can you help to solve this two questions?
41.
a=?
b=?
42.
slope of the tangent line=?

Can You Help To Solve This Two Questions?41.a=?b=?42.slope Of The Tangent Line=?

Answers

Answer 1

The equation of the tangent line to the graph of the function at x = 7 is:    y = -1/49 x + 50/343, the equation of the normal line to the graph of the function at x = 7 is: y = 49x - (2402/7) and  slope of the tangent line to the graph of y = 5x^3 at the point (2,40) is 60.

What is the tangent line to the graph of the function at x = 7

a) To find the tangent line to the graph of the function at x = 7, we need to find the slope of the function at that point. We can use the derivative of the function to find the slope:

f(x) = 1/x

f'(x) = -1/x^2

So, at x = 7, the slope of the tangent line is:

m = f'(7) = -1/7^2 = -1/49

To find the equation of the tangent line, we also need a point on the line. We know that the point (7, 1/7) is on the graph of the function, so we can use that as our point. Using the point-slope form of a line, we have:

y - 1/7 = -1/49(x - 7)

Simplifying this equation, we get:

y = -1/49 x + 50/343

So the equation of the tangent line to the graph of the function at x = 7 is:

y = -1/49 x + 50/343

b) To find the normal line to the graph of the function at x = 7, we need to find a line that is perpendicular to the tangent line we found in part (a). The slope of the normal line is the negative reciprocal of the slope of the tangent line:

m(normal) = -1/m(tangent) = -1/(-1/49) = 49

Using the point-slope form of a line again, we can find the equation of the normal line that passes through the point (7, 1/7):

y - 1/7 = 49(x - 7)

Simplifying this equation, we get:

y = 49x - [(2402)/7]

So the equation of the normal line to the graph of the function at x = 7 is:

y = 49x - (2402/7)

Problem 42:

We can use the limit definition of the derivative to find the slope of the tangent line to the graph of y = 5x^3 at the point (2,40).

Using the formula for the derivative:

dy/dx = lim(h→0) [(f(x+h) - f(x))/h]

we can calculate the slope of the tangent line at x = 2.

Plugging in the given function, we get:

[tex]\frac{dy}{dx} = \lim_{h \to 0} [(5(2+h)^3 - 40) / h][/tex]

[tex]= \lim_{h \to 0} [(40 + 60h + 30h^2 + 5h^3 - 40) / h]\\= \lim_{h \to 0} [60 + 30h + 5h^2]\\= 60[/tex]

Therefore, the slope of the tangent line to the graph of y = 5x^3 at the point (2,40) is 60.

Learn more on slope to the tangent line here;

https://brainly.com/question/6353432

#SPJ1


Related Questions

30 POINTS! PLEASEHELP

Answers

Answer:

Required length is 13 feet

Step-by-step explanation:

[tex]{ \rm{length = \sqrt{ {12}^{2} + {5}^{2} } }} \\ \\ { \rm{length = \sqrt{144 + 25} }} \\ \\ { \rm{length = \sqrt{169} }} \\ \\ { \rm{length = 13 \: feet}}[/tex]

13/16+2 1/12+2 3/24





















































dfsklhgdfehuiorgjrgiy

Answers

Answer:

Fraction: 241/48

Improper fraction: 5 1/48

Decimal: 5.021

Step-by-step explanation:

To calculate the expression 13/16+2 1/12+2 3/24, I first converted the mixed numbers 2 1/12 and 2 3/24 to improper fractions. 2 1/12 is equal to 25/12 and 2 3/24 is equal to 51/24. Then, I added the three fractions 13/16, 25/12, and 51/24 by finding a common denominator, which in this case is 48. So, the expression becomes (39/48)+(100/48)+(102/48), which simplifies to (39+100+102)/48, which equals 241/48. Finally, I converted the improper fraction 241/48 to a mixed number, which is equal to 5 1/48.

any point on the parabola can be labeled (x,y), as shown. a parabola goes through (negative 3, 3)

Answers

The correct standard form of the equation of the parabola is:

[tex]y = -x^2 - 1[/tex].

To find the standard form of the equation of the parabola that passes through the given points (-3, 3) and (1, -1), we can use the general form of the equation of a parabola:

[tex]y = ax^2 + bx + c[/tex] ___________(1)

Substituting the coordinates of the two given points into this equation, we get a system of two equations in three unknowns (a, b, and c):

[tex]3 = 9a - 3b + c[/tex]

[tex]-1 = a + b + c[/tex]

To solve for a, b, and c, we can eliminate one of the variables using subtraction or addition. Subtracting the second equation from the first, we get:

[tex]4 = 8a - 4b[/tex]

Simplifying this equation, we get:

[tex]2 = 4a - 2b[/tex]

Dividing both sides by 2, we get:

[tex]1 = 2a - b[/tex]___________(2)

Now we can substitute this expression for b into one of the earlier equations to eliminate b. Using the first equation, we get:

[tex]3 = 9a - 3(2a - 1) + c[/tex]

Simplifying this equation, we get:

[tex]3 = 6a + c + 3[/tex]

Subtracting 3 from both sides, we get:

[tex]0 = 6a + c[/tex]

Solving for c, we get:

c = -6a __________(3)

Substituting this expression for c into the second equation, we get:

[tex]-1 = a + (2a - 1) - 6a[/tex]

Simplifying this equation, we get:

[tex]-1 = -3a - 1[/tex]

Adding 1 to both sides, we get:

[tex]-3a =0[/tex]

Solving for a, we get:

[tex]a = 0[/tex]

Substituting this value of a into the equation(3) for c, we get:

c = 0

Substituting a = 0 into the equation(2) for b that we found earlier, we get:

[tex]1 = 0 - b[/tex]

Solving for b, we get:

[tex]b = -1[/tex]

Putting the values of a, b and c in (1), we get

[tex]y = -x^2 - 1[/tex]

Therefore, the equation of the parabola that passes through the given points (-3, 3) and (1, -1) is:

[tex]y = -x^2 - 1[/tex]

Learn more about parabola

brainly.com/question/31142122

#SPJ4

Complete question:

A parabola goes through (-3, 3) & (1, -1). A point is below the parabola at (-3, 2). A line above the parabola goes through (-3, 4) & (0, 4). A point on the parabola is labeled (x, y).

What is the correct standard form of the equation of the parabola?

The figure is in the image attached below

Traffic signs are regulated by the Manual on Uniform Traffic Control Devices (MUTCD). The perimeter of a rectangular traffic sign is 126 inches. Also, its length is 9 inches longer than its widthFind the dimensions of this sign.

Answers

Answer:

Traffic signs are regulated by the Manual on Uniform Traffic Control Devices (MUTCD). The perimeter of a rectangular traffic sign is 126 inches. Also, its length is 9 inches longer than its widthFind the dimensions of this sign.

Step-by-step explanation:

Let's say the width of the sign is x inches. Then, according to the problem, the length of the sign is 9 inches longer than the width, which means the length is x + 9 inches.

The perimeter of a rectangle can be found by adding up the length of all its sides. For this sign, the perimeter is given as 126 inches. So we can set up an equation:

2(length + width) = 126

Substituting the expressions for length and width in terms of x, we get:

2(x + x + 9) = 126

Simplifying and solving for x:

2(2x + 9) = 126

4x + 18 = 126

4x = 108

x = 27

So the width of the sign is 27 inches, and the length is 9 inches longer, or 36 inches. Therefore, the dimensions of the sign are 27 inches by 36 inches.

The Butler family and the Phillips family each used their sprinklers last summer. The water output rate for the Butler family's sprinkler was 25 L per hour. The water output rate for the Phillips family's sprinkler was 40 L per hour. The families used their sprinklers for a combined total of 55 hours, resulting in a total water output of 1750 L. How long was each sprinkler used?

Answers

The Butler family used their sprinkler for 30 hours and the Phillips family used their sprinkler for 25 hours.

Let's solve the problem with algebra.

Let x represent the number of hours the Butlers used their sprinkler, and y represent the number of hours the Phillips family used their sprinkler. We are aware of the following:

The Butler family's sprinkler had a water output rate of 25 L per hour, so the total amount of water they used is 25x.

The Phillips family's sprinkler had a water output rate of 40 L per hour, so the total amount of water they used was 40y.

The sprinklers were used by the families for a total of 55 hours, so x + y = 55.

The total amount of water produced was 1750 L, so 25x + 40y = 1750.

Using these equations, we can now solve for x and y.

First, we can solve for one of the variables in terms of the other using the equation x + y = 55. For instance, we can solve for x as follows:

x = 55 - y

When we plug this into the second equation, we get:

25(55 - y) + 40y = 1750

We get the following results when we expand and simplify:

1375 - 25y + 40y = 1750

15y = 375

y = 25

As a result, the Phillips family ran their sprinkler for 25 hours. We get the following when we plug this into the equation x + y = 55:

x + 25 = 55

x = 30

As a result, the Butlers used their sprinkler for 30 hours.

As a result, the Butler family sprinkled for 30 hours and the Phillips family sprinkled for 25 hours.

To know more similar question visit:

https://brainly.com/question/18089455

#SPJ1

The Khan Shatyr Entertainment Center in Kazakhstan is the largest tent in the world. The spire on top is 60 m in length. The distance from the center of the tent to the outer edge is 97.5 m. The angle between the ground and the side of the tent is 42.7°.

Find the total height of the tent (h), including the spire.
Find the length of the side of the tent (x)

Answers

i. The total height of the tent including the spire is 150 m.

ii. The length of the side of the tent  x is 132.7 m.

What is a trigonometric function?

Trigonometric functions are required functions in determining either the unknown angle of length of the sides of a triangle.

Considering the given question, we have;

a. To determine the total height of the tent, let its height from the ground to the top of the tent be represented by x. Then:

Tan θ = opposite/ adjacent

Tan 42.7 = h/ 97.5

h = 0.9228*97.5

  = 89.97

h = 90 m

The total height of the tent including the spire = 90 + 60

                                           = 150 m

b. To determine the length of the side of the tent x, we have:

Cos θ = adjacent/ hypotenuse

Cos 42.7 = 97.5/ x

x = 97.5/ 0.7349

  = 132.67

The length of the side of the tent x is 132.7 m.

Learn more about the trigonometric functions at https://brainly.com/question/30860427

#SPJ1

Question 15 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:

Standard deck of 52 cards
4 suits (CLUBS SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
DIAMONDS

If a card is drawn at random from the deck, what is the probability it is a jack or ten?

0
4/52- 1/13
8/52 = 2/13
48/52- 12/13

Answers

Answer: 2/13

Step-by-step explanation:

There are four jacks and four tens in a standard deck of 52 cards. However, the jack of spades and the ten of spades are counted twice since they are both a jack and a ten. Therefore, there are 8 cards that are either a jack or a ten, and the probability of drawing one of these cards at random is:

P(Jack or Ten) = 8/52 = 2/13

So the answer is 2/13.

Step-by-step explanation:

a probability is airways the ratio

desired cases / totally possible cases

in each of the 4 suits there is one Jack and one 10.

that means in the whole deck of cards we have

4×2 = 8 desired cases.

the totally possible cases are the whole deck = 52.

so, the probability to draw a Jack or a Ten is

8/52 = 2/13

find the following answer

Answers

Cardinality of given set is 10.

Describe Cardinality.

The cardinality of a mathematical set refers to the number of entries in the set. It may be limited or limitless. For instance, if set A has six items, its cardinality is equivalent to 6: 1, 2, 3, 4, 5, and 6. A set's size is often referred to as the set's cardinality. The modulus sign is used to indicate it on either side of the set name, |A|.

a Set's Cardinality

A set that can be counted and has a finite number of items is said to be finite. On the other hand, an infinite set is one that has an unlimited number of components and can either be countable or uncountable.

Possible set of A=14+4+1+9=28

Possible set of C=1 +6+9+9=25

n(A∩ C)=10

Hence, Cardinality of given set is 10.

To know more about modulus, visit:

https://brainly.com/question/10737199

#SPJ1

slope of secant line=?
slope of secant line=?
slope of tangent line=?
y=?

Answers

Therefore, the equation of the tangent line at (5,f(5)) is y = 18x - 65.

What is slope?

In mathematics, the slope of a line is a measure of its steepness or incline, usually denoted by the letter m. It describes the rate of change of a line in the vertical direction compared to the horizontal direction. The slope of a line can be positive, negative, zero, or undefined, depending on the angle it makes with the horizontal axis. The slope of a line is commonly calculated as the ratio of the change in the y-coordinates to the change in the x-coordinates between any two points on the line.

Here,

(A) The slope of the secant line joining (2,f(2)) and (7,f(7)) is given by:

slope = (f(7) - f(2)) / (7 - 2)

We can find f(7) and f(2) by substituting 7 and 2, respectively, into the function f(x):

f(7) = 7² + 8(7) = 49 + 56 = 105

f(2) = 2² + 8(2) = 4 + 16 = 20

Substituting these values into the formula for the slope of the secant line, we get:

slope = (105 - 20) / (7 - 2) = 85 / 5 = 17

Therefore, the slope of the secant line joining (2,f(2)) and (7,f(7)) is 17.

(B) The slope of the secant line joining (5,f(5)) and (5+h,f(5+h)) is given by:

slope = (f(5+h) - f(5)) / (5+h - 5) = (f(5+h) - f(5)) / h

We can find f(5) and f(5+h) by substituting 5 and 5+h, respectively, into the function f(x):

f(5) = 5² + 8(5) = 25 + 40 = 65

f(5+h) = (5+h)² + 8(5+h) = 25 + 10h + h² + 40 + 8h = h² + 18h + 65

Substituting these values into the formula for the slope of the secant line, we get:

slope = ((h² + 18h + 65) - 65) / h = h² / h + 18h / h = h + 18

Therefore, the slope of the secant line joining (5,f(5)) and (5+h,f(5+h)) is h+18.

(C) The slope of the tangent line at (5,f(5)) is equal to the derivative of the function f(x) at x=5. We can find the derivative of f(x) as follows:

f(x) = x² + 8x

f'(x) = 2x + 8

Substituting x=5, we get:

f'(5) = 2(5) + 8 = 18

Therefore, the slope of the tangent line at (5,f(5)) is 18.

(D) The equation of the tangent line at (5,f(5)) can be written in point-slope form as:

y - f(5) = m(x - 5)

where m is the slope of the tangent line, which we found to be 18. Substituting the values of m and f(5), we get:

y - 65 = 18(x - 5)

Simplifying, we get:

y = 18x - 65

To know more about slope,

https://brainly.com/question/30088055

#SPJ1

Question 9 (2 points)
A survey asked 1,000 people if they invested in Stocks or Bonds for retirement. 700
said they invested in stocks, 400 said bonds, and 300 said both.
How many invested in neither stocks nor bonds?
Note: consider making a Venn Diagram to help solve this problem.
0
200
400
100

Answers

200 people invested in neither stocks nor bonds for retirement.

What is inclusion-exclusion principle?

The inclusion-exclusion principle is a counting method used to determine the size of a set created by joining two or more sets. It is predicated on the notion that if we just sum the set sizes, we can wind up counting certain components more than once (the elements that are in the intersection of the sets). We deduct the sizes of the sets' intersections from the sum of their sizes to prevent double counting.

The total number of people who invested in stocks are:

Total = Stocks + Bonds - Both

Total = 700 + 400 - 300

Total = 800

Using the inclusion- exclusion principle:

neither = Total surveyed - Total

neither = 1000 - 800 = 200

Hence, 200 people invested in neither stocks nor bonds for retirement.

Learn more about inclusion-exclusion formula here:

https://brainly.com/question/10927267

#SPJ1

please help me with math i’ll give you brainlist

Answers

Answer: False

Step-by-step explanation:

25% of the data is between Q1 and the median.

Find the sum-of-products expansions of the Boolean function F (x, y, z) that equals 1 if and only if a) x = 0. b) xy = 0. c) x + y = 0. d) xyz = 0.

Answers

a) F(x,y,z) = y'z'. b) F(x,y,z) = x'y'z' + x'y'z + xy'z'. c) F(x,y,z) = x'y'z'. d) F(x,y,z) = x'y'z + x'yz' + xy'z' + x'y'z'. These are the sum-of-products expansions of the Boolean function F(x, y, z) for the given conditions.

a) When x = 0, F(x,y,z) equals 1 if and only if yz = 0. This can be expressed as the sum of products: F(x,y,z) = y'z' (read as "not y and not z").

b) When xy = 0, F(x,y,z) equals 1 if and only if either x = 0 or y = 0. This can be expressed as the sum of products: F(x,y,z) = x'y'z' + x'y'z + xy'z' (read as "not x and not y and not z" OR "not x and not y and z" OR "x and not y and not z").

c) When x + y = 0, F(x,y,z) equals 1 if and only if x = y = 0. This can be expressed as the sum of products: F(x,y,z) = x'y'z' (read as "not x and not y and not z").

d) When xyz = 0, F(x,y,z) equals 1 if and only if x = 0 or y = 0 or z = 0. This can be expressed as the sum of products: F(x,y,z) = x'y'z + x'yz' + xy'z' + x'y'z' (read as "not x and not y and z" OR "not x and y and not z" OR "x and not y and not z" OR "not x and not y and not z").

Learn more Boolean function here: brainly.com/question/27885599

#SPJ4

How many different strings of length 12 containing exactly five a's can be chosen over the following alphabets? (a) The alphabet {a,b) (b) The alphabet {a,b,c}

Answers

There are 792 strings across a,b, and 27,720 in a,b,c.

(a) We must select five slots for a's in an alphabet of "a,b" before filling the remaining spaces with "b's." Hence, the binomial coefficient is what determines how many strings of length 12 that include precisely five as:

C(12,5) = 792

As a result, there are 792 distinct strings of length 12 that include exactly five a's across the letters a, b.

(b) We may use the same method as before for an alphabet consisting of the letters "a,b,c." The first five slots must be filled with a's, followed by three b's, and the final four positions must be filled with c's. The number of strings of length 12 that contain exactly five a's across the letters "a," "b," and "c" is thus given by:

C(12,5) * C(7,3) = 792 * 35 = 27720

Thus, there are 27,720 distinct strings.

To learn more about binomial coefficient, refer to:

https://brainly.com/question/14216809

#SPJ4

Help please! I have no idea!!!! PLEASEEE

Answers

The the inverse of [tex]n = \frac{3t+8}{5}$[/tex] is [tex]t = \frac{5n-8}{3}$[/tex].

How to find inverse of the function?

To find the inverse of [tex]n = \frac{3t+8}{5}$[/tex], we need to solve for t in terms of n.

Starting with the given equation, we can first multiply both sides by 5 to get rid of the fraction:

[tex]$$5n = 3t + 8$$[/tex]

Next, we can isolate t by subtracting 8 from both sides and then dividing by 3:

[tex]$\begin{align*}5n - 8 &= 3t \\frac{5n-8}{3} &= t\end{align*}[/tex]

Therefore, the inverse of n is:

[tex]$t = \frac{5n-8}{3}$$[/tex]

We can also check that this is indeed the inverse by verifying that:

[tex]$n = \frac{3t+8}{5} = \frac{3}{5} \cdot \frac{5n-8}{3} + \frac{8}{5} = n$$[/tex]

So, the inverse of [tex]n = \frac{3t+8}{5}$[/tex] is [tex]t = \frac{5n-8}{3}$[/tex].

To know more about Inverse visit:

brainly.com/question/2541698

#SPJ1

Maximize z = 3x₁ + 5x₂
subject to: x₁ - 5x₂ ≤ 35
3x1 - 4x₂ ≤21
with. X₁ ≥ 0, X₂ ≥ 0.
use simplex method to solve it and find the maximum value​

Answers

Answer:

See below.

Step-by-step explanation:

We can solve this linear programming problem using the simplex method. We will start by converting the problem into standard form

Maximize z = 3x₁ + 5x₂ + 0s₁ + 0s₂

subject to

x₁ - 5x₂ + s₁ = 35

3x₁ - 4x₂ + s₂ = 21

x₁, x₂, s₁, s₂ ≥ 0

Next, we create the initial tableau

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 -5 1 0 35

s₂ 3 -4 0 1 21

z -3 -5 0 0 0

We can see that the initial basic variables are s₁ and s₂. We will use the simplex method to find the optimal solution.

Step 1: Choose the most negative coefficient in the bottom row as the pivot element. In this case, it is -5 in the x₂ column.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 -5 1 0 35

s₂ 3 -4 0 1 21

z -3 -5 0 0 0

Step 2: Find the row in which the pivot element creates a positive quotient when each element in that row is divided by the pivot element. In this case, we need to find the minimum positive quotient of (35/5) and (21/4). The minimum is (21/4), so we use the second row as the pivot row.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 4/5 0 1/5 1 28/5

x₂ -3/4 1 0 -1/4 -21/4

z 39/4 0 15/4 3/4 105

Step 3: Use row operations to create zeros in the x₂ column.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 0 1/4 7/20 49/10

x₂ 0 1 3/16 -1/16 -21/16

z 0 0 39/4 21/4 525/4

The optimal solution is x₁ = 49/10, x₂ = 21/16, and z = 525/4.

Therefore, the maximum value of z is 525/4, which occurs when x₁ = 49/10 and x₂ = 21/16.

Refer to the figure to the right.
(a) How many inches will the weight in the figure rise if the
pulley is rotated through an angle of 74° 50°?
(b) Through what angle, to the nearest minute, must the
pulley be rotated to raise the weight 5 in.?
9.61 in
(a) The weight in the figure will rise inches.
(Do not round until the final answer. Then round to the nearest tenth as needed.)

Answers

a) The weight will rise about 13.142 inches if the pulley is rotated through an angle of 77° 50'.

b) So, to the nearest minute, the pulley must be rotated through an angle of 23° 40' to raise the weight 4 inches.

What is angle of rotation?

In geometry, the angle of rotation refers to the amount of rotation of a geometric figure about a fixed point, usually the origin. It is the measure of the amount of rotation in degrees or radians.

Depending on the direction of rotation, the angle of rotation can be positive or negative. A positive angle of rotation represents a counterclockwise rotation, while a negative angle of rotation represents a clockwise rotation.

(a) To find out how many inches the weight will rise if the pulley is rotated through an angle of 77° 50', we need to use the formula for arc length:

arc length = r × θ

where r is the radius of the pulley, and θ is the angle of rotation in radians. To convert 77° 50' to radians, we need to convert the degrees to radians and add the minutes as a fraction of a degree:

θ = (77 + 50/60) × π/180

= 1.358 rad

Substituting r = 9.67 inches and θ = 1.358 rad into the formula for arc length, we get:

arc length = 9.67 × 1.358

= 13.142 in (approx)

(b) To find out through what angle the pulley must be rotated to raise the weight 4 inches, we can rearrange the formula for arc length to solve for θ:

θ = arc length / r

Substituting arc length = 4 inches and r = 9.67 inches, we get:

θ = 4 / 9.67

= 0.413 radians

To convert this to degrees and minutes, we can multiply by 180/π and convert the decimal part to minutes:

θ = 0.413 × 180/π

= 23.66°

To know more about geometry, visit:

https://brainly.com/question/16836548

#SPJ1

Can you guys help me?​

Answers

Answer:

[tex]{ \sf{a = \frac{0.012}{0.633 -0.063 } }} \\ \\ { \sf{a = \frac{0.012}{0.57} }} \\ \\ { \sf{a = 0.021 \: (2 \: s.f)}}[/tex]

0.0125 inches thick
Question 4
1 pts
The combined weight of a spool and the wire it carries is 13.6 lb. If the weight of the spool is 1.75 lb.,
what is the weight of the wire?
Question 5
1 pts

Answers

In linear equation, 11.85 pounds is the weight of the wire.

What is  linear equation?

A linear equation is a first-order (linear) term plus a constant in the algebraic form y=mx+b, where m is the slope and b is the y-intercept. The variables in the previous sentence, y and x, are referred to as a "linear equation with two variables" at times.

Total weight of pool having 16 wires     =13.6 pounds

Weight of the pool                                 =1.75

Therefore the weight of the wire alone = 13.6 - 1.75

                                                             =  11.85 pounds

Learn more about linear equation

brainly.com/question/11897796

#SPJ1

What is the equation of the line graphed?

Answers

The equation of given line which is graphed is  [tex]x+2=0.[/tex] By locating the slope (m) and y-intercept (b) in the graph of a line, we can define a linear function in the form y=mx+b.

What is the formula for a line on a line graph?

A straight line's graph equation can be expressed as [tex]y = m x + c[/tex]  , which consists of a term, a term, and a number. a new. to the a and the likes in the likes thes of the likes of thes of thes of thes of thes of thes of people.

A line graph is a type of graph that uses straight lines to connect the data points. A line graph can show how something changes over time or compares different situations1.

A horizontal line has the equation \(y = c\), where \(c\) is a constant. This means that the \(y\)-value of every point on the line is the same

Therefore, The set of all points (x,y) in the plane that satisfy the equation   [tex]y=f(x) y = f (x)[/tex]    is the function's graph.

Learn more about graph here:

https://brainly.com/question/23680294

#SPJ1

Let sinθ= 2√2/5 and π/2 < θ < π Part A: Determine the exact value of cos 2θ. Part B: Determine the exact value of sin (θ/2)

Answers

Answer:

Part A: To determine the exact value of cos 2θ, we can use the double-angle identity for cosine:

cos 2θ = 2 cos^2 θ - 1

We already know sin θ, so we can use the Pythagorean identity to find cos θ:

cos^2 θ = 1 - sin^2 θ

cos^2 θ = 1 - (2√2/5)^2

cos^2 θ = 1 - 8/25

cos^2 θ = 17/25

cos θ = ± √(17/25)

cos θ = ± (1/5) √17

Since θ is in the third quadrant (π/2 < θ < π), cos θ is negative, so we take the negative root:

cos θ = -(1/5) √17

Substituting into the double-angle identity:

cos 2θ = 2 cos^2 θ - 1

cos 2θ = 2 [-(1/5) √17]^2 - 1

cos 2θ = 2 (1/25) (17) - 1

cos 2θ = 34/25 - 1

cos 2θ = 9/25

Therefore, the exact value of cos 2θ is 9/25.

Part B: To determine the exact value of sin (θ/2), we can use the half-angle identity for sine:

sin (θ/2) = ± √[(1 - cos θ)/2]

We already know cos θ, so we can substitute it in:

cos θ = -(1/5) √17

sin (θ/2) = ± √[(1 - cos θ)/2]

sin (θ/2) = ± √[(1 - (-1/5) √17)/2]

sin (θ/2) = ± √[(5 + √17)/10]

sin (θ/2) = ± (1/2) √(5 + √17)

Since θ is in the third quadrant (π/2 < θ < π), sin θ is negative, so we take the negative root:

sin (θ/2) = -(1/2) √(5 + √17)

Therefore, the exact value of sin (θ/2) is -(1/2) √(5 + √17).

The exact values of the sine and cosine given are -(1/2) √(5 + √17) and 9/25.

What is the sine and the cosine of an angle?

The sine of an angle in a right triangle is the ratio of the hypotenuse to the side opposite the angle.

The cosine of an angle in a right triangle is the ratio of the hypotenuse to the side adjacent the angle.

Part A: To determine the exact value of cos 2θ, we can use the double-angle identity for cosine:

cos 2θ = 2 cos² θ - 1

Using the Pythagorean identity to find cos θ:

cos² θ = 1 - sin² θ

cos² θ = 1 - (2√2/5)²

cos² θ = 1 - 8/25

cos² θ = 17/25

cos θ = ± √(17/25)

cos θ = ± (1/5) √17

Since θ is in the third quadrant (π/2 < θ < π), cos θ is negative, so we take the negative root:

cos θ = -(1/5) √17

Substituting into the double-angle identity:

cos 2θ = 2 cos² θ - 1

cos 2θ = 2 [-(1/5) √17]² - 1

cos 2θ = 2 (1/25) (17) - 1

cos 2θ = 34/25 - 1

cos 2θ = 9/25

Therefore, the exact value of cos 2θ is 9/25.

Part B: To determine the exact value of sin (θ/2), we can use the half-angle identity for sine:

sin (θ/2) = ± √[(1 - cos θ)/2]

We already know cos θ, so we can substitute it in:

cos θ = -(1/5) √17

sin (θ/2) = ± √[(1 - cos θ)/2]

sin (θ/2) = ± √[(1 - (-1/5) √17)/2]

sin (θ/2) = ± √[(5 + √17)/10]

sin (θ/2) = ± (1/2) √(5 + √17)

Since θ is in the third quadrant (π/2 < θ < π), sin θ is negative, so we take the negative root:

sin (θ/2) = -(1/2) √(5 + √17)

Therefore, the exact value of sin (θ/2) is -(1/2) √(5 + √17).

Hence, the exact values of the sine and cosine given are -(1/2) √(5 + √17) and 9/25.

Learn more about sine and the cosine of an angle, click;

https://brainly.com/question/3827723

#SPJ2

4.33. Find the moment-generating function of the continuous random variable
X
whose probability density is given by
f(x)={ 1
0

for 0 elsewhere ​
and use it to find
μ 1


,μ 2


, and
σ 2
.

Answers

The moment-generating function of the continuous random variable X whose probability density is given by f(x) = 1 for 0 elsewhere is M(t) = 1, and its first and second central moments, μ1′ and μ2′, and the variance, σ2, are 0, 0 and 0 respectively.

The moment-generating function of the continuous random variable X whose probability density is given by f(x) = 1 for 0 elsewhere is M(t) = 1.

Using M(t) we can calculate the first and second central moments, μ1′ and μ2′, and the variance, σ2, as follows:

μ1′ = M′(t) = 0

μ2′ = M′′(t) = 0

σ2 = μ2′ - (μ1′)2 = 0 - (0)2 = 0.

Therefore, the first and second central moments, μ1′ and μ2′, and the variance, σ2, of the continuous random variable X with probability density f(x) = 1 for 0 elsewhere are 0, 0 and 0 respectively.

Learn more about probability here:

https://brainly.com/question/30034780

#SPJ4

find the sum of the series 1 12 13 14 16 18 19 112 where the terms are reciprocals of the positive integers whose only prime factors are 2s and 3s.

Answers

the sum of the series is 8/3. The series consists of reciprocals of positive integers whose only prime factors are 2s and 3s.

In other words, each term of the series can be expressed as a fraction of the form 1/n, where n is a positive integer that can be factored into only 2s and 3s. For example, the first term of the series is 1/1, the second term is 1/2, and the fourth term is 1/4.

To find the sum of the series, we can first list out the terms and their corresponding values:

1/1 = 1

1/2 = 0.5

1/3 = 0.333...

1/4 = 0.25

1/6 = 0.166...

1/8 = 0.125

1/9 = 0.111...

1/12 = 0.083...

and so on.

We can see that the terms of the series decrease in value as n increases, so we can use this fact to estimate the sum of the series. For example, we can take the sum of the first few terms to get an idea of how large the sum might be:

1 + 0.5 + 0.333... + 0.25 = 2.083...

We can see that the sum is greater than 2, but less than 3. To get a more accurate estimate, we can add a few more terms:

2.083... + 0.166... + 0.125 + 0.111... = 2.486...

We can continue adding terms in this way to get a more and more accurate estimate of the sum. However, it is not easy to find a closed-form expression for the sum of the series.

Alternatively, we can use a formula for the sum of a geometric series to find the sum of the series. A geometric series is a series of the form a + ar + ar^2 + ... + ar^n, where a is the first term and r is the common ratio between terms. In our series, the first term is 1 and the common ratio is 1/2 or 1/3, depending on whether n is even or odd. Therefore, we can split the series into two separate geometric series:

1 + 1/2 + 1/8 + 1/32 + ... = 1/(1 - 1/2) = 2

1/3 + 1/12 + 1/48 + 1/192 + ... = (1/3)/(1 - 1/2) = 2/3

The sum of the two geometric series is the sum of the original series:

2 + 2/3 = 8/3

Therefore, the sum of the series is 8/3.

To know more about geometric series click here:

brainly.com/question/21087466

#SPJ4

(b) Write 5 as a percentage.​

Answers

Answer:

5 as a percentage of 100 is 5/100 which is 5%

1. Ferris Wheel Problem As you ride the Ferris wheel, your distance from the
ground varies sinusoidally with time. When the last seat1 is filled and the Ferris
wheel starts, your seat is at the position shown in the figure below. Lett be the
number of seconds that have elapsed since the Ferris wheel started. You find that
it takes you 3 seconds to reach the top, 43 feet above ground, and that the wheel
makes a
a. Sketch a graph of this sinusoidal function.
b. What is the lowest you go as the Ferris
wheel turns?
c. Find an equation of this sinusoid.
d. Predict your height above ground when
you have been riding for 4 seconds.
e. Using Desmos, find the first three times you are 18
feet above ground.
Seat
QI
Rotation
Ground

Answers

The graph of this sinusoidal function can be drawn as shown in the diagram below. As the Ferris wheel rotates, the position of the seat varies sinusoidally with respect to time.

What is graph?

Graph is a type of diagram used to represent information using a network of points and lines that connect them. It is a powerful data visualization tool that can help to effectively convey information and make relationships between data sets easier to understand. Graphs can be used to represent a wide variety of data types such as numerical, categorical or time-series data. Graphs are commonly used in mathematics, physics, biology, engineering, economics, and other disciplines.

b. The lowest point the seat reaches is 0 feet above ground, as the Ferris wheel makes a full rotation.

c. An equation of this sinusoid can be written as y = A sin (Bt + C), where A is the amplitude, B is the angular frequency, t is time, and C is the phase shift.

d. When you have been riding for 4 seconds, your height above ground is 43 feet.

e. Using Desmos, the first three times your height is 18 feet above ground can be found by solving the equation y = 18. The solutions are t = 0.715 seconds, t = 4.715 seconds, and t = 8.715 seconds.

To know more about graph click-
https://brainly.com/question/19040584
#SPJ1

for autonomous equations, find the equilibria, sketch a phase portrait, state the stability of the equilibria.

Answers

Understanding the equilibria, sketching a phase portrait, and determining the stability of equilibria for autonomous equations are important tools for analyzing and understanding the behavior of systems over time.

Autonomous equations are differential equations that do not depend explicitly on time. To find the equilibria of an autonomous equation, we set the derivative of the function to zero and solve for the values of the independent variable that satisfy the equation. These values represent points at which the function does not change over time and are known as equilibrium points.

To sketch a phase portrait for an autonomous equation, we plot the slope field of the function and then draw solutions through each equilibrium point. The resulting graph shows the behavior of the function over time and helps us understand how the solutions behave near each equilibrium point.

The stability of an equilibrium point is determined by examining the behavior of nearby solutions. If nearby solutions move toward the equilibrium point over time, the equilibrium point is stable. If nearby solutions move away from the equilibrium point over time, the equilibrium point is unstable. Finally, if the behavior of nearby solutions is inconclusive, further analysis is needed.

Here is the sketch for [tex]dx/dt = x - x^3[/tex]

       / <--- (-∞)  x=-1  (+∞) ---> \

      /                                \

  <--0-->       x=-1       x=1        0-->

      \                                /

       \ <--- (-∞)  x=1   (+∞) --->  /

Learn more about equilibria here https://brainly.com/question/29313546

#SPJ4

Find the standard normal area for each of the following(round your answers to 4 decimal places)

Answers

Answer:

  (a) 0.0955

  (b) 0.0214

  (c) 0.9545

  (d) 0.3085

Step-by-step explanation:

You want the area under the standard normal PDF curve for intervals (1.22, 2.15), (2.00, 3.00), (-2.00, 2.00), and (0.50, ∞).

Calculator

The probability functions of a suitable calculator or spreadsheet can find these values for you. The attachment shows one such calculator. Its "normalcdf" function takes as arguments the lower bound and upper bound.

We used 1E99 as a stand-in for "infinity" as recommended by the calculator's user manual. For the purpose here, any value greater than 10 will suffice.

Can someone help quick i have 6 questions left

Answers

Answer:

Step-by-step explanation:

long leg = 78  (means that 26√3*√3 = 26√9 = 26*3 = 78

for x: Short leg= 26√3

Hypotenuse= 2*26√3 = 52√3 for y

what is the number of real solutions

-X^2-9=6x

Answer options
1. Cannot be determined
2. No real solutions
3. One solution
4. two solutions​

Answers

Answer:

3. One solution

Step-by-step explanation:

-x²-9 = 6x

or, x²+6x+9 = 0

or, x²+2.x.3+3² = 0 [using (a+b)² = a²+2ab+b²]

or, (x+3)² = 0

or, x+3 = 0

x = -3

find the value of the derivative (if it exists) at
each indicated extremum.

Answers

Answer:

The value of the derivative at (0, 0) is zero.

Step-by-step explanation:

Given function:

[tex]f(x)=\dfrac{x^2}{x^2+4}[/tex]

To differentiate the given function, use the quotient rule and the power rule of differentiation.

[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Quotient Rule of Differentiation}\\\\If $y=\dfrac{u}{v}$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=\dfrac{v \dfrac{\text{d}u}{\text{d}x}-u\dfrac{\text{d}v}{\text{d}x}}{v^2}$\\\end{minipage}}[/tex]

[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Power Rule of Differentiation}\\\\If $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=nx^{n-1}$\\\end{minipage}}[/tex]

[tex]\boxed{\begin{minipage}{5.4cm}\underline{Differentiating a constant}\\\\If $y=a$, then $\dfrac{\text{d}y}{\text{d}x}=0$\\\end{minipage}}[/tex]

[tex]\begin{aligned}\textsf{Let}\;u &= x^2& \implies \dfrac{\text{d}u}{\text{d}{x}} &=2 \cdot x^{(2-1)}=2x\\\\\textsf{Let}\;v &=x^2+4& \implies \dfrac{\text{d}v}{\text{d}{x}} &=2 \cdot x^{(2-1)}+0=2x\end{aligned}[/tex]

Apply the quotient rule:

[tex]\implies f'(x)=\dfrac{v \dfrac{\text{d}u}{\text{d}x}-u\dfrac{\text{d}v}{\text{d}x}}{v^2}[/tex]

[tex]\implies f'(x)=\dfrac{(x^2+4) \cdot 2x-x^2 \cdot 2x}{(x^2+4)^2}[/tex]

[tex]\implies f'(x)=\dfrac{2x(x^2+4)-2x^3}{(x^2+4)^2}[/tex]

[tex]\implies f'(x)=\dfrac{2x^3+8x-2x^3}{(x^2+4)^2}[/tex]

[tex]\implies f'(x)=\dfrac{8x}{(x^2+4)^2}[/tex]

An extremum is a point where a function has a maximum or minimum value. From inspection of the given graph, the minimum point of the function is (0, 0).

To determine the value of the derivative at the minimum point, substitute x = 0 into the differentiated function.

[tex]\begin{aligned}\implies f'(0)&=\dfrac{8(0)}{((0)^2+4)^2}\\\\&=\dfrac{0}{(0+4)^2}\\\\&=\dfrac{0}{(4)^2}\\\\&=\dfrac{0}{16}\\\\&=0 \end{aligned}[/tex]

Therefore, the value of the derivative at (0, 0) is zero.

Find x, if √x +2y^2 = 15 and √4x - 4y^2=6

pls help very soon

Answers

Answer:

We have two equations:

√x +2y^2 = 15 ----(1)

√4x - 4y^2=6 ----(2)

Let's solve for x:

From (1), we have:

√x = 15 - 2y^2

Squaring both sides, we get:

x = (15 - 2y^2)^2

Expanding, we get:

x = 225 - 60y^2 + 4y^4

From (2), we have:

√4x = 6 + 4y^2

Squaring both sides, we get:

4x = (6 + 4y^2)^2

Expanding, we get:

4x = 36 + 48y^2 + 16y^4

Substituting the expression for x from equation (1), we get:

4(225 - 60y^2 + 4y^4) = 36 + 48y^2 + 16y^4

Simplifying, we get:

900 - 240y^2 + 16y^4 = 9 + 12y^2 + 4y^4

Rearranging, we get:

12y^2 - 12y^4 = 891

Dividing both sides by 12y^2, we get:

1 - y^2 = 74.25/(y^2)

Multiplying both sides by y^2, we get:

y^2 - y^4 = 74.25

Let z = y^2. Substituting, we get:

z - z^2 = 74.25

Rearranging, we get:

z^2 - z + 74.25 = 0

Using the quadratic formula, we get:

z = (1 ± √(1 - 4(1)(74.25))) / 2

z = (1 ± √(-295)) / 2

Since the square root of a negative number is not real, there are no real solutions for z, which means there are no real solutions for y and x.

Therefore, the answer is "no solution".

Other Questions
SupposeX1is a numerical variable andX2is a dummy variable with two categories and the regression equation for a sample ofnequals=1919isModifyingAbove Upper Y with caret Subscript iYiequals=77plus+33X1iplus+22X2i.a.Interpret the regression coefficient associated with variableX1.b.Interpret the regression coefficient associated with variableX2.c.Suppose that thetSTATtest statistic for testing the contribution of variableX2is3.213.21.At the0.100.10level of significance, is there evidence that variableX2makes a significant contribution to the model?Interpret the regression coefficient associated with variableX1.Holding constant the effect ofUpper X 2 commaX2,Upper X 1 commaX1,for each increase of one unit inUpper X 2 commaX2,Upper X 1 commaX1,the predicted mean value of Yincreasesdecreasesby a positive change of nothing unit left parenthesis s right parenthesis . unit(s). part b - find the internal axial force in each bar segment using the answer for the support reaction at a determ Martina made $60 for 5 hours of work. At the same rate, how many hours would she have to work to make $204 ? a group of people who grow up in the same time and place, such as people who were teenagers in new york between 2000 and 2010, are said to belong to the same Comparative studies of objects in a group help us learn more about those objects than we could learn by studying each object individually. With this goal in mind, watch this video, and select all of the following choices that describe your observations of patterns. As you do so, think about the implications of how the Solar System may have formed.Choose one or more:A.The planets closest to the Sun are much smaller than the planets that are farther away.B.The size of all planets increases with distance from the Sun.C.All planets orbit the Sun in the same direction.D.Planets orbit the Sun in random directions.E.Planets are evenly distributed in distance from the Sun.F.All planets orbit the Sun in a spherical distribution.G.All planets orbit the Sun in a roughly flat plane.H.The outer planets (those farthest from the Sun) a customer buys one abc may 60 call at 6 and sells one abc may 17th call at 3 when abc stock is selling at 63% A simplified carbon cycle with aerobic and anaerobic processes is depicted here. Although much of the emphasis on global climate change has been on increasing carbon dioxide levels, methane is also a greenhouse gas whose levels are increasing due to human and other activity. Which of these actions would increase methane levels in the atmosphere and potentially affect global climate change? Select ALL that apply.--------------------------------------------------------------------------------------------------------------------------------A Agricultural practices in rice cultivation releases methane.Agricultural practices in rice cultivation releases methane.B Anaerobic digestion of cellulose by cows produces methane.Anaerobic digestion of cellulose by cows produces methane.C Photosynthesis by phytoplankton converts carbon dioxide into the atmosphere.Photosynthesis by phytoplankton converts carbon dioxide into the atmosphere.D Industrial combustion of fossil fuels releases methane into the atmosphere.Industrial combustion of fossil fuels releases methane into the atmosphere.E Anaerobic decomposition of landfill material releases methane into the atmosphere. Which events of 1943 helped make an Allied victory possible?Select all correct answers.ResponsesAmerican industrial production outpaced every other country in the world.Allied forces arrived in North Africa to launch an attack through Italy.British forces defeated the Russians at Stalingrad.Millions of people in Poland and Russia rose up against Hitler. Find the outer perimeter.10 ft8 ftP = [?] ftRound to the nearesthundredth. What is plagiarism?Presenting someone's else's words as your own.Writing your own original ideas into your summary.Using direct quotes in your summary.A disease that spreads worldwide.plez What does it mean for a team to be "at bat"?A the two teams shake hands after the game is overB the team is celebrating their victory after the gameC the team is the one trying to hit the ball and run basesD the team is trying to keep the other team from hitting the bal TEXT:from barn ball to baseball the history of a game Utopias society includes virtues esteemed by all, such as equality, kindness, and charity, and seemed to be a critique of ___.A. The explorerB. RomeC. English societyD. The Crusades what is the main function of the u.s. state department? Of first-time college students who matriculate to a certain university, the odds in favor of having graduated in the top 25 percent of their high school class are 2.06 to 1. Of transfer students who matriculate to the same university, 0.666666666666667 proportion graduated in the top 25 percent of their high school class.(a) For first-time college students, what is the proportion who graduated in the top 25 percent of their high school class (rounded to three decimal places)?(b) For transfer students, what is the ratio in favor of having graduated in the top 25 percent of their high school class?Odds and Probability:Odds in favor of an event is expressed as a ratio:O(f)=favorable cases:unfavourable casesSimilarly odds against are expressed as:O(a)=unfavorable cases:favourable cases.Odds and probability are closely related, as the probability in favor of an even is computed as:P=favorable casesfavorable cases+unfavorable cases determine which matrices are in reduced echelon form and which others are only in echelon forma. 1 0 0 00 1 0 00 0 1 1b. 0 1 1 1 10 0 1 1 10 0 0 0 10 0 0 0 0c. 1 4 0 00 0 0 00 0 1 00 0 0 1is matrix a in reduced echelon form,echelon form only ,or neither?1. reduced echelon form2.echelon form3. neither Is the United States Involved any wars today? there a chance the United States could never be in a war again? Why or why not? Mr. West uses this recipe to make a batch of soup. He often doubles or triples the recipe and freezes some of the soup. What ratio of cups of stock to batches of soup should Mr. West use to make 1, 2, and 3 batches of soup? how many cups of stock are needed to double the recipe? TIME REMAINING56:01How can two siblings who constantly argue best improve their communication?by talking off topicby pretending to listenby talking over each otherby being honest with each other HELPPPP PLEASE TS DONT MAKE SENSEEE On Isle Royale, and island in Lake Superior, the populations of wolves (the predator) and moose (the prey) rise and fall in cycles. Below is the amount of wolves and moose per year. 1985: 22 Wolves, 976 Moose1990: 15 Wolves, 1,315 Moose1995: 16 Wolves, 2,117 Moose2000: 29 Wolves, 2,007 Moose2005: 30 Wolves, 540 Moose2010: 19 Wolves, 510 Moose2015: 2 Wolves, 1,300 MooseWhat patterns do scientists observe between predator-prey relationships like the wolves and moose on Isle Royale? Why does Arizona not do daylight Savings?