Answer:
La hipotenusa del triángulo mide 5 metros, el ángulo (a) mide 53,13º y el ángulo (b) mide 36,87º.
Step-by-step explanation:
Dado que del triángulo rectángulo se conocen sus dos catetos, uno mide 4 metros y el otro 3 metros, para hallar su hipotenusa y sus ángulos interiores se deben realizar los siguientes cálculos:
4^2 + 3^2 = X^2
16 + 9 = X^2
√25 = X
5 = X
sen(a) = 4/5
(a) = 53,13º
(b) = 180 - (90º+53,13º)
(b) = 36,87º
Así, la hipotenusa del triángulo mide 5 metros, el ángulo (a) mide 53,13º y el ángulo (b) mide 36,87º.
Which answers describe the shape below? Check all that apply.
A. Rectangle
B. Rhombus
C. Quadrilateral
D. Square
E. Parallelogram
F. Trapezoid
Answer:
E and C
Step-by-step explanation:
The domain of the function f(x)=-x3+4
Answer:
Domain= {x:x £|R}
|R=any real number
Construct the discrete probability distribution for the random variable described. Express the probabilities as simplified fractions. The number of tails in 5 tosses of a coin.
Answer:
[tex]P(X = 0) = 0.03125[/tex]
[tex]P(X = 1) = 0.15625[/tex]
[tex]P(X = 2) = 0.3125[/tex]
[tex]P(X = 3) = 0.3125[/tex]
[tex]P(X = 4) = 0.15625[/tex]
[tex]P(X = 5) = 0.03125[/tex]
Step-by-step explanation:
For each toss, there are only two possible outcomes. Either it is tails, or it is not. The probability of a toss resulting in tails is independent of any other toss, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Fair coin:
Equally as likely to be heads or tails, so [tex]p = 0.5[/tex]
5 tosses:
This means that [tex]n = 5[/tex]
Probability distribution:
Probability of each outcome, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.5)^{0}.(0.5)^{5} = 0.03125[/tex]
[tex]P(X = 1) = C_{5,1}.(0.5)^{1}.(0.5)^{4} = 0.15625[/tex]
[tex]P(X = 2) = C_{5,2}.(0.5)^{2}.(0.5)^{3} = 0.3125[/tex]
[tex]P(X = 3) = C_{5,3}.(0.5)^{3}.(0.5)^{2} = 0.3125[/tex]
[tex]P(X = 4) = C_{5,4}.(0.5)^{4}.(0.5)^{1} = 0.15625[/tex]
[tex]P(X = 5) = C_{5,5}.(0.5)^{5}.(0.5)^{0} = 0.03125[/tex]
Suppose that the probability distribution for birth weights is normal with a mean of 120 ounces and a standard deviation of 20 ounces. The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is [ Select ] 68%. The probability that a randomly selected infant has a birth weight between 110 and 130 is [ Select ] 68%.
Answer:
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is 68%.
The probability that a randomly selected infant has a birth weight between 110 and 130 is 38%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 120 ounces and a standard deviation of 20 ounces.
This means that [tex]\mu = 120, \sigma = 20[/tex]
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is
p-value of Z when X = 140 subtracted by the p-value of Z when X = 100.
X = 140
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 120}{20}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.84
X = 100
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{100 - 120}{20}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a p-value of 0.16
0.84 - 0.16 = 0.68
The probability that a randomly selected infant has a birth weight between 100 ounces and 140 ounces is 68%.
The probability that a randomly selected infant has a birth weight between 110 and 130
This is the p-value of Z when X = 130 subtracted by the p-value of Z when X = 110.
X = 130
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{130 - 120}{20}[/tex]
[tex]Z = 0.5[/tex]
[tex]Z = 0.5[/tex] has a p-value of 0.69
X = 110
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{110 - 120}{20}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a p-value of 0.31
0.69 - 0.31 = 0.38 = 38%.
The probability that a randomly selected infant has a birth weight between 110 and 130 is 38%.
A box is 2,5 dm long and 5 dm high its volume is 62.5 dm3 how wide it is?
Answer:
7.5 dm
Step-by-step explanation:
Plus mo baka tama ako
Trigonometric ratio: find an angle measure
Answer:
[tex]T =56.3[/tex]
Step-by-step explanation:
Given
The attached triangle
Required
Measure of T
This is calculated as:
[tex]\cos T = \frac{Adjacent}{Hypotenuse}[/tex]
[tex]\cos T = \frac{5}{9}[/tex]
Take arccos
[tex]T = \cos^{-1}{(5/9)}[/tex]
[tex]T =56.3[/tex]
Factorize : 4(x+y)^2 -9(x-y)^2
Answer:
Step-by-step explanation:
[tex]4(x+y)^{2} - 9(x-y)^{2}=4[x^{2}+2xy+y^{2}]-9[x^{2}-2xy+y^{2}]\\\\=4x^{2}+4*2xy + 4y^{2}-9x^{2}-2xy*(-9)+y^{2}*(-9)\\\\= 4x^{2}+8xy+4y^{2}-9x^{2}+18xy-9y^{2}\\\\= 4x^{2}-9x^{2} + 8xy + 18xy +4y^{2} - 9y^{2}\\\\= -5x^{2} + 26xy - 5y^{2}[/tex]
= -5x² + 25xy + xy - 5y²
= 5x(-x + 5y) - y(-x +5y)
= (-x + 5y)(5x - y)
Find the equivalent exponential expression.
(543
Answer:
(5) we have multiple the powers
Help me please I need help 6
Answer:
69.6
Step-by-step explanation:
sin 55 = x / 85
0.8191520443 = x / 85
x = 69.6
Two mechanics worked on a car. The first mechanic worked for 10 hours, and the second mechanic worked for 5 hours. Together they charged a total of $1125. What was the rate charged per hour by each mechanic if the sum of the two rates was $140 per hour?
Answer:
The first mechanic charged $ 85 an hour, and the second mechanic charged $ 55 an hour.
Step-by-step explanation:
Given that two mechanics worked on a car, and the first mechanic worked for 10 hours, and the second mechanic worked for 5 hours, and together they charged a total of $ 1125, to determine what was the rate charged per hour by each mechanic if the sum of the two rates was $ 140 per hour, the following calculation must be performed:
1125/15 = X
75 = X
80 x 10 + 60 x 5 = 800 + 300 = 1100
85 x 10 + 55 x 5 = 850 + 275 = 1125
Therefore, the first mechanic charged $ 85 an hour, and the second mechanic charged $ 55 an hour.
The formula for centripetal acceleration, a, is given by this formula, where v is the velocity of the object and r is the object’s distance from the center of the circular path:
A= V2/R
Solve the formula for r.
Answer:r=v^2/A
Step-by-step explanation: To solve for r means you have to isolate r on one side and put all the other terms on the other. To get r out from under the fraction, multiply both sides by r. This leaves:
A*r=v^2 so to isolate r, divide by A and get:
r=v^2/A.
HELP PLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Answer:
12
Step-by-step explanation:
10 - 1/2 x = 12-4/3x
60 - 3x = 72-2x
-12 = - x
a rectangle box has length 12 inches, width 15 inches, and a height of 17 inches. Find the angle between the diagonal of the box and the diagonal of its base. The angle should be measured in radiands
Answer:
0.7246 radians
Step-by-step explanation:
According to the Question,
Given that, a rectangle box has length 12 inches, width 15 inches, and a height of 17 inches
The length of the base diagonal (d) can be found using the Pythagorean theorem on length and width:d = √{ (12)² +(15)² } = √(144+225) = √369inches
The tangent of the angle is the ratio of the height of the box to this lengthTan∅ = 17/√369
Taking the [tex]Tan^{-1}[/tex] , we have
∅ = [tex]Tan^{-1}[/tex](17/√369) ≈ 0.7246 radians
The speed (S) an object falls varies directly with time. If the speed is 49.0m/s after 5 seconds, then what is the speed after 3 seconds
9514 1404 393
Answer:
29.4 m/s
Step-by-step explanation:
Speed is proportional to time, so we have ...
speed / time = s/3 = 49/5
s = 3/5(49) = 29.4
The speed of the object is 29.4 m/s after 3 seconds.
Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00
Answer: 3 years
Step-by-step explanation:
Interest is calculated as:
= (P × R × T) / 100
where
P = principal = 150,000
R = rate = 2.5%.
I = interest = 11250
T = time = unknown.
I = (P × R × T) / 100
11250 = (150000 × 2.5 × T)/100
Cross multiply
1125000 = 375000T
T = 1125000/375000
T = 3
The time taken will be 3 years
A flashlight is projecting a triangle onto a wall, as shown below.
A picture shows a flashlight projecting a triangle onto a wall. The original triangle and its projection are similar. The original triangle has 2 sides labeled 15 and one side labeled 20. The projected triangle has two sides labeled 30 and one side labeled n. The triangles have congruent angles.
The original triangle and its projection are similar. What is the missing length n on the projection?
Answer:
Hence the correct option is 3rd option. 40
Step-by-step explanation:
If two figures are similar, then the ratio of the corresponding sides is proportional.
[tex]\frac{15}{30} =\frac{20}{n} \\\\n=\frac{30 \times 20}{15} \\\\n= 40.[/tex]
How would 0.42 be shown as a percent?
A. 0.42%
B. 4%
C. 4.2%
D. 42%
Answer:
42%
Step-by-step explanation:
to find percentages, you move the decimal point twice to the right
Identify the domain of the function shown in the graph.
how to solve for
LN and what are the variables
Answer:
v See below. v
Step-by-step explanation:
LM = MN
11x - 21 = 8x + 15
[tex]3x-21=15\\3x=36\\[/tex]
x = 12
LM = 11(12) - 21 = 132 - 21 = 111
MN = 8(12) + 15 = 96 + 15 = 111
LN = 111 + 111 = 222
The mathematical expressions of the thermal conditions at the boundaries are called the _____ conditions.
Answer:
Heat flux boundary condition.
Step-by-step explanation:
Heat flux is boundary condition in positive x-direction. The specified temperature is constant and steady heat conduction. Temperature of exposed surface can be measured directly with the thermal condition expression.
someone please help. you have to find ge and I have no idea how to
Hello,
3x+9+8x-25=28
11x-16=28
x=44/11
x=4
So, GE=3x+9=3*11+9=42
If there is an error in solving the equation below, then explain the error and in what step the error is in the equation. If no error, then just type “no error”
Answer:
To solve for x, you must multiply by the reciprocal.
In this case, multiply both sides by [tex]\frac{3}{2}[/tex] .
When doing this the result will be x = 3
I believe the answer is 7% but it says round to the nearest tenth of a percent so I am not sure if it is a decimal answer or not. Can someone help me out please?
Answer: 6.1% decrease
Note: It appears that your teacher doesn't want you to type in the percent sign, as that's already covered for you.
=========================================================
Explanation:
The salary decreased by 51500-48355 = 3145
Divide this over the initial salary to get 3145/51500 = 0.0611 which is approximate.
This converts to the percentage 6.11% and that rounds to 6.1%
----------------
As an alternative, you can use the formula method below
A = old value = 51500
B = new value = 48355
C = percent change when going from A to B
C = [ (B-A)/A ] * 100%
C = [ (48355-51500)/51500 ] * 100%
C = (-3145/51500)*100%
C = -0.0611*100%
C = -6.11%
C = -6.1%
The negative C value indicates a percent decrease.
A rectangular auditorium seats 1144 people. The number of seats in each row exceeds the number of rows by 18. Find the number of seats in each row.
Answer:
44 seats in each row
Problem:
A rectangular auditorium seats 1144 people. The number of seats in each row exceeds the number of rows by 18. Find the number of seats in each row.
Step-by-step explanation:
Let n be the number of rows.
If the number of seats exceed the number of rows by 18, then the number ot seats can be represented by n+18.
So we have a n by n+18 rectangle whose number of seats in all is 1144.
So we need to solve n(n+18)=1144
Distribute: n^2+18n=1144
Subtract 1144 on both sides" n^2+18n-1144=0
What two numbers multiply to be -1144 but also add to be 18?
Hmmm.. let's break -1144 down a little into smaller factors.
-1144=2(-572)=4(-286)=8(-143)=-8(13)(11)=-26(44)
We found a pair of factors that will work? -26 and 44.
So the factorization of our quadratic equation is (n-26)(n+44)=0.
This implies either n-26=0 or n+44=0 .
n=26 by adding 26 on both sides for first equation.
n=-44 by subtracting 44 on both sides for second equation.
n=26 is the only one that works.
This means there are 26 rows and 26+18 seats in each row.
26 rows
44 seats in each row
That product does equal 1144 seats in all.
find (f o g)(x)
f(x) = 5x+1, g(x)= *square root of x*
Step-by-step explanation:
Hey there!
Here;
f(x) = 5x + 1
g(x) = (√x)
Now;
fog(X) = f(g(x))
= f(√x)
= 5√x + 1
Therefore, fog(X) = 5√x + 1.
Hope it helps!
Find the inverse of the given function. (pictured below)
Answer:
4
3
0
Step-by-step explanation:
f(x) = y = -1/2 × sqrt(x+3)
2y = -sqrt(x+3)
4y² = x + 3
x = 4y² - 3
now renaming this, so that the normal symbols and names are used for this function definition, so that the input variable is called "x" :
f-1(x) = 4x² - 3
basically, just by itself, this function would be defined for all possible real values of x.
but because it is the inverse of the original function, which generates only values of y<=0, then for the inverse function that same range applies for its input variable x
x<=0
help? haha
solve the equation below:)
3x - 5 = 10 + 2x
Step-by-step explanation:
3x-2x=5+10 [taking variables on one side and constant on other]
x=15
soln:
3x-5= 2x+10
3x -5+5=2x+10+5 [ adding 5 on both side]
3x=2x+15
3x-2x=2x+15-2x [subtracting 2x on both side]
x=15
Ans=15
Answer:
[tex]x = 15[/tex]
Step-by-step explanation:
[tex]3x - 5 = 10 + 2x[/tex]
[tex]3x - 2x = 10 + 5[/tex]
[tex]1x = 15[/tex]
[tex]x = 15[/tex]
Hope it is helpful.....A bus started from Kathmandu and reached khanikhola,26km far from Kathmandu, in one hour. if the bus had uniform acceleration, calculate the final velocity of the bus and acceleration.
Answer:
a = 0.0040 m/s², v = 14.4 m/s.
Step-by-step explanation:
Given that,
The distance between Kathmandu and Khanikhola, d = 26 km = 26000 m
Time, t = 1 hour = 3600 seconds
Let a is the acceleration of the bus. Using second equation of motion,
[tex]d=ut+\dfrac{1}{2}at^2[/tex]
Where
u is the initial speed of the bus, u = 0
So,
[tex]d=\dfrac{1}{2}at^2\\\\a=\dfrac{2d}{t^2}\\\\a=\dfrac{2\times 26000}{(3600)^2}\\\\a=0.0040\ m/s^2[/tex]
Now using first equation of motion.
Final velocity, v = u +at
So,
v = 0+0.0040(3600)
v = 14.4 m/s
Hence, this is the required solution.
.It is 12:00 and people are lining up for the matinee at the Bijou Cinema Six. In the first five minutes (12:05), 6 people get into line. At the end of the second five minutes (12:10), there are 11 people in line. At the end of the third five minutes (12:15) there are 16 people in line. If the people keep lining up at this rate, what time will it be when there are 81 people in line?
Answer:
65 minutes
Step-by-step explanation:
already 16 people in line
total is 81
81 - 16 equals 65
about 5 people every 5 minutes (basically 1 min per person)
so, answer probably 65
What is the factored form of x2 − 4x − 5?
(x + 5)(x − 1)
(x + 5)(x + 1)
(x − 5)(x − 1)
(x − 5)(x + 1)
Answer:
x2 - 4x - 5 factored form is (x - 5)(x + 1)
Answer:
(x − 5)(x + 1)
Step-by-step explanation:
The answer above is correct.