50. Question The atom of an element X contains 17 protons, 17 electrons and 18 neutrons whereas the atom of an element Y contains 11 protons, 11 electrons and 12 neutrons. (a) What type of ion will be formed by an atom of element X? Write the symbol of ion formed. (b) What will be the number of (i) protons (ii) electrons, and (iii) neutrons, in the ion formed from X? (c) What type of ion will be formed by an atom of element Y? Write the symbol of ion formed. (d) What will be the number of (i) protons (ii) electrons, and (iii) neutrons, in the ion formed from Y?
Answer:
Explanation:
a) If an atom of element X loses one electron, it will form a positively charged ion or cation with the symbol X^+.
b) (i) 17 protons, (ii) 16 electrons, (iii) 18 neutrons.
c) If an atom of element Y gains one electron, it will form a negatively charged ion or anion with the symbol Y^-.
d) (i) 11 protons, (ii) 12 electrons, (iii) 12 neutrons.
compare intracellular fluid and extracellular fluid with respect to chemical composition and location.
Intracellular fluid (ICF) is the fluid that exists within the cells of the body and makes up about two-thirds of the body’s water. It is composed primarily of water, electrolytes, and proteins and is separated from the extracellular fluid (ECF) by the cell membrane.
ECF is the fluid that exists outside of the cells and makes up about one-third of the body’s water. It is composed primarily of water, electrolytes, and proteins and is separated from the ICF by the cell membrane.
The chemical composition of the ICF and ECF differ slightly due to the presence of different ions, proteins, and glucose concentrations. The ICF has a higher concentration of potassium and other inorganic ions, while the ECF has a higher concentration of sodium and other organic ions.
The ICF also has a higher concentration of proteins, while the ECF has a higher concentration of glucose. In terms of location, the ICF is found inside the cell and the ECF is found outside the cell.
To learn more about fluid visit:
https://brainly.com/question/18482199
#SPJ4
alcohols are compounds that contain ____. substances are called ketones if they contain a ____ in the center of a hydrocarbon chain
alcohols are compounds that contain hydroxyl groups (-OH). Substances are called ketones if they contain a carbonyl group (C=O) in the center of a hydrocarbon chain.
Hydroxyl groups (OH) are functional groups consisting of an oxygen atom bonded to a hydrogen atom, typically found on the surface of molecules. They are a type of reactive hydrophilic group, meaning they are attracted to water and will react with other molecules in aqueous solutions to form hydrogen bonds. Hydroxyl groups are important components of many biological molecules, including proteins, carbohydrates, DNA, and lipids. They are also found in many drugs and play a role in drug metabolism.
Carbonyl groups (C=O) are functional groups consisting of a carbon atom double-bonded to an oxygen atom. They are found in many organic compounds, including aldehydes, ketones, carboxylic acids, amides, and esters. Carbonyl groups are highly reactive and undergo a variety of reactions, including nucleophilic addition, reduction, and oxidation reactions. They also play an important role in biological processes, such as photosynthesis and respiration.
learn more about Hydroxyl groups Refer:brainly.com/question/23639315
#SPJ4
PLEASE HELP ME I NEED IT ASAP
A cell notation of the overall cell equation would be.
What is a galvanic cell?An electrochemical cell called a galvanic cell, also called a voltaic cell, generates an electrical current as a result of a chemical reaction. Two electrodes, a cathode and an anode, separated by an electrolyte, make up the fundamental parts of a galvanic cell.
(a) By merging the half-cell processes, one can obtain the overall cell equation:
Zn(s) is converted into Zn2+ (aq) + 2e- while Sn2+ (aq) + 2e- is converted into Sn (s), we obtain Zn(s) + Sn2+ (aq) Zn2+ (aq) + Sn
by combining the half-cell reactions (s)
(b) Zn(s) acts as the oxidising agent, losing electrons to produce Zn2+.
(c) Using the half-cell reactions' standard electrode potentials as a starting point, one can compute the reaction's standard cell potential:
E cell is made of Eo oxidation and Eo reduction.
E cell equals -0.14 V - (-0.76 V) = 0.62 V.
To know more about galvanic cell, visit:
https://brainly.com/question/30268944
#SPJ1
A temperature of 15 oc a quantity of oxygen has a volume of 250ml if it’s perature is raised 45 oc what will be it’s volume
In a temperature of 15°C a quantity of oxygen has a volume of 250ml if its temperature is raised 45°C. 276ml its volume.
What is ideal gas law ?The Ideal Gas Law explains the relation between pressure and volume in an ideal gas. where P is the pressure measured in atmospheres, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in kelvin.
According to Ideal gas law:
PV = nRT
Rearranging this equation
V / T = nR / P
At constant pressure:
V₁ / T₁ = V₂ / T₂
By substituting values in this equation and we get:
250 / (15 + 273) = V / (45 + 273)
V = 276
When using the ideal gas law, remember to always use absolute units for temperature, like Kelvin.
Thus, In a temperature of 15°C a quantity of oxygen has a volume of 250ml if its temperature is raised 45°C. 276ml its volume.
To learn more about an ideal gas law, follow the link;
https://brainly.com/question/13821925
#SPJ1
Carbon sublimates at high temperature into gas products. Three of these are C, C2, and C3. At 5000 K and for pressures of 1 atm and 0.01 atm, find the gas composition of sublimated carbon assuming that only those three species exist. Use the approach that we used in class for the CO/CO2/O2/O system (same computational approach, but different reactions), What other species could be considered in a more detailed analysis?
Other species that could be considered include CO, CO2, O2, O, and other carbon-containing species such as C4, C5, and so on.
The consideration of these additional species would require a more comprehensive calculation of the reaction kinetics and reaction energies, and would likely lead to a more accurate prediction of the gas composition of sublimated carbon.
The gas composition of sublimated carbon at 5000 K and 1 atm or 0.01 atm pressure can be calculated using the concept of chemical equilibrium. This approach involves finding the concentration of each species of carbon (C, C2, and C3) at equilibrium, taking into account the reaction kinetics and the reaction energies.
At 5000 K, the dissociation and recombination reactions of C, C2, and C3 would be taking place at a rapid rate, leading to the formation of various products. In order to calculate the gas composition, the reaction equations for the dissociation and recombination reactions should be written and the equilibrium constants for each reaction should be calculated. The reaction equations can be written based on the conservation of mass and energy principles, taking into account the heat of formation and reaction enthalpies for each species.
The resulting equilibrium constants can then be used to find the concentration of each species of carbon at 5000 K and 1 atm or 0.01 atm pressure. The final gas composition would be a combination of C, C2, and C3, and the relative proportions of each species would depend on the temperature, pressure, and reaction kinetics.
Learn more about chemical equilibrium here: https://brainly.com/question/8983535
#SPJ4
magnesium sulfate (MgSO4) major species present when dissolved in water
The species in water are the Mg^2+ and SO4^2-
How do ionic substances dissolve in water?Ionic substances dissolve in water because of the attraction between the positive and negative charges of the ions and the polar water molecules. The ions are surrounded by water molecules through a process known as solvation, which causes the ionic substance to break apart into individual ions.
The positive and negative charges of the ions are attracted to the opposite charges on the water molecules, which allows the ions to be dispersed evenly throughout the water. This makes the substance appear to have dissolved, even though the individual ions are still present in the solution.
Learn more about ions:https://brainly.com/question/14982375?
#SPJ1
What is the evidence that the device uses electricity?
Answer:
Bills
it usage of data and bills
Why does Jim say he is not including the location of Treasure Island in chapters 1-3 of Treasure Island?
A. He does not remember where it is.
B. There is still treasure on it.
C. It is too dangerous of a place.
D. He is ashamed of what happened there.
Jim say that he is not including in the location of Treasure Island because 'it is too dangerous of a place'.
What do you mean by Treasure Island?
Treasure Island is an adventure novel by Scottish author Robert Louis Stevenson, first published in 1883. It is the story of young Jim Hawkins and his quest to find buried treasure on a tropical island. The novel is considered to be a classic of children's literature and is one of the most frequently dramatized of all novels.
Treasure Island is a fictional island that is filled with danger and adventure. Jim knows that venturing to this island would be a risky endeavor, so he has decided to stay away. He believes that it is too dangerous of a place to be included in his travels.
Hence, option C is correct.
To know more about the Treasure Island,
https://brainly.com/question/14461636
#SPJ1
Please help with the problem attached:
3 cu 8hno3 --> 3cu(no3)2 2 no 4 h2o in the above equation how many moles of water can be made when 136.8 grams of hno3 are consumed?
2.89 moles of water can be made when 136.8 grams of HNO3 are consumed.
What is mole?Mole is a unit of measure used in chemistry to measure the amount of a substance. It is the amount of a substance that contains an Avogadro's number of molecules, 6.02214076 × 1023.
To calculate the number of moles of water produced when 136.8 grams of HNO3 are consumed in the reaction, we must first calculate the number of moles of HNO3 present in 136.8 grams. To do this, we must divide the mass of HNO3 (136.8 grams) by the molar mass of HNO3 (63.01 g/mol).
Therefore, the number of moles of HNO3 in 136.8 grams is 136.8/63.01 = 2.17 moles.
The equation states that for every 3 moles of HNO3 consumed, 4 moles of water are produced, so we can calculate the number of moles of water produced when 2.17 moles of HNO3 are consumed.
2.17 moles of HNO3 x (4 moles of water/3 moles of HNO3) = 2.89 moles of water.
Therefore, 2.89 moles of water can be made when 136.8 grams of HNO3 are consumed.
To learn more about mole
https://brainly.com/question/24191825
#SPJ4
How many moles of Al2O3 can be produced from the reaction of 10.0 g of Al and 19.0 g of O2?
(a) 0.581 mol (b) 0.371 mol (c) 0.185 mol (d) 0.396 mol
Answer: c) 0.185mol
Explanation:
First you need to create a balanced equation.
Al + O2 ---> Al2O3 (this is currently unbalanced)
When balanced, it is:
4Al + 3O2 ---> 2Al2O3
Then you need to find the limiting reactant (the way I do this is by taking both of them, doing dimensional analysis, and seeing which makes a smaller amount of product)
For Al:
10.0g Al * (1mol Al / 26.98g Al) * (2mol Al2O3 / 4mol Al) = 0.185mol Al2O3
For O2:
19.0g O2 * (1mol O2 / 32.00g O2) * (2mol Al2O3 / 3mol O2) = 0.396mol Al2O3
Since the amount of Al2O3 produced is smaller when using 10.0g Al, this is the limiting reactant and therefore the answer is 0.185mol Al2O3.
g 2.27 what type(s) of bonding would be expected for each of the following materials: (a) brass (a copper-zinc alloy) (b) epoxy (c) barium sulfide (bas) (d) solid xenon (e) aluminum phosphide (alp)
The bonding expected for each material is covalent, ionic, and metallic bonds.
The force of attraction that leads to the holding of atoms or ions together in a molecule or crystal is said to be bonding. The bond formation can happen by either attraction or transfer of electrons. There are single, double, and triple bonds. There are many sorts of bonding namely:
a. Brass: It is an alloy of metal that's copper and zinc. Hence, metallic bonding is present within the brass.
b. Epoxy: It is a polymer whose monomer unit isoprene, which may be a covalent compound. The isoprene units are attached in repeated units to make rubber by covalent bonding.
c. Barium sulfide: Due to the large electronegativity difference between barium and sulfur, barium sulfide is an ionic compound. Thus, ionic bonding is present in barium sulfide.
d. Solid xenon: Only xenon atoms are present in solid xenon which are interacted by weak Van der Waal's interactions. Iconic bond is present.
e. Aluminum phosphide: Aluminum phosphide may be a covalent compound and thus involves covalent bonding.
To learn more about chemical bonds:
brainly.com/question/819068
#SPJ4
if this reaction were being used to generate heat, how many grams of c12h26 would have to be reacted to generate enough heat to raise the temperature of 750g of liquid water from 10oc to 90oc?
9.7 g of C₁₂H₂₆ would have to be reacted to generate enough heat to raise the temperature of 750 g of liquid water from 10°C to 90°C.
To calculate the amount of heat required to raise the temperature of water, we can use the specific heat capacity of water, which is 4.184 J/g°C.
The amount of heat required to raise the temperature of 750 g of water from 10°C to 90°C is given by the following equation:
Q = mcΔT
where m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.
Q = 750 g × 4.184 J/g°C × (90°C - 10°C) = 28,665 J
We need to determine the amount of heat produced by the reaction of C₁₂H₂₆ with oxygen to form CO₂ and H₂O. We can use the following equation:
C₁₂H₂₆ + 19/2 O₂ → 12 CO₂ + 13 H₂O
The standard enthalpy change of combustion (ΔH°c) for C₁₂H₂₆ is -50,540 kJ/mol. We can use this value to calculate the amount of heat generated per mole of C₁₂H₂₆.
Q = ΔH°c × n = -50,540 kJ/mol × n
where n is the number of moles of C₁₂H₂₆ reacted.
Finally, we can calculate the number of moles of C₁₂H₂₆ required to generate the desired amount of heat by dividing the total heat required by the heat generated per mole of C₁₂H₂₆:
n = Q / ΔH°c = 28,665 J / (-50,540 kJ/mol) = 0.0568 mol
And finally, we can convert moles to grams using the molar mass of C₁₂H₂₆, which is approximately 170.3 g/mol:
m = n × M = 0.0568 mol × 170.3 g/mol = 9.7 g
To know more about specific heat capacity here
https://brainly.com/question/29766819
#SPJ4
Why is the cutting edge of a knife made very thin?
Answer:
A sharp knife cut objects better because due to its very thin edge, the force of our hand falls over a very small area of the object producing a large pressure and this large pressure cuts the object easily.
Calculate the volume of 1.0M copper(II) sulfate solution required to completely react with 1.0g of Fe(s) according to this equation: 2Fe(s)+3Cu2+(aq)→2Fe3+(aq)+3Cu(s).
0.0269 litre is the volume of 1.0M copper(II) sulfate solution required to completely react with 1.0g of Fe(s) according to this equation: 2Fe(s)+3Cu₂+(aq)→2Fe₃+(aq)+3Cu(s).
What is molarity ?The term molarity is defined as the concentration of number of moles of solute present in per litre of solution.
Given:
Moles of Fe = mass of Fe / molar mass of Fe
Mole Fe = 1.0 g / 55.845 g/mol
= 0.0179 mol
By the balanced chemical equation,
3 mol Cu⁺² are required to react with 2 mol Fe.
Then, the number of moles of Cu⁺² required to react with 0.0179 moles of Fe is mol Cu⁺² = (3/2) x mol Fe
= (3/2) x 0.0179 mol
= 0.0269 mol
According to the molarity,
mole = concentration x volume
volume = moles / concentration
Volume = 0.0269 mol / 1.0 mol/L
Volume = 0.0269L
Thus, the volume of 1.0 M Cu⁺² solution required to fully react with 1.0 g of Fe is 0.0269 L.
To learn more about the molarity, follow the link;
brainly.com/question/8732513
#SPJ1
refer to the free energy diagrams below to answer the following questions. you may assume that the y-axis is the same and directly comparable for all five reactions.
The free energy diagrams can be used to compare and analyze the thermodynamic properties of different chemical reactions.
The y-axis of the diagrams represent the free energy of the reaction, and the x-axis represents the progress of the reaction from the reactants to the products. By comparing the free energy diagrams of different reactions, it is possible to determine which reactions are more thermodynamically favorable, and thus more likely to occur spontaneously.
Additionally, the diagrams can also provide insight into the activation energy of a reaction, which is the amount of energy needed to initiate the reaction.
Learn more about free energy diagrams:
https://brainly.com/question/6589816
#SPJ4
which statement explains the relationship between the amount of energy it takes to break a bond and the amount of energy released when the same bond is formed?
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
This is because when a bond is broken, the energy that was used to form the bond is released, leading to an overall decrease in energy. This energy released is referred to as bond energy.
Bond energy is a measure of the energy stored in the bond between two atoms. It is the energy required to break the bond and form two separate atoms. Bond energy is released when a bond is formed, resulting in an overall decrease in energy.
Learn more about energy to break a bond :
https://brainly.com/question/26544505
#SPJ4
The amount of energy it takes to break a chemical bond is equal to the amount of energy released when the same bond is formed.
Bond dissociation energy and bond formation enthalpy are two important concepts in chemical bonding. Bond dissociation energy is the amount of energy required to break a bond between two atoms in a gaseous state, while bond formation enthalpy is the energy released when the same bond is formed.
These two energies are equal and opposite in nature, meaning that the amount of energy required to break a bond is equal to the amount of energy released when the bond is formed. This relationship is important for understanding the stability of chemical bonds and the energy changes that occur during chemical reactions.
You can learn more about chemical bonds at
https://brainly.com/question/819068
#SPJ4
Neon and HF have approximately the same molecular masses. Explain why the boiling points of Neon and HF differ?
Neon is a noble gas, which means that its molecules do not have any permanent dipole moments and are therefore not attracted to each other.
What is a noble gas?The noble gases are a group of chemical elements that share many characteristics; under normal circumstances, they are all odourless, colourless, monatomic gases with very low chemical reactivity. Historically, the noble gases were also known as the inert gases. The six naturally occurring noble gases are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radioactive radon (Rn).
Oganesson (Og) is a highly radioactive element created synthetically. Although IUPAC has referred to "group 18" as a "noble gas" and thus included oganesson, it may not be significantly chemically noble and is predicted to break the trend and be reactive due to relativistic effects. Its chemistry has not yet been studied due to the extremely brief 0.7 ms half-life of its sole known isotope.
To learn more about molecules
https://brainly.com/question/475709
#SPJ4
Perform this operation solving for x. Give answer to the proper number of significant figures.
x=0.01953 cm + (7.32 x 10^-3 m)
Answer: x = 0.752cm or 0.00752m
Explanation:
There are two ways to do this. The first is converting the number in meters (m) to centimeters (cm) and then adding. The second is converting the number in centimeters (cm) to meters (m) and then adding.
Way 1:
0.00732m * (100cm / 1m) = 0.732cm
0.01953cm + 0.732cm = 0.75153
With addition, the amount of significant figures for the answer is the same number of significant figures as the limiting one (or, in other words, the one with the least number of significant figures). In this case, 0.732cm has 3 significant figures and 0.01953cm has 4. This means that the answer has 3 significant figures.
So with significant figures, 0.75153cm = 0.752cm
Way 2:
0.01953cm * (1m / 100cm) = 0.0001953m
0.0001953m + 0.00732m = 0.0075153m
With significant figures, 0.0075153m = 0.00752m
1. What is the usual state of oxygen and hydrogen?
Under normal circumstances, oxygen is an inert, colorless, odorless gas that condenses into a pale blue liquid. Colorless, tasteless, odorless, and non-metallic hydrogen has the chemical formula H2.
Is hydrogen a liquid or a gas?The lightest element is hydrogen. Gas is a vapor at normal pressure and temperature, but at a temperature of -423 degrees F, it crystallizes into a liquid.
Is hydrogen fuel less expensive than regular fuel?Midsize gasoline hybrids achieve 42 mpg on average, compared to 30 mpg for gasoline vehicles. The graphic illustrates how much more fuel an FCV costs per mile than like a fuel hybrid and how much more it costs than a traditional gasoline car.
To know more about Hydrogen visit:
https://brainly.com/question/11837837
#SPJ1
The ground state electron configuration of a neutral silver atom is [Kr] 5s1 4d10 instead of [Kr] 5s2 4d9. This observation can be explained (theoretically) by the fact that...
The ground state electron configuration of a neutral silver atom is [Kr] 5s1 4d10 instead of [Kr] 5s2 4d9.
This observation can be explained (theoretically) by the fact that an enhanced stability is associated with filled sets of equivalent Orbitals.
About Electron configurationElectron configuration is the way the electrons are arranged in an atom. The way to determine the electron configuration is divided into two, namely based on the number of electrons in each shell (K, L, M, N method) for groups IA-VIIIA.
Then, the electron configuration is based on the number of electrons in the subshell (s, p, d, f way). To be able to write it, there are several rules set in writing electron configurations.
Learn more about Electron Configuration at
https://brainly.com/question/26084288
#SPJ4
which of the following compounds are expected to be soluble in carbon tetrachloride (ccl4) based on structure? select all that apply.
C8H18 compound is expected to be soluble in carbon tetrachloride (ccl4) based on structure.
Carbon tetrachloride (CCl4) is a nonpolar solvent, meaning it dissolves nonpolar compounds but not polar compounds. The solubility of a compound in CCl4 is dependent on the strength of the intermolecular forces between the solvent and solute.
Compounds with similar polarities to CCl4, such as nonpolar or slightly polar compounds, are expected to be soluble in CCl4. For example, alkanes, such as hexane (C6H14), and chlorinated solvents, such as chloroform (CHCl3), are soluble in CCl4.
On the other hand, polar compounds, such as water (H2O) or ethanol (C2H5OH), are not expected to be soluble in CCl4 due to the difference in polarities between the solvent and solute.
In summary, nonpolar or slightly polar compounds are expected to be soluble in CCl4, while polar compounds are not.
Learn more about carbon tetrachloride:
brainly.com/question/23871944
#SPJ4
which of the following compounds are expected to be soluble in carbon tetrachloride (ccl4) based on structure? select all that apply.
A. C8H18
B. C6H12
C. C4H6
D. None of the above
O Hydrogen More than 500 years ago, Para of the reaction of an acid and repeated Paracelsus's experi flammable.
The statement that Hydrogen was discovered more than 500 years ago due to the reaction of an acid and metals ... repeated Paracelsus 's experiment, the gas was flammable, is true.
How was hydrogen discovered ?When Paracelsus combined acids with metals, hydrogen gas was produced as a byproduct, which he observed unintentionally. A Swiss-born physician named Theodore de Mayerene who subscribed to Paracelsian thought replicated Paracelsus' research on the interaction of metals and acids.
De Mayerne found that the byproduct gas was combustible, which was an important finding in the future knowledge of chemical reactions even if he was unaware that the gas created was hydrogen or even a new element.
Find out more on Paracelsus at https://brainly.com/question/10644901
#SPJ1
The correct question is:
Hydrogen was discovered more than 500 years ago due to the reaction of an acid and metals and when Theodore de Mayerene repeated Paracelsus 's experiment, the gas was flammable.
True
False
A sample of nitrogen gas was collected via water displacement. Since the nitrogen was collected via water displacement, the sample is saturated with water vapor. If the total pressure of the mixture at 21 °C is 1.07 atm, what is the partial pressure of nitrogen? The vapor pressure of water at 21 °C is 18.7 mm Hg.
Classify Matter as Elements or Compounds Question If something is a compound, it is also . Select the correct answer below O an element O a pure substance a mixture a single atom
Previous question
A compound is a pure substance composed of two or more different elements chemically combined in a fixed ratio. If something is a compound, it is also a pure substance.
A compound is a type of pure substance, meaning it has a consistent and uniform composition throughout. It is different from a mixture, which is a combination of two or more substances that are not chemically combined and can be separated by physical means.
Unlike a mixture, a compound has a fixed composition, meaning the ratio of its constituent elements cannot be changed by simple physical methods such as filtration or evaporation.
Compounds are formed when two or more elements chemically react and form bonds, resulting in a new substance with unique properties. An element, on the other hand, is a pure substance that cannot be broken down into simpler substances by chemical means.
To learn more about compound visit: https://brainly.com/question/14782984
#SPJ4
Your question seems incomplete, but I suppose the question was:
"Classify Matter as Elements or Compounds Question. If something is a compound, it is also:
(Select the correct answer below)
an element
a pure substance
a mixture
a single atom."
A company uses a substance that is a solid under normal conditions. This substance will be used in extreme conditions, which could make the substance’s molecules move faster and cause a phase change. How would this phase change occur, and how would the molecules of the substance be affected under these extreme conditions? Energy would be transferred . . .
The ways in which this phase change occur, and how would the molecules of the substance be affected under these extreme conditions would be when shift happens in which heat is applied or removed at a specific temperature.
What is Temperature?This is referred to as the degree of hotness or coldness of a substance and it is influenced by thermal energy.
Increase or decrease in the temperature of a substance is responsible for the phase changing from one form to another under extreme conditions being used as a n example.
Read more about Temperature here https://brainly.com/question/24746268
#SPJ1
Indicate the subatomic particle described by each of the statements. A statement may describe more than one particle.____ possesses a negative charge____ has no charge ____ has a mass slightly less than that of a neutron ____ has a charge equal to but opposite in sign to that of an electron ____ is not found in the nucleus ____ has a positive charge ____ can be called a nucleon ____ is the heaviest of the three subatomic particles ____ has a relative mass of 1836 if the mass of an electron is 1 ____ has a relative mass of 1839 if the mass of an electron is 1Answer BankProtonNeutronElectron
Here's a matching of the subatomic particles described in each statement:
____ possesses a positive charge ---> Proton
____ has no charge ---> Neutron
____ has a mass slightly less than that of a neutron ---> Electron
____ has a charge equal to but opposite in sign to that of an electron ---> Electron
____ is not found in the nucleus ---> Electron
____ has a positive charge ---> Proton
____ can be called a nucleon ---> Proton and Neutron
____ is the heaviest of the three subatomic particles ---> Neutron
____ has a relative mass of 1836 if the mass of an electron is 1 ---> Proton
____ has a relative mass of 1839 if the mass of an electron is 1 ---> Neutron
Learn more about proton, electron, neutron here: https://brainly.com/question/13131235
#SPJ4
sodium chloride can be formed by the reaction of sodium metal and chlorine gas. if 45.98 g of sodium combines with an excess of chlorine gas to form 116.89 g of sodium chloride, what mass of chlorine gas is used in the reaction?
Sodium chloride can be formed by the reaction of sodium metal and chlorine gas. if 45.98 g of sodium combines with an excess of chlorine gas to form 116.89 g of sodium chloride, the mass of chlorine gas is 70.9g.
What is sodium chloride?Sodium chloride, also known as salt (though sea salt contains additional chemical salts), would be an ionic substance with the chemical formula NaCl, which represents a 1:1 ratio of chloride and sodium ions.
The salt chiefly responsible for the saltiness of seawater and the osmotic pressure of several multicellular organisms is sodium chloride. Salt is extensively utilized as a condiment as well as food preservative in its edible form.
According to law of conservation of mass
Na + 1/2 Cl[tex]_2[/tex] → NaCl
mass of Na + mass of chlorine gas= mass of sodium chloride
45.98+ mass of chlorine gas = 116.89
mass of chlorine gas =116.89-45.98=70.9g
Therefore, the mass of chlorine gas is 70.9g.
To learn more about sodium chloride, here:
https://brainly.com/question/18069204
#SPJ1
- Calculate the Complete Fraction equilibrium Constant Cinien; Zn (NH₂) 2 (aq) + 2ē → Znco + 4 NH (s) E ° = 1.040V E' = -0.763V Zn (AQ)+ 2ē → Zn (s)
The complete fraction equilibrium constant (Kc) for the reaction Zn (NH₂)2 (aq) + 2ē → ZnCO + 4 NH3 (s) is 7.835 x 10^-31.
How to calculate the equilibrium constant?To calculate the equilibrium constant, we need to use the Nernst equation. The Nernst equation is used to calculate the potential of a half-cell at a given concentration, given the standard electrode potential (E°).
The Nernst equation for this reaction can be written as:
E = E° - (RT/nF) * ln Q
Where:
E = E'R = the gas constant (8.31 J/mol·K)T = temperature in Kelvinn = number of electrons involved in the reaction (2 in this case)F = Faraday's constant (96,485 C/mol)Q = the reaction quotientThe reaction quotient (Q) is equal to the concentration of the product raised to its stoichiometric coefficient, divided by the concentration of the reactant raised to its stoichiometric coefficient. For this reaction, Q can be written as:
Q = [ZnCO] * 4 * [NH3]^2 / [Zn(NH2)2]^2
We can substitute the value of Q into the Nernst equation to find the potential of the cell at a given concentration. Then we can use that value of E to calculate the equilibrium constant (Kc).
Kc = 10^(-ΔE/0.0592)
Where ΔE is the difference between the measured potential (E') and the standard electrode potential (E°).
By substituting the given values into the above equations, we can find the equilibrium constant for the reaction.
To substitute the values and complete the equation, we first need to calculate ΔE:
ΔE = E° - E' = 1.040V - (-0.763V) = 1.803V
Next, we can use the value of ΔE to calculate the equilibrium constant (Kc):
Kc = 10^(-ΔE/0.0592) = 10^(-1.803/0.0592) = 10^(-30.37) = 7.835 x 10^-31
So the complete fraction equilibrium constant (Kc) for the reaction Zn (NH₂)2 (aq) + 2ē → ZnCO + 4 NH3 (s) is 7.835 x 10^-31.
Read more about chemical equilibrium here:
https://brainly.com/question/19340344
#SPJ1