Answer:
T = 4c + 4t + 3s
Step-by-step explanation:
Stocks contains:
4-legged chairs
4-legged tables
3-legged stools
So, 1 chair has legs = 4
So, c chairs has legs = 4c
1 table has legs = 4
So, t tables has legs = 4t
1 stool has legs = 3
So, s stools has legs = 3s
Let T denotes the total no. of legs
So, the total number of furniture legs in aisle 2 :
T = 4c + 4t + 3s
Hence, T = 4c + 4t + 3s expression show the total number of furniture legs in aisle 2.
Hope it helped u if yes mark me BRAINLIEST! :)
Tysm!
Also sorry for late reply... :(
what is the square root of 80 simplified to?
Answer:
4√5
Step-by-step explanation:
√80 = √4·4·5 = √4²·5 = 4√5
What is the result of the product of 21 and x added to twice of 6?
Answer:
21x + 12
Step-by-step explanation:
In math, it is
21x + 2(6).
so we have
21x + 2(6) = 21x + 12.
Evaluate the following expression:
25x(x - 4) when x = -1
4.1 by the power of 2
Answer:
16.81
Step-by-step explanation:
That's basically just 4.1×4.1
Given the midpoint (5,8) and that one of the endpoints is (-2. 6), find the other endpoint
of the segment.
Answer:
(12, 10 )
Step-by-step explanation:
Given the endpoints of a segment (x₁, y₁ ) and (x₂, y₂ ) then midpoint is
[ [tex]\frac{1}{2}[/tex](x₁ + x₂ ), [tex]\frac{1}{2}[/tex](y₁ + y₂ ) ]
let (x, y) be the coordinates of the other endpoint then use the midpoint formula and equate to the coordinates of the midpoint.
(x₁, y₁ ) = (- 2, 6) and (x₂, y₂ ) = (x, y), then
[tex]\frac{1}{2}[/tex](- 2 + x) = 5 ( multiply both sides by 2 )
- 2 + x = 10 ( add 2 to both sides )
x = 12
[tex]\frac{1}{2}[/tex](6 + y) = 8 ( multiply both sides by 2 )
6 + y = 16 ( subtract 6 from both sides )
y = 10
Thus
The other endpoint is (12, 10 )
Answer:
(12, 10 )
Step-by-step explanation:
Given the endpoints of a segment (x₁, y₁ ) and (x₂, y₂ ) then midpoint is
[ (x₁ + x₂ ), (y₁ + y₂ ) ]
let (x, y) be the coordinates of the other endpoint then use the midpoint formula and equate to the coordinates of the midpoint.
(x₁, y₁ ) = (- 2, 6) and (x₂, y₂ ) = (x, y), then
(- 2 + x) = 5 ( multiply both sides by 2 )
- 2 + x = 10 ( add 2 to both sides )
x = 12
(6 + y) = 8 ( multiply both sides by 2 )
6 + y = 16 ( subtract 6 from both sides )
y = 10
Thus
The other endpoint is (12 ,10)
Find em when em = 7x and the midpoint is m and mg = 8x-6
Answer:
EM = 42
Step-by-step explanation:
If M is the midpoint, then we can say that EM = MG.
So now, I can set up an equation:
7x = 8x - 6
And solve for x.
7x = 8x - 6
-8x -8x
-x = -6
x = 6
Since we are trying to find EM, and EM is 7x, we can multiply x by 7 to find our answer:
7x
7(6)
42
EM = 42
Which expression is equal to (2 – 5i) – (3 + 4i)?
O1 – 9i
0-1 – 9i
05 -
0 -1- i
Answer:
-1-9i (the second option)
Step-by-step explanation:
(2 – 5i) – (3 + 4i)
=2-5i-3-4i
= -1-9i
-1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).
so, 2nd option is correct.
Here, we have,
To simplify the expression (2 – 5i) – (3 + 4i),
we need to perform the subtraction operation for both the real and imaginary parts separately.
The real part subtraction is done as follows: 2 - 3 = -1.
The imaginary part subtraction is done as follows: -5i - 4i = -9i.
Combining the real and imaginary parts, we get -1 - 9i.
Therefore, the expression (2 – 5i) – (3 + 4i) is equal to -1 - 9i.
Among the given options, the expression that matches this result is O-1 - 9i.
Hence, -1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).
so, 2nd option is correct.
To learn more on subtraction click:
brainly.com/question/2346316
#SPJ2
solve ; 7/x-3/2x+7/6=9/x
Answer:
x = 3
Step-by-step explanation:
7/x - 3/(2x) + 7/6 = 9/x
x(7/x - 3/(2x) + 7/6) = x(9x)
x*7/x - 3*x/(2x) + x*7/6 = x*9x
7 - 3/2 + 7x/6 = 9
7x/6 = 9 - 7 + 3/2
7x/6 = 2 + 3/2
7x/6 = 12/6 + 9/6
7x = 12+9
7x = 21
x = 21/7
x = 3
probe:
7/3 - 3/(2*3) + 7/6 = 9/3
14/6 - 3/6 + 7/6 = 3
(14 - 3 + 7) / 6 = 3
18/6 = 3
Who drove faster?
Dan drives 60 miles in 5 hours.
David drives 75 miles in 6 hours.
Answer:
david drove faster than dan bcz
Answer:
David drove faster
Step-by-step explanation:
Dan - 60m/5h = 12 miles an hour
David - 75m/6h = 12.5 miles an hour
Therefore David drove faster.
1) Determine the discriminant of the 2nd degree equation below:
3x 2 − 2x − 1 = 0
a = 3, b = −2, c = −1
Discriminant → ∆= b 2 − 4 a c
2) Solve the following 2nd degree equations using Bháskara's formula:
Δ = b² - 4.a.c
x = - b ± √Δ
__________
2a
a) x 2 + 5x + 6 = 0
b)x 2 + 2x + 1 = 0
c) x2 - x - 20 = 0
d) x2 - 3x -4 = 0
[tex] \LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}[/tex]
We have, Discriminant formula for finding roots:
[tex] \large{ \boxed{ \rm{x = \frac{ - b \pm \: \sqrt{ {b}^{2} - 4ac} }{2a} }}}[/tex]
Here,
x is the root of the equation.a is the coefficient of x^2b is the coefficient of xc is the constant term1) Given,
3x^2 - 2x - 1
Finding the discriminant,
➝ D = b^2 - 4ac
➝ D = (-2)^2 - 4 × 3 × (-1)
➝ D = 4 - (-12)
➝ D = 4 + 12
➝ D = 16
2) Solving by using Bhaskar formula,
❒ p(x) = x^2 + 5x + 6 = 0
[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5\pm \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm \sqrt{25 - 24} }{2 \times 1} }}[/tex]
[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm 1}{2} }}[/tex]
So here,
[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 2 \: or - 3}}}[/tex]
❒ p(x) = x^2 + 2x + 1 = 0
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4 \times 1 \times 1} }{2 \times 1} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm 0}{2} }}[/tex]
So here,
[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 1 \: or \: - 1}}}[/tex]
❒ p(x) = x^2 - x - 20 = 0
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 1) \pm \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{1 \pm 9}{2} }}[/tex]
So here,
[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \: - 4}}}[/tex]
❒ p(x) = x^2 - 3x - 4 = 0
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm \sqrt{9 + 16} }{2 \times 1} }}[/tex]
[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm 5}{2} }}[/tex]
So here,
[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \: - 1}}}[/tex]
━━━━━━━━━━━━━━━━━━━━
Step-by-step explanation:
a)
given: a = 1, b = 5, c = 6
1) Discriminant → ∆= b² − (4*a*c)
∆= b² - (4*a*c)
∆= 5² - (4*1*6)
∆=25 - ( 24 )
∆= 25 - 24
∆= 1
2)
Solve x = (- b ± √Δ ) / 2a
x = ( 5 ± √25 ) / 2*1
x = ( 2 ± 5 ) / 2
x = ( 2 + 5 ) / 2 or x = ( 2 - 5 ) / 2
x = ( 7 ) / 2 or x = ( - 3 ) / 2
x = 3.5 or x = -1.5
b)
given: a = 1, b = 2, c = 1
1) Discriminant → ∆= b² − (4*a*c)
∆= b² - (4*a*c)
∆= 2² - (4*1*1)
∆= 4 - (4)
∆= 4 - 4
∆= 0
2)
Solve x = (- b ± √Δ ) / 2a
x = ( -2 ± √0) / 2*1
x = ( 2 ± 0 ) / 2
x = ( 2 + 0) / 2 or x = ( 2 - 0 ) / 2
x = ( 2 ) / 2 or x = ( 2 ) / 2
x = 1 or x = 1
x = 1 (only one solution)
c)
given: a = 1, b = -1, c = -20
1) Discriminant → ∆= b² − (4*a*c)
∆= b² - (4*a*c)
∆= -1² - (4*1*-20)
∆= 1 - ( -80 )
∆= 1 + 80
∆= 81
2)
Solve x = (- b ± √Δ ) / 2a
x = ( 2 ± √81 ) / 2*1
x = ( 2 ± 9 ) / 2
x = ( 2 + 9 ) / 2 or x = ( 2 - 9 ) / 2
x = ( 11 ) / 2 or x = ( - 7 ) / 2
x = 5.5 or x = -3.5
d)
given: a = 1, b = -3, c = -4
1) Discriminant → ∆= b² − (4*a*c)
∆= b² - (4*a*c)
∆= -3² - (4*1*-4)
∆= 9 - ( -16)
∆= 9 + 16
∆= 25
2)
Solve x = (- b ± √Δ ) / 2a
x = ( 3 ± √25 ) / 2*1
x = ( 3 ± 5 ) / 2
x = ( 3 + 5 ) / 2 or x = ( 3 - 5 ) / 2
x = ( 8 ) / 2 or x = ( - 2 ) / 2
x = 4 or x = -1
the volume of a cylinder is 308 cm cube with radius 7 cm find the height
Formula :-
Volume of cylinder is π r²h .
Given :-
→ Volume = 308 cm³
→ Radius = 7 cm
Solution :-
→ πr²h = 308
→ π (7)²(h) = 308
→ 22×7×7×h/7 = 308
→ 22×7×h = 308
→ 154×h = 308
→ Height = 308/154
→ Height = 2 cm
So the height of the cylinder is 2 cm .
What is the product? Five-twelfths times one-third
When you multiply two fractions together, multiply the two top numbers and then multiply the two bottom numbers.
5/12 x 1/3 = (5x1) / (12x3) = 5/36
Answer:
Step-by-step explanation:
[tex]\frac{5}{12}*\frac{1}{3}\\\\\\=\frac{5*1}{12*3}=\frac{5}{36}[/tex]
URGENT!!!! Which of the following statements is not true?(1 point) A.) For a complex number written in the form a+bi, the value of a is called the real part of the complex number. B.) A complex number is a number that can be written in the form a+bi where a and b are real numbers. C.) In order for a+bi to be a complex number, b must be nonzero. D.) Every real number is also a complex number.
Answer:
The correct option is;
Non of the above
Step-by-step explanation:
Option A is correct when a + b·i is a complex number, the real part = a and the imaginary part = b
Option B.) For the complex number, a + b·i, a and b are real number
Option C) When a number, a + b·i is a complex number, then b ≠ 0
Option D) Whereby real numbers are numbers of the form a + b·i, where b = 0, therefore, a real number is a complex number with the imaginary part = 0 and every real number is a complex number.
divide the sum of 3/8 and -5/12 by the reciprocal of -15/8×16/27
Answer:
757
Step-by-step explanation:
Answer:
Step-by-step explanation:
Sum of 3/8 and -5/12:
Least common denominator of 8 & 12 = 24
[tex]\frac{3}{8}+\frac{-5}{12}=\frac{3*3}{8*3}+\frac{-5*2}{12*2}\\\\\\=\frac{9}{24}+\frac{-10}{24}\\\\\\=\frac{-1}{24}[/tex]
Finding -15/8 * 16/27:
[tex]\frac{-15}{8}*\frac{16}{27}=\frac{-5*2}{1*9}=\frac{-10}{9}[/tex]
Reciprocal of -10/9 = -9/10
-1/24 ÷ -9/10 = [tex]\frac{-1}{24}*\frac{-10}{9}=\frac{1*5}{12*3}[/tex]
= [tex]\frac{5}{24}[/tex]
Which statement accurately represents to
between pressure and volume?
As pressure increases, volume increa
As pressure decreases, volume decri
As pressure increases, volume decre
Answer:
As pressure increases, volume decreases.
Hope this answer correct :)
Answer:
As pressure increases, volume decreases
Step-by-step explanation:
like the other person said i agree with him or her because i just do :)
how do you wirte 15 and 40 in simplest form
Step-by-step explanation:
15 : 40
Both have table of 5 in common
5 : 8
You divide it with valid numbers that can be dividable with both numerator and denominator.
15/40 can be divided by 5 to make it into the simplest form
= 3/8 , now we can no longer divide it, so its the simplest form
the diagram shows a sector of a circle, center O,radius 5r the length of the arc AB 4r. find the area of the sector in terms of r , giving your answer in its simplest form
Answer:
10r²
Step-by-step explanation:
The following data were obtained from the question:
Radius (r) = 5r
Length of arc (L) = 4r
Area of sector (A) =?
Next, we shall determine the angle θ sustained at the centre.
Recall:
Length of arc (L) = θ/360 × 2πr
With the above formula, we shall determine the angle θ sustained at the centre as follow:
Radius (r) = 5r
Length of arc (L) = 4r
Angle at the centre θ =?
L= θ/360 × 2πr
4r = θ/360 × 2π × 5r
4r = (θ × 10πr)/360
Cross multiply
θ × 10πr = 4r × 360
Divide both side by 10πr
θ = (4r × 360) /10πr
θ = 144/π
Finally, we shall determine the area of the sector as follow:
Angle at the centre θ = 144/π
Radius (r) = 5r
Area of sector (A) =?
Area of sector (A) = θ/360 × πr²
A = (144/π)/360 × π(5r)²
A = 144/360π × π × 25r²
A = 144/360 × 25r²
A = 0.4 × 25r²
A = 10r²
Therefore, the area of the sector is 10r².
the area of the sector in terms of r is [tex]10r^2[/tex]
Given :
From the given diagram , the radius of the circle is 5r and length of arc AB is 4r
Lets find out the central angle using length of arc formula
length of arc =[tex]\frac{central-angle}{360} \cdot 2\pi r[/tex]
r=5r and length = 4r
[tex]4r=\frac{central-angle}{360} \cdot 2\pi (5r)\\4r \cdot 360=central-angle \cdot 2\pi (5r)\\\\\\\frac{4r \cdot 360}{10\pi r} =angle\\angle =\frac{4\cdot 36}{\pi } \\angle =\frac{144}{\pi }[/tex]
Now we replace this angle in area of sector formula
Area of sector =[tex]\frac{angle}{360} \cdot \pi r^2\\[/tex]
[tex]Area =\frac{angle}{360} \cdot \pi r^2\\\\Area =\frac{\frac{144}{\pi } }{360} \cdot \pi\cdot 25r^2\\\\Area =\frac{ 144 }{360\pi } \cdot \pi\cdot 25r^2\\\\Area =\frac{ 2 }{5 } \cdot 25r^2\\\\\\Area=10r^2[/tex]
So, the area of the sector in terms of r is [tex]10r^2[/tex]
Learn more : brainly.com/question/23580175
what should be subtracted from 1 to get 1-x+2x2
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Amswer : [tex]\boxed { ( x - 2x^2 ) }[/tex]
Well you have to subtract [tex]( x - 2x^2 )[/tex] from [tex]1[/tex] to get [tex]1- x + 2*2^2[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀
Question 27 (1 point)
(01.05)
What is the slope-intercept form equation of the line that passes through (1,3) and (3, 7)? (1 point)
а. y = -2x + 1
b. y=-2x - 1
с. y = 2x + 1
d. y= 2x - 1
Answer: y=2x+1
Step-by-step explanation:
plug in the points in to the equation to see what you get
water flows into a tank 200m by 150m through a rectangular pipe 1.5m by 1.25m at 20kmph. in what time (in minutes) will the water rise by 2 meters
Answer:
Volume required in the tank (200 × 150 × 2)m3. therefore, required time= (6000/625)= 96 min.
Help. What does 4^5×4^7=
[tex]4^5\cdot4^7=4^{5+7}=16,777,216[/tex].
Hope this helps.
Explain a situation when the absolute value of a number might be negative. Explain using examples, relevant details, and supporting evidence. RACE Format Its for a CRQ
The absolute value of any number is never negative. Absolute value represents distance, and negative distance is not possible (it doesn't make any sense to have a negative distance). Specifically, it is the distance from the given number to 0 on the number line.
The result of an absolute value is either 0 or positive.
Examples:
| -22 | = 22
| -1.7 | = 1.7
| 35 | = 35
The vertical bars surrounding the numbers are absolute value bars
The quantities xxx and yyy are proportional. xxx yyy 111111 1\dfrac{2}{9}1 9 2 1, start fraction, 2, divided by, 9, end fraction 212121 2\dfrac{1}{3}2 3 1 2, start fraction, 1, divided by, 3, end fraction 454545 555
Answer:
The constant of proportionality is 1/9
Answer:
The answer is actually 3
Step-by-step explanation:
The two triangles are drawn to scale, so we can use the scale factor of \maroonD{1\dfrac{1}{2}}1
2
1
start color #ca337c, 1, start fraction, 1, divided by, 2, end fraction, end color #ca337c to find \greenD{x}xstart color #1fab54, x, end color #1fab54.
Hint #22 / 3
\begin{aligned} [\blueD{\text{length on A}}] \cdot [\maroonD{\text{scale factor}}] &= [\greenD{\text{length on B}}]\\\\ \blueD{2}\cdot \maroonD{1\dfrac{1}{2}}&=\greenD{x} \\\\ \greenD{3}&=\greenD{x} \end{aligned}
[length on A]⋅[scale factor]
2⋅1
2
1
3
=[length on B]
=x
=x
which equals 3
In predicate calculus, arguments to predicates and functions can only be terms - that is, combinations of __. Select one: a. predicates and connectives b. constants and predicates c. variables, constants, and functions d. predicates, quantifiers, and connectives
Answer:
c. variables, constants, and functions
Step-by-step explanation:
A predicate is the property that some object posses. Predicate calculus is a kind of logic that combines the categorical logic with propositional logic. The formal syntax of a predicate calculus contains 3 Terms which consist of:
1. Constants and Variables
2. Connectives
3. Quantifiers
But in arguments to predicates and functions, the terms can only be combination of variables, constants, and functions.
what is the LCM for 3 and 8
Answer: The LCM of 3 and 8 is 24.
Step-by-step explanation:
So far, the given two numbers are 3 and 8. We have to find the LCM ( Least Common Multiple ) of 3 and 8, not the GCF ( Greatest Common Factor). That means, we have to find the smallest multiple of 3 and 8.
Let's try it out.
3 times 1 = 3. Is that a multiple of eight? No.
3 times 2 = 6. Is that a multiple of eight? No.
3 times 3 = 9. Is that a multiple of eight? No.
3 times 4 = 12. Is that a multiple of eight? No.
3 times 5 = 15. Is that a multiple of eight? No.
3 times 6 = 18. Is that a multiple of eight? No.
3 times 7 = 21. Is that a multiple of eight? No.
3 times 8 = 24. Is that a multiple of eight? YES!
Now try it out for 8.
8 times 1 = 8. Is that a multiple of three? No.
8 times 2 = 16. Is that a multiple of three? No.
8 times 3 = 24. Is that a multiple of three? YES!
So now that 24 occurs in the list for both of them, it is the LCM because there are no other numbers that come before it that are multiples of both 3 and 8.
The LCM of 3 and 8 is 24.
What is the LCM for 3 and 8?The LCM (Least Common Multiple) of two numbers is the smallest number that is a multiple of both numbers.
To find the LCM of 3 and 8, we can use the following steps:
1. List out the multiples of 3 until we reach a number that is divisible by 8.
2. List out the multiples of 8 until we reach a number that is divisible by 3.
3. The smallest number that appears in both lists is the LCM of 3 and 8.
The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27...
The multiples of 8 are 8, 16, 24, 32 ...
The smallest number that appears in both lists is 24. Therefore, the LCM of 3 and 8 is 24.
Learn more about LCM on:
https://brainly.com/question/29231098
#SPJ6
What is the relationship between two lines whose slopes are −8 and 1 8 ?
Answer:
They are perpendicular lines
Step-by-step explanation:
If one line has slope -8 and the other one has slope 1/8, they must be perpendicular to each other because the condition for perpendicular lines is that the slope of one must be the "opposite of the reciprocal of the slope of the original line."
the opposite of -8 is 8 , and the reciprocal of this is 1/8
Answer:
Below
Step-by-step explanation:
Let m and m' be the slopes of two different lines.
These lines are peependicular if and only if:
● m×m' = -1
Notice that:
● -8 ×(1/8) = -1
So the lines with the respectives slopes -8 and 1/8 are perpendicular.
Help! I need to solve #17 and the Challenge! The first one to answer, ill will mark as brainliest!
Answer:
16) Anya, Danny, Bridget, Carl.
17) 217.66 bricks
Challenge) 275.65 minutes
Step-by-step explanation:
16) I think you have Anya and Danny reversed. It should be:
Anya, Danny, Bridget, Carl.
17) Bridget can do 60 an hour, Danny 50 an hour, Carl 66 an hour, and Anya 41.66 an hour. 60+50+66+41.66=217.66
Challenge: Anya can do .694444 per minute, Bridget 1 per minute, Carl 1.1 per minute, and Danny .83333 per minute. That makes 3.62777 per minute. 1000 divided by 3.6277777 is 275.65 minutes
if sina=4/5 find the cosa
Answer:
cos A = 3/5
Step-by-step explanation:
sin A = 4/5
sin^2 A + cos^2 A = 1
(4/5)^2 + cos^2 A = 1
16/25 + cos^2 A = 1
cos^2 A = 9/25
cos A = 3/5
What is the pattern between these numbers 8,7,5,2
In ΔDEF, the measure of ∠F=90°, DE = 8.8 feet, and EF = 6.4 feet. Find the measure of ∠D to the nearest tenth of a degree.
Answer:
46.7 degrees.
Step-by-step explanation:
According to the given information, triangle DEF is a right triangle with angle F as the right angle. We are trying to find the measure of angle D.
We are given the opposite side length (6.4 feet) and the hypotenuse (8.8 feet), so we can use sine to calculate the angle measure (SOH = Sine; Opposite over Hypotenuse).
sin(D) = 6.4 / 8.8
sin(D) = 64 / 88
sin(D) = 8 / 11
D = arcsin(8 / 11)
D = arcsin(0.72727272727272727272727273)
D = 46.65824177.
So, the measure of angle D is about 46.7 degrees.
Hope this helps!