where h(x) = 3x - 4 and g(x) = sqrt(x). The function h(x) is continuous on all real numbers, and the function g(x) is continuous and non-negative on [0, infinity). Therefore, f(x) is continuous on its domain, which includes [1, 25].

Next, we can check for differentiability. We can apply the chain rule to find the derivative of f(x):

f'(x) = g'(h(x)) * h'(x)

= (1/2) * (3x - 4)^(-1/2) * 3

= 3 / (2√(3x - 4))

The function f(x) is differentiable on its domain, which includes (1, 25).

Since f(x) is both continuous and differentiable on the interval [1, 25], the mean value theorem applies. By the mean value theorem, there exists at least one number c in (1, 25) such that:

f'(c) = [f(25) - f(1)] / (25 - 1)

Plugging in the values of f(x) and f'(x), we get:

3 / (2√(3c - 4)) = [sqrt(25) - sqrt(1) - sqrt(4) + sqrt(4)] / 24

Simplifying this equation, we get:

3 / (2√(3c - 4)) = 1 / 6

Multiplying both sides by 6, we get:

9 / √(3c - 4) = 1

Squaring both sides and solving for c, we get:

81 = 3c - 4

85 = 3c

c = 85/3

To learn more about number visit:

brainly.com/question/17429689

#SPJ11

use the second fundamental theorem of calculus to find f'(x). f(x) = ∫x 1 8√t csc t dt

Answers

The derivative of f(x) is f'(x) = 8√x csc(x).

To use the second fundamental theorem of calculus to find the derivative of f(x), we first need to express f(x) as a definite integral:

f(x) = ∫x^1 8√t csc(t) dt

Using the second fundamental theorem of calculus, we can find f'(x) as follows:

f'(x) = d/dx [∫x^1 8√t csc(t) dt]

f'(x) = 8√x csc(x) - 0

f'(x) = 8√x csc(x)

Therefore, the derivative of f(x) is f'(x) = 8√x csc(x).

Learn more about theorem here:

https://brainly.com/question/30066983

#SPJ11

.Let S=∑n=1[infinity]an be an infinite series such that SN=7−(9/N^2).
(a) What are the values of\sum_{n=1}^{10}a_{n}and\sum_{n=4}^{16}a_{n}?
\sum_{n=1}^{10}a_{n}=_________________________
\sum_{n=4}^{16}a_{n}=_______________________
(b) What is the value of a3?
a3= ______________________
(c) Find a general formula for an.
an= _____________________
(d) Find the sum\sum_{n=1}^{\infty}a_{n}.
\sum_{n=1}^{\infty}a_{n}=______________________

Answers

The sum of the series is ∑n=1^∞ an = S∞ = 7.

(a) We have the formula for the partial sums:

Sn = ∑n=1[infinity]an

And we know that:

SN = 7 - (9 / N^2)

So we can find the value of a1 by taking N to infinity:

S∞ = lim(N→∞) SN = lim(N→∞) (7 - (9 / N^2)) = 7

a1 = S1 - S0 = S1 = 7 - S∞ = 0

Now we can use the formula for partial sums to find the other two sums:

∑n=1^{10}an = S10 - S0 = (7 - (9 / 10^2)) - 0 = 6.91

∑n=4^{16}an = S16 - S3 = (7 - (9 / 16^2)) - (7 - (9 / 3^2)) = 6.977

Therefore, ∑n=1^{10}an = 6.91 and ∑n=4^{16}an = 6.977.

(b) We can find a3 using the formula for partial sums:

S3 = a1 + a2 + a3

We know that a1 = 0 and we can find S3 from the formula for partial sums:

S3 = 7 - (9 / 3^2) = 6

So we have:

a3 = S3 - a1 - a2 = 6 - 0 - a2 = 6 - a2

We don't have enough information to determine a2, so we cannot determine the exact value of a3.

(c) We can find a general formula for an by looking at the difference between consecutive partial sums:

Sn - Sn-1 = an

So we have:

a1 = S1 - S0 = 7 - S∞ = 0

a2 = S2 - S1 = (7 - (9 / 2^2)) - 7 = -1/4

a3 = S3 - S2 = (7 - (9 / 3^2)) - (7 - (9 / 2^2)) = 1/9 - 1/4 = -7/36

We can see that the denominators of the fractions are perfect squares, so we can make a guess that the general formula for an involves a square in the denominator. We can then use the difference between consecutive terms to determine the numerator. We get:

an = -9 / (n^2 (n+1)^2)

(d) To find the sum of the series, we can take the limit of the partial sums as n goes to infinity:

S∞ = lim(n→∞) Sn

We can use the formula for the partial sums to simplify this expression:

Sn = 7 - (9 / n^2)

So we have:

S∞ = lim(n→∞) (7 - (9 / n^2)) = 7 - lim(n→∞) (9 / n^2) = 7

Therefore, the sum of the series is ∑n=1^∞ an = S∞ = 7.

To know more about sum of the series  refer here:

https://brainly.com/question/4617980

#SPJ11

Use Euler's Formula to express each of the following in a + bi form. (Use symbolic notation and fractions where needed.) -e(3/4)i – 5ie-(1/3)i =

Answers

The expression in a + bi form is: -a - bi = -cos(3/4) - 5i cos(1/3) + i(sin(1/3) - 5sin(3/4))

Euler's formula states that e^(ix) = cos(x) + i sin(x). Therefore, we can express -e^(3/4)i as -cos(3/4) - i sin(3/4) and e^(-1/3)i as cos(1/3) + i sin(1/3).

Substituting these values, we get:

e^(3/4)i - 5ie^(-1/3)i = -cos(3/4) - i sin(3/4) - 5i(cos(1/3) + i sin(1/3))

= -cos(3/4) - 5i cos(1/3) + i(sin(1/3) - 5sin(3/4))

Know more about Euler's formula here:

https://brainly.com/question/24300924

#SPJ11

-2x² - 6x =15
Atenderes form

Answers

Answer:

Step-by-step explanation:The solutions to the equation x^2=6x-15 are x=3+sqrt(6)i,x=3-sqrt(6)i

Answer:

[tex]\displaystyle x=-\frac{3}{2}\pm \frac{\sqrt{21}}{2}i[/tex]

Step-by-step explanation:

[tex]\displaystyle -2x^2-6x=15\\0=2x^2+6x+15\\\\x=\frac{-6\pm\sqrt{6^2-4(2)(15)}}{2(2)}=\frac{-6\pm\sqrt{36-120}}{4}=\frac{-6\pm\sqrt{-84}}{4}=\frac{-6\pm2i\sqrt{21}}{4}\\\\=-\frac{3}{2}\pm \frac{\sqrt{21}}{2}i[/tex]

consider the lines given by ⃗ ()=⟨−1,−2,6⟩ ⟨0,0,3⟩,−[infinity]<<[infinity] and ⃗ ()=⟨−25,−66,67⟩ ⟨3,8,−5⟩,−[infinity]<<[infinity]. find the point of intersection of the two lines.

Answers

the point of intersection of the two lines is (−1, −2, 8.4).

To find the point of intersection of the two lines, we need to set the two equations equal to each other and solve for the values of x, y, and z that satisfy both equations.

Let ⃗()=⟨−1,−2,6⟩+t⟨0,0,3⟩ be the first line, where t is a parameter.

Let ⃗()=⟨−25,−66,67⟩+s⟨3,8,−5⟩ be the second line, where s is a parameter.

Setting the two equations equal to each other, we have:

⟨−1,−2,6⟩+t⟨0,0,3⟩=⟨−25,−66,67⟩+s⟨3,8,−5⟩

Expanding both sides, we get:

−1t = −25 + 3s

−2t = −66 + 8s

6 + 3t = 67 − 5s

Simplifying each equation, we get:

t = 8 − 0.4s

s = 7.8 + 0.5t

t = −20 − 1.5s

Substituting the first and third equations into the second equation, we get:

8 − 0.4s = −20 − 1.5s

Solving for s, we get:

s = 32

Substituting s = 32 into the first equation, we get:

t = 0.8

Substituting s = 32 and t = 0.8 into either of the original equations, we get:

⃗()=⟨−1,−2,6⟩+0.8⟨0,0,3⟩=⟨−1,−2,8.4⟩

To learn more about intersection visit:

brainly.com/question/14217061

#SPJ11

Problem 4: Suppose we want to estimate the total weight of the juice that can be extracted from a shipment of apples. The total weight of the shipment was found to be 1000 pounds. We take a random sampling of 5 apples from the shipment and measure the weight of these apples and the weight of their extracted juice. Apple number 1 2 3 4 5 Weight of the apple (pound) 0.26 0.41 0.3 0.32 0.33 Weight of the apple's juice (pound) 0.18 0.25 0.19 0.21 0.24 Assume that the number of apples in the shipment is large. 1. Estimate the total weight of the juice that can be extracted from this shipment using ratio estimation. Compute its standard error. 2. Construct the 95% confidence interval for the total weight of the juice. 3. Construct the 95% confidence interval for the average weight of the juice that can be ex- tracted from one pound of apple from this shipment.

Answers

1. Ratio estimation:

Let X be the total weight of juice that can be extracted from the shipment. Then, we can use the ratio of the total weight of juice extracted from the sample to the total weight of apples in the sample to estimate X.

The ratio estimator is given by:

R = (∑wᵢ) / (∑xᵢ)

where wᵢ is the weight of the apple's juice for the ith apple in the sample, and xᵢ is the weight of the ith apple in the sample.

Using the data provided, we have:

∑wᵢ = 0.18 + 0.25 + 0.19 + 0.21 + 0.24 = 1.07

∑xᵢ = 0.26 + 0.41 + 0.3 + 0.32 + 0.33 = 1.62

So, the ratio estimator is:

R = 1.07 / 1.62 ≈ 0.661

The total weight of juice that can be extracted from the shipment is then estimated as:

X = R × 1000 = 0.661 × 1000 = 661 pounds

2. 95% confidence interval for the total weight of juice:

The standard error of the ratio estimator is given by:

SE(R) = √(R² / n) × √((N - n) / (N - 1))

where n is the sample size (5), N is the population size (assumed to be large), and √ denotes square root.

Using the data provided, we have:

SE(R) = √(0.661² / 5) × √(995 / 999) ≈ 0.081

The 95% confidence interval for the total weight of juice is then given by:

X ± t(0.025, 4) × SE(R)

where t(0.025, 4) is the t-value for a two-tailed test with degrees of freedom equal to the sample size minus one (4) and a significance level of 0.025.

Using a t-table, we find that t(0.025, 4) ≈ 2.776.

Substituting the values, we get:

CI = 661 ± 2.776 × 0.081

CI ≈ (660.8, 661.2)

So, the 95% confidence interval for the total weight of juice is approximately (660.8, 661.2) pounds.

3.The 95% confidence interval for the average weight of the juice that can be extracted from one pound of apple from this shipment is calculated as follows:

- First, we calculate the sample mean of the weight of the apple's juice:

   X = (0.18 + 0.25 + 0.19 + 0.21 + 0.24) / 5 = 0.214 pounds

- Next, we calculate the sample standard deviation of the weight of the apple's juice:

   s = sqrt(((0.18 - 0.214)^2 + (0.25 - 0.214)^2 + (0.19 - 0.214)^2 + (0.21 - 0.214)^2 + (0.24 - 0.214)^2) / (5 - 1)) = 0.0254 pounds

- Then, we calculate the standard error of the sample mean:

   SE = s / sqrt(n) = 0.0254 / sqrt(5) = 0.01136 pounds

- Finally, we construct the 95% confidence interval using the formula:

  X ± tα/2, n-1 * SE

   

   where tα/2, n-1 is the t-value for a 95% confidence interval with 4 degrees of freedom (n-1 = 5-1 = 4) = 2.776.

   Therefore, the 95% confidence interval for the average weight of the juice that can be extracted from one pound of apple from this shipment is:

   0.214 ± 2.776 * 0.01136 = [0.182, 0.246] pounds.

So, we can say with 95% confidence that the true average weight of the juice that can be extracted from one pound of apple from this shipment lies between 0.182 and 0.246 pounds.

To know more about statistical inference refer here:

https://brainly.com/question/30484842?#

#SPJ11

Students where surveyed about the time they wake up on school mornings. 20 surveyed, out of 500 students. 3 students woke up before 6am, 13 between 6-630am, 4 after 630am what is the best prediction of the number of students who wake up after 630am

Answers

To make the best prediction of the number of students who wake up after 6:30 am, we can use the information provided by the survey.

Out of the 20 students surveyed:

3 students woke up before 6 am.

13 students woke up between 6 am and 6:30 am.

4 students woke up after 6:30 am.

Since the survey sample consists of 20 students, we can assume that the proportions observed in the sample are representative of the larger population of 500 students. To estimate the number of students who wake up after 6:30 am among the 500 students, we can use proportional reasoning.

We can calculate the proportion of students who woke up after 6:30 am in the sample and apply that proportion to the larger population.

The proportion of students who woke up after 6:30 am in the sample is 4/20 or 0.2.

To estimate the number of students who wake up after 6:30 am in the larger population of 500 students, we multiply the proportion by the total population size:

0.2 * 500 = 100

Based on this estimation, the best prediction would be that approximately 100 students wake up after 6:30 am among the 500 surveyed students.

Learn more about prediction Visit : brainly.com/question/4695465

#SPJ11

a3.2 kg balloon is filled with helium (density = 0.179 kg/m3). lf the balloon is a sphere with a radius of 4.9 m, what is the maximum weight it can lift?

Answers

The maximum weight that the balloon can lift is 5020.31 Newtons.

We have to give that,

A 3.2 kg balloon is filled with helium with a density of 0.179 kg/m³.

And, the balloon is a sphere with a radius of 4.9 m.

Since The formula for the volume of a sphere is,

[tex]V = \dfrac{4}{3} \pi r^3[/tex]

Here, [tex]g = 9.8 \text{m/s}[/tex]

[tex]\rho_{air} = 1.225[/tex] kg/m³

So, Buoyant force on the ballons is,

[tex]F_B = V \times \rho_{air} \times g[/tex]

Substitute all the given values,

[tex]F_{B} = \dfrac{4}{3} \times\pi \times (4.9)^3 \times 1.225 \times 9.8[/tex]

[tex]F_B = 5916.15 \text{N}[/tex]

So, the maximum weight that the balloon can lift is calculated as,

[tex]W +M_b +V \times \rho_{He} \times g = F_B = V \times \rho_{air} \times g[/tex]

[tex]W = F_B - (M_bg +V \times \rho_{He} \times g)[/tex]

Where, [tex]M_b[/tex] is the mass of balloons.

Substitute all the values,

[tex]W = 5916.15 - [(3.2 \times 9.8) + \dfrac{4}{3} \pi (4.9)^3 \times (0.179) \times(9.8)][/tex]

[tex]W = 5916.15 - 31.36 - 864.48\\[/tex]

So, the maximum weight that the balloon can lift is,

[tex]W = 5020.31[/tex]

To learn more about the volume visit:

brainly.com/question/24372707

#SPJ12

For data in the table below, find the sum of the absolute deviation for the predicted values given by the median-median line, y=3.6x-0.4.x y1 32 73 94 145 156 217 25a. 5.7145b. 4.8c.4d. 0,0005`

Answers

The sum of the absolute deviation for the predicted values given by the median-median line, y=3.6x-0.4, is 4.8. (B)

This means that on average, the predicted values are off from the actual values by 4.8 units. To find the absolute deviation, you take the absolute value of the difference between each predicted value and its corresponding actual value.

Then, you sum up all of these absolute deviations. In this case, the absolute deviations are 9.4, 8.6, 1.2, 6.2, 18.8, and 18.2. When you add these up, you get 62.4. Since there are six data points, you divide by 6 to get the average absolute deviation of 10.4.

However, we are looking for the sum of the absolute deviation, so we add up all of these values to get 62.4. Finally, we divide by 13 (the number of data points) to get the sum of the absolute deviation for the predicted values given by the median-median line, which is 4.8.(B)

To know more about absolute deviation click on below link:

https://brainly.com/question/23556021#

#SPJ11

the graph of a function y=f(x) always crosses the y-axis

Answers

The graph of a function y=f(x) does not always cross the y-axis. However, It only does so if the function has a y-intercept, which is not always the case.

First, let's define what we mean by the y-axis. The y-axis is the vertical line that runs through the origin of the coordinate plane. It represents the values of y, while x takes on a value of zero. Now, if a function has a y-intercept, which is the point where the graph intersects the y-axis, then it will cross the y-axis. The y-intercept is the point where x=0, so the coordinates of the point will be (0, y).

Some common functions that have a y-intercept include linear functions, which have a graph that is a straight line, and quadratic functions, which have a graph that is a parabola.
For example, the linear function y=2x+1 has a y-intercept of (0,1), so its graph crosses the y-axis at that point. The quadratic function y=x^2-4x+3 has a y-intercept of (0,3), so its graph also crosses the y-axis at that point.

However, there are many functions that do not have a y-intercept and therefore do not cross the y-axis. Examples of such functions include sine and cosine functions, which oscillate between positive and negative values but never touch the y-axis.

To know more about graph of a function visit:

https://brainly.com/question/30686770

#SPJ11


Let f(x,y)=(5y^2)ln(3x). Then ∇f =? , and Duf(2,5) in the direction of the vector 〈2,−2〉 is ?
Let f(x,y)=((x^3)(y^3))/9. Then ∇f =? , and Duf(−5,−4) in the direction of the vector 〈−2,−2〉 is ? .

Answers

Duf(−5,−4) in the direction of the vector 〈−2,−2〉 is 〈((-5)^2)(-4)^3/3, (-5)^3((-4)^2)/3〉 · 〈-1/√2, -1/√2〉 = 500/3.

For the function f(x, y) = (5y^2)ln(3x), we have:

∂f/∂x = (5y^2)/(3x)

∂f/∂y = 10y ln(3x)

Therefore, ∇f = 〈(5y^2)/(3x), 10y ln(3x)〉.

To find Duf(2, 5) in the direction of the vector 〈2, -2〉, we first need to find the unit vector in the direction of 〈2, -2〉:

||〈2, -2〉|| = √(2^2 + (-2)^2) = 2√2

u = 〈2, -2〉 / ||〈2, -2〉|| = 〈1/√2, -1/√2〉

Then, we have:

Duf(2, 5) = ∇f(2, 5) · u = 〈(5(5)^2)/(3(2)), 10(5) ln(3(2))〉 · 〈1/√2, -1/√2〉

= (125/6√2) - (50/√2) ln3.

For the function f(x, y) = ((x^3)(y^3))/9, we have:

∂f/∂x = (x^2)(y^3)/3

∂f/∂y = (x^3)(y^2)/3

Therefore, ∇f = 〈(x^2)(y^3)/3, (x^3)(y^2)/3〉.

To find Duf(-5, -4) in the direction of the vector 〈-2, -2〉, we first need to find the unit vector in the direction of 〈-2, -2〉:

||〈-2, -2〉|| = √((-2)^2 + (-2)^2) = 2√2

u = 〈-2/√8, -2/√8〉 = 〈-1/√2, -1/√2〉

Then, we have:

Duf(-5, -4) = ∇f(-5, -4) · u = 〈((-5)^2)(-4)^3/3, (-5)^3((-4)^2)/3〉 · 〈-1/√2, -1/√2〉

= 500/3.

To learn more about Vector:

https://brainly.com/question/15519257

#SPJ11

A savings account pays a 3% nominal annual interest rate and has a balance of$1,000. Any interest earned is deposited into the account and no further deposits or withdrawals are made.


Write an expression that represents the balance in one year if interest is compounded annually.

Answers

Hence, the balance in one year if interest is compounded annually is $1030.

Given that:

A savings account pays a 3% nominal annual interest rate and has a balance of $1,000. Any interest earned is deposited into the account and no further deposits or withdrawals are made.

We need to write an expression that represents the balance in one year if interest is compounded annually.

The formula for compound interest is given by

;A = P(1 + r/n)^(nt)

Where:

A = the future value of the investment/loan, including interest

P = the principal investment amount (the initial deposit or loan amount)

r = the annual interest rate (decimal)n = the number of times that interest is compounded per year

For annual compounding, n = 1t = the number of years the money is invested or borrowed

Substituting the values in the formula, we get;

A = $1000(1 + 0.03/1)^(1*1)

A = $1000(1.03)

A = $1,030

Therefore, the expression that represents the balance in one year if interest is compounded annually is A = $1000(1 + 0.03/1)^(1*1).

A savings account is a deposit account that earns interest and helps you save money. This savings account pays a nominal annual interest rate of 3% compounded annually. The nominal rate is the rate that does not include the effect of compounding. It is the stated rate of interest earned in one year.

The balance of the account is $1000. The expression that represents the balance in one year if interest is compounded annually is given by the formula:

A = P (1 + r/n)^(nt)

Where,

P = principal amount

= $1000

r = nominal annual interest rate

= 3%

n = number of times interest is compounded per year = 1t

= time in years

= 1

Using the values in the formula, we get:

A = $1000 (1 + 0.03/1)^(1*1)

A = $1030

To know more about compounded annually visit:

https://brainly.com/question/31297006

#SPJ11

On a dry surface the braking distance in feet of a Cadillac Escalade can be approximated by a normal distribution the mean stopping distance is 157. 5 feet with a standard deviation of 7. 2 feet find the braking distance of the Cadillac Escalade that corresponds to z=1. 2

Answers

The answer is , The braking distance of the Cadillac Escalade that corresponds to z=1.2 is approximately 166.14 feet. The option is (a) .

Given that the mean stopping distance is 157.5 feet and the standard deviation is 7.2 feet.

We need to find the braking distance of the Cadillac Escalade that corresponds to z=1.2.

Because the distribution is normal, we can use the z-score formula to find the corresponding braking distance:

z=(x-μ)/σ

where z=1.2, μ=157.5, and σ=7.2

We can solve for x by rearranging the equation:

x = zσ + μx

= 1.2(7.2) + 157.5x

= 8.64 + 157.5x

= 166.14

The braking distance of the Cadillac Escalade that corresponds to z=1.2 is approximately 166.14 feet.

Therefore, the correct option is (a) 166.14 feet.

To know more about Distance visit:

https://brainly.com/question/29769926

#SPJ11

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

Answers

Taking the data into consideration, the function would be C(x) = 2x + 28, and Harry would have to pay $52 if he were to take 12 classes, as seen below.

How to solve the function

Taking the information provided in the prompt into consideration, the cost Harry has to pay for the gym membership and fitness classes can be represented by the following function:

C(x) = 2x + 28

Where x is the number of fitness classes he takes, and C(x) is the total cost he has to pay. If Harry takes 12 classes, then we can substitute x = 12 into the function:

C(12) = 2(12) + 28

C(12) = 24 + 28

C(12) = 52

Therefore, Harry has to pay a total of $52 if he takes 12 classes.

This is the complete question we found online:

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

What is the total amount Harry has to pay if he takes 12 classes?

Learn more about functions here:

https://brainly.com/question/25638609

#SPJ1

Can some one help me with it​

Answers

The simplified expression is 2x(3x - √x/2 + 1/x).

We have,

(6x² - √x + 2) / 2x

To simplify the expression (6x² - √x + 2) / 2x,

We can factor out 2x from the numerator.

(6x² - √x + 2) / 2x

= 2x(3x - √x/2 + 1/x)

Therefore,

The simplified expression is 2x(3x - √x/2 + 1/x).

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ1

You have borrowed a book from the library of St. Ann’s School, Abu Dhabi and you have lost it. Write a letter to the librarian telling her about the loss. Formal letter

Answers

After including your address and that of the librarian in the formal format, you can begin by writing the letter as follows;

Dear sir,

I am writing to inform you about the loss of a book that I borrowed from the St. Ann's School library.

How to complete the letter

After starting off your letter in the above manner, you can continue by explaining that it was not your intention to misplace the book, but your chaotic exam schedule made you a bit absentminded on the day you lost the book.

Explain that you are sorry about the incident and are ready to do whatever is necessary to redeem the situation.

Learn more about letter writing here:

https://brainly.com/question/24623157

#SPJ4

Polygon ABCD with vertices at A(1, −2), B(3, −2), C(3, −4), and D(1, −4) is dilated to create polygon A′B′C′D′ with vertices at A′(4, −8), B′(12, −8), C′(12, −16), and D′(4, −16). Determine the scale factor used to create the image. one fourth one half 2 4

Answers

The Scale factor used to create the image is 4.

The scale factor used to create the image,  compare the side lengths of the original polygon ABCD and the image polygon A'B'C'D'. The scale factor is the ratio

Side AB: √((3 - 1)^2 + (-2 - (-2))^2) = √(2^2) = 2

Side BC: √((3 - 3)^2 + (-4 - (-2))^2) = √(0^2 + (-2)^2) = 2

Side CD: √((1 - 3)^2 + (-4 - (-4))^2) = √((-2)^2) = 2

Side DA: √((1 - 1)^2 + (-4 - (-2))^2) = √(0^2 + (-2)^2) = 2

Polygon A'B'C'D':

Side A'B': √((12 - 4)^2 + (-8 - (-8))^2) = √(8^2) = 8

Side B'C': √((12 - 12)^2 + (-16 - (-8))^2) = √(0^2 + (-8)^2) = 8

Side C'D': √((4 - 12)^2 + (-16 - (-16))^2) = √((-8)^2) = 8

Side D'A': √((4 - 4)^2 + (-16 - (-8))^2) = √(0^2 + (-8)^2) = 8

Now, we can calculate the scale factor by comparing the side lengths:

Scale factor = (A'B' / AB) = (8 / 2) = 4

Therefore,To determine the scale factor used to create the image, we need to compare the corresponding side lengths of the original polygon ABCD and the image polygon A'B'C'D'. The scale factor is the ratio of the corresponding side lengths.

the side lengths of both polygons:

Polygon ABCD:

Side AB: √((3 - 1)^2 + (-2 - (-2))^2) = √(2^2) = 2

Side BC: √((3 - 3)^2 + (-4 - (-2))^2) = √(0^2 + (-2)^2) = 2

Side CD: √((1 - 3)^2 + (-4 - (-4))^2) = √((-2)^2) = 2

Side DA: √((1 - 1)^2 + (-4 - (-2))^2) = √(0^2 + (-2)^2) = 2

Polygon A'B'C'D':

Side A'B': √((12 - 4)^2 + (-8 - (-8))^2) = √(8^2) = 8

Side B'C': √((12 - 12)^2 + (-16 - (-8))^2) = √(0^2 + (-8)^2) = 8

Side C'D': √((4 - 12)^2 + (-16 - (-16))^2) = √((-8)^2) = 8

Side D'A': √((4 - 4)^2 + (-16 - (-8))^2) = √(0^2 + (-8)^2) = 8

Now, we can calculate the scale factor by comparing the side lengths:

Scale factor = (A'B' / AB) = (8 / 2) = 4

Therefore, the scale factor used to create the image is 4.

To know more about  Scale factor.

https://brainly.com/question/30241613

#SPJ11

A company receives an order for 65 pieces of fabric in the given shape each piece is to be dyed red. To sue 6 in^2 of fabric 2 is of dye is needed. How much dye is needed for the entire order

Answers

The company will need 780 square inches of dye for the entire order of 65 fabric pieces, assuming each piece requires 12 square inches of fabric and 2 units of dye are needed for every 6 square inches.

To calculate the amount of dye needed for the entire order, we first determine the amount of fabric required. Each fabric piece has a given shape, but the specific dimensions are not provided. Therefore, for simplicity, let's assume each fabric piece requires 12 square inches of fabric.

Given that 2 units of dye are needed for every 6 square inches of fabric, we can set up a proportion to find the total amount of dye required:

2 units of dye / 6 square inches = x units of dye / 780 square inches

Cross-multiplying, we get:

2 * 780 = 6 * x

1560 = 6x

Dividing both sides by 6:

x = 1560 / 6

x = 260

Therefore, the company will need 780 square inches of dye for the entire order of 65 fabric pieces, assuming each piece requires 12 square inches of fabric and 2 units of dye are needed for every 6 square inches.

Learn more about square here:

https://brainly.com/question/28776767

#SPJ11

What is the height of the cuboidal box of length 28.5cm, breadth 16.5cm and lateral surface area 1350 sq.cm?​

Answers

The height of the cuboidal box with a length of 28.5 cm, breadth of 16.5 cm, and a lateral surface area of 1350 sq.cm is 15 cm.

In order to calculate the height of the cuboidal box, we will need to apply the formula that describes how to calculate the lateral surface area of a cuboid. This equation is written as LSA = 2lh + 2bw + 2lh, where l stands for the length of the cuboid, b stands for the width of the cuboid, and h stands for the height of the cuboid.

The following numbers can be inserted into the formula in light of the fact that the lateral surface area (LSA) measures 1350 square cm:

1350 = 2(28.5h) + 2(16.5h)

In order to simplify the problem, consider the following:

1350 = 57h + 33h

1350 = 90h

After dividing each side by 90 degrees, we obtain the following results:

h = 15 cm

The cuboidal box ends up having a height of 15 centimetres as a consequence of this.

Learn more about surface area here:

https://brainly.com/question/29298005

#SPJ11

Find the fundamental matrix Φ(t) satisfying Φ(0)=I for the given first-order system: x ′
=( −1
1

−4
−1

)x

Answers

The fundamental matrix Φ(t) satisfying Φ(0) = I for the given first-order system x' = [[-1, 1], [-4, -1]]x is Φ(t) = [[e^(-t), te^(-t)], [-4te^(-t), e^(-t)]].

The fundamental matrix is a matrix whose columns are the linearly independent solutions of the given system of differential equations. In this case, we are given the matrix representation of the system and we need to find the fundamental matrix Φ(t).

To find Φ(t), we first need to find the eigenvalues and eigenvectors of the coefficient matrix A = [[-1, 1], [-4, -1]]. The eigenvalues can be found by solving the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix.

Solving det(A - λI) = 0, we find that the eigenvalues are λ₁ = -2 and λ₂ = -3.

Next, we find the corresponding eigenvectors. For λ₁ = -2, we solve the equation (A - λ₁I)v₁ = 0, where v₁ is the eigenvector. Similarly, for λ₂ = -3, we solve (A - λ₂I)v₂ = 0, where v₂ is the eigenvector.

After finding the eigenvectors, we construct the fundamental matrix Φ(t) using the formula Φ(t) = [v₁ e^(λ₁t), v₂ e^(λ₂t)], where e^(λ₁t) and e^(λ₂t) are the exponential terms corresponding to the eigenvalues.

Finally, we substitute the eigenvalues and eigenvectors into the formula and simplify to obtain the fundamental matrix Φ(t) = [[e^(-t), te^(-t)], [-4te^(-t), e^(-t)]], which satisfies Φ(0) = I.

Learn more about characteristic equation here:

https://brainly.com/question/31432979

#SPJ11

Determine the equation of the circle graphed below.

Answers

[tex](x - 4)^2 + y^2 = 4[/tex] is the equation of the given circle.

As we can see in the graph that the radius of the circle is 2 units and the circle is passing through the point (4, 0).

To find the equation of a circle, we need the center coordinates (h, k) and the radius (r). In this case, the radius is given as 2 units, and the circle passes through the point (4, 0).

The center of the circle can be found by taking the coordinates of the given point. In this case, the x-coordinate of the point (4, 0) represents the horizontal position of the center.

Center coordinates: (h, k) = (4, 0)

Now, we can write the equation of the circle using the formula:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Substituting the values into the equation, we get:

[tex](x - 4)^2 + (y - 0)^2 = 2^2[/tex]

Simplifying further, we have:

[tex](x - 4)^2 + y^2 = 4[/tex]

Therefore, the equation of the circle with a radius of 2 units, passing through the point (4, 0), is [tex](x - 4)^2 + y^2 = 4[/tex].

Learn more about coordinates here:

https://brainly.com/question/20282507

#SPJ1

Find the surface area of a right octagonal pyramid with height 2.5 yards, base side length of 1.24 yards, and its base has apothem length 1.5 yards.

Answers

The surface area of the right octagonal pyramid would be =27.28yrd².

How to calculate the surface area of the given shape?

To calculate the surface area of the given shape, the formula that should be used would be given below as follows:

Surface area (SA) = 2 ×s× 2 ( 1 + 2 ) + 4 s h

Where;

s = 1.24

h = 2.5

SA = 2× 1.24×2(1+2)+4×1.24×2.5

= 14.88+12.4

= 27.28yrd²

Learn more about area here:

https://brainly.com/question/28470545

#SPJ1

If a chi-square goodness of fit test ends in a significant result it means that the expected frequencies are significantly different than the observed frequencies.
a) True
b) False

Answers

The statement given "If a chi-square goodness of fit test ends in a significant result it means that the expected frequencies are significantly different than the observed frequencies." is true because because if a chi-square goodness of fit test ends in a significant result, it means that the expected frequencies are significantly different from the observed frequencies.

The chi-square goodness of fit test is a statistical test used to determine if observed categorical data follows an expected distribution. It compares the observed frequencies in different categories with the expected frequencies based on a specified distribution or hypothesis.

If the test yields a significant result, it indicates that there is a significant difference between the observed frequencies and the expected frequencies. In other words, the data does not fit the expected distribution, and there is evidence to suggest that the observed frequencies are not simply due to chance.

You can learn more about chi-square at

https://brainly.com/question/4543358

#SPJ11

what is the hydronium-ion concentration of a 0.210 m oxalic acid, h 2c 2o 4, solution? for oxalic acid, k a1 = 5.6 × 10 –2 and k a2 = 5.1 × 10 –5.

Answers

The hydronium-ion concentration of a 0.210 M oxalic acid (H₂C₂O₄) solution is approximately 1.06 × 10⁻² M.

To find the hydronium-ion concentration, follow these steps:

1. Determine the initial concentration of oxalic acid (H₂C₂O₄) which is 0.210 M.
2. Since oxalic acid is a diprotic acid, it has two dissociation constants, Ka1 (5.6 × 10⁻²) and Ka2 (5.1 × 10⁻⁵).
3. For the first dissociation, H₂C₂O₄ ⇌ H⁺ + HC₂O₄⁻, use the Ka1 to find the concentration of H⁺ ions.
4. Create an ICE table (Initial, Change, Equilibrium) to represent the dissociation of H₂C₂O₄.
5. Write the expression for Ka1: Ka1 = [H⁺][HC₂O₄⁻]/[H₂C₂O₄].
6. Use the quadratic formula to solve for [H⁺].
7. The resulting concentration of H⁺ (hydronium-ion) is approximately 1.06 × 10⁻² M.

To know more about ICE table click on below link:

https://brainly.com/question/30395953#

#SPJ11

Other Questions
Business services, such as advertising, banking, and journalism are centrally located mainly toA) take advantage of the safe environment.B) facilitate rapid communication of fast-breaking news.C) facilitate the speedy movement of manufactured goods.D) maintain a presence in the seat of government.E) allow for easier commuting to and from the countryside What reaction (oxidation or reduction) occurs at the cathode of a voltaic cell?a. What is the sign of the cathode?b. Do electrons flow toward or away from the cathode? what is true of the calculation for the 4-month moving average forecast in month 14? what is true of the calculation for the 4-month moving average forecast in month 14? it contains only actual (vs. forecasted) data values for number of patients one would first need to compute the 4-month moving average forecast for month 13 it will contain 3 actual data values and 1 forecasted data value for number of patients both b and c none of the above If 2200 J of heat are added to a 190 - g object, its temperature increases by 12 C .A) What is the heat capacity of this object?B) What is the object's specific heat? Which one of the following runs next to BIOS when a computer is powered on? a) BIOS. b) Operating system. c) Bootloader. d) File system. why are different prices charged for different shoes? is the price based on the quality of the materials or something else? over the past two decades, which statement best describes the income distribution of u.s. citizens? the charge on adhesive tape when adhesive tape is pulled from a dispenser, the detached tape acquires a positive charge and the remaining tape in the dispenser acquires a negative charge. your firm will be sending a communication promoting xyz to 35 retail investors over the next two weeks. this communication ____ T/F : the general computer science term for a collection of variables that have distinct names and types is a structure. when you use a decision tree to automate a process, which layer will give you the action or final outcome for each set of conditions? Use the Lagrange Multipliers to maximize f(x,y)=x^3y^5 subject to the constraint x+y=8. What evidence from the article supports the lesson James Bird learned? Copy and paste one quote from the article("stories that saved my life and thats why i write for young people"). Your quote should be in quotation marks! Refer to the RL circuit in figure below. If 10 V is applied to the input , find the magnitude and the phase shift produced at 5 kHz. Specify whether the phase shift is leading or lagging. semen is made from which of the following? a sticky yellowish substance secreted by the seminal vesicles a thin, milky-colored substance secreted by the prostate gland sperm from the vas deferens all of the above' During a workout, a person repeatedly lifts a 16-lb barbell through a distance of 1.1 ft .How many "reps" of this lift are required to work off 150 C? true/false. an entity that has a well-defined role in the application domain and has a state, behavior, and identity is called an object. feminist gerontology posits that aging cannot be understood without also considering I WILL MARK YOU BRAINILISTWhich statement best describes the outcomes of both meiosis and mitosis?A.Cell division results in daughter cells that contain DNA.B.Each daughter cell has two complete sets of chromosomes.C.Within a cell, two chromosomes pair up and exchange segments of genetic material.D.Genetically identical daughter cells are produced that can function as body cells or sex cells. Conjugate the verb escribir in t form