Air in a 124 km/h wind strikes head-on the face of a building 42 m wide by 73 m high and is brought to rest. If air has a mass of 1.3 kg per cubic centimeter, determine the average force of wind on the building.

Answers

Answer 1

Answer:

The average force of wind on the building is 4.728 x 10¹² N

Explanation:

Given;

speed of the air wind, v = 124 km/h

dimension of the building, 42 m wide by 73 m high

density of the air, ρ = 1.3 kg/cm³ =

speed of the air in m/s = 124/3.6 = 34.44 m/s

Area of the building, A = 42 m x 73 m = 3066 m²

density of the air in (k.g/m³);

[tex]\rho = \frac{1.3 \ kg}{cm^3} *(\frac{100\ cm}{1 \ m} )^3\\\\\rho = \frac{1.3 \ kg}{cm^3} *\frac{10^6\ cm^3}{1 \ m^3} = \frac{1.3*10^6 \ kg}{m^3}[/tex]

The average force of wind on the building;

F = mass flow rate x velocity

F = (ρvA) x V

F = ρAv²

F = 1.3 x 10⁶ x 3066  x (34.44)²

F = 4.728 x 10¹² N

Therefore, the average force of wind on the building is 4.728 x 10¹² N


Related Questions

You push a box across the floor with a force of 20 N. You push it 10 meters in 5 seconds. How much work did you do? How much power did you use? Enter your answer in the space provided.

Answers

Explanation:

ur answer is in attachment.

hope it helps u

mark as brainlist

follow for good ans

Explanation:

Force applied on the box = 20 N

Displacement, s = 10 m

Time taken = 5 sec

According to first condition of the question, we could find the value of work done

i.e

Work done = force × displacement

= 20 × 10

= 200 Joule

According to second condition of the question, we could find the value of power

i.e

Power = work done/Time taken

= 200/5

= 40 watt.

Hope it helpful!!!!!!!!!!!!

un
An aircraft travelling at 600 km/h accelerates steadily at 10 km/h per second. Taking the
speed of sound as 1100 km/h at the aircraft's altitude, how long will it take to reach the
Sound barrier'?​

Answers

Answer:

50 seconds

Explanation:

Acceleration = change in velocity / change in time

a = Δv / Δt

10 km/h/s = (1100 km/h − 600 km/h) / t

t = 50 s

How many electrons would have to be removed from a coin to leave it with a charge of +1.0 10-7 C?

Answers

Answer:

[tex]n=6.25\times 10^{11}[/tex]

Explanation:

We need to find the number of electrons that would have to be removed from a coin to leave it with a charge of [tex]+10^{-7}\ C[/tex]. Then the number of electrons be n. Using quantization of electric charge as :

q = ne

e is charge on an electron

[tex]n=\dfrac{q}{e}\\\\n=\dfrac{10^{-7}}{1.6\times 10^{-19}}\\\\n=6.25\times 10^{11}[/tex]

So, the number of electrons are [tex]6.25\times 10^{11}[/tex].

If the person generates another pulse like the first but the rope is tightened, the pulse will move:_________.
A. at the same rate
B. faster
C. slower

Answers

Answer:

the correct answer is B

Explanation:

The speed of a pulse on a string is described by the expression

          v =√T/μ

where v is the speed of the pulse, t is the tension of the string and μ the linear density of the string

When applying this equation to our case, if the string is taut, it implies that the tension has increased so that the pulse speed is FASTER

the correct answer is B

How are period and frequency related to each other?

Answers

Search Results
Featured snippet from the web
Frequency refers to the number of occurrences of a periodic event per time and is measured in cycles/second. In this case, there is 1 cycle per 2 seconds. ... Frequency is the reciprocal of the period. The period is 5 seconds, so the frequency is 1/(5 s) = 0.20 Hz

The flywheel of an engine has moment of inertia 2.50 kg m2 about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rev/min in 8.00s, starting from rest?

Answers

Answer:

Explanation:

From the question we are told that

   The moment of inertia is  [tex]I = 2.50 \ kg \cdot m^2[/tex]

    The final  angular speed is [tex]w_f = 400 rev/min = \frac{400 * 2\pi}{60} = 41.89 \ rad/s[/tex]

     The time taken is  [tex]t = 8.0 s[/tex]

      The initial angular speed is  [tex]w_i = 0\ rad/s[/tex]

Generally the average angular acceleration is mathematically represented as

        [tex]\alpha = \frac{w_f - w_i }{t}[/tex]

=>     [tex]\alpha = \frac{41.89}{8}[/tex]

=>      [tex]\alpha = 5.24 \ rad/s^2[/tex]

Generally the torque is mathematically represented as

   [tex]\tau = I * \alpha[/tex]

=>    [tex]\tau = 5.24 * 2.50[/tex]

=>     [tex]\tau = 13.09 \ N \cdot m[/tex]

On a day that the temperature is 10.0°C, a concrete walk is poured in such a way that the ends of the walk are unable to move. Take Young's modulus for concrete to be 7.00 109 N/m2 and the compressive strength to be 2.00 109 N/m2. (The coefficient of linear expansion of concrete is 1.2 10-5(°C−1).)
What is the stress in the cement on a hot day of 42.0°C? N/m2

Answers

Answer:

The stress is  [tex]stress = 2688000 \ N[/tex]

Explanation:

From the question we are told that

    The first temperature is  [tex]T_1 = 10 ^o \ C[/tex]

    The  young modulus is  [tex]Y = 7.00 *10^9\ N/m^2[/tex]

    The compressive strength is  [tex]\sigma = 2.00 *10^{9} \ N/m^2[/tex]

     The coefficient of  linear expansion is  [tex]\alpha = 1.2 *10^{-5} \ ^o C ^{-1}[/tex]

     The  second temperature is  [tex]T_2 = 42.0^o \ C[/tex]

Generally the change in length of the concrete is mathematically represented as

      [tex]\Delta L = \alpha * L * [T_2 - T_1 ][/tex]

=>  [tex]\frac{\Delta L}{L} = \alpha * [T_2 - T_1 ][/tex]

=> [tex]strain = \alpha * [T_2 - T_1 ][/tex]

Now  the young modulus is  mathematically represented as

        [tex]Y = \frac{stress}{strain}[/tex]

=>     [tex]7.00 *10^9 = \frac{stress}{\alpha(T_2 - T_1 ) }[/tex]

=>   [tex]stress = \alpha (T_2 - T_1 ) * 7.00 *10^9[/tex]

=>   [tex]stress = 1.2* 10^{-5} (42 - 10 ) * 7.00 *10^9[/tex]

=>   [tex]stress = 2688000 \ N[/tex]

Bailey wants to find out which frozen solid melts the fastest: soda, ice, or orange juice. She pours each of the three liquids into the empty cubes of an ice tray, and then places the ice tray in the freezer overnight. The next day, she pulls the ice tray out and sets each cube on its own plate. She then waits and watches for them to melt. When the last part of the frozen liquid melts, she records the time.

Answers

Answer:

its 45 over 6

Explanation:the answer is in  the question

Answer: Only the melted cube's shape changed.

Explanation:

the coefficient of static friction between mass mA

and the table is 0.40, whereas the coefficient of kinetic friction

is 0.20.

(a) What minimum value of mA will keep the system from

starting to move?

(b) What value(s) of mA will keep the system moving at

constant speed?

[Ignore masses of the cord and the (frictionless) pulley.]​

Answers

Answer:

(a) 5.0 kg

(b) 10 kg

Explanation:

Draw a free body diagram for each block.  There are 4 forces on block A:

Weight force mAg pulling down,

Normal force N pushing up,

Tension force T pulling right,

and friction force Nμ pushing left.

There are 2 forces on block B:

Weight force mBg pulling down,

and tension force T pulling up.

Whether the system is just starting to move, or moving at constant speed, the acceleration is 0.

Sum of forces on B in the -y direction:

∑F = ma

mBg − T = 0

mBg = T

Sum of forces on A in the +y direction:

∑F = ma

N − mAg = 0

N = mAg

Sum of forces on A in the +x direction:

∑F = ma

T − Nμ = 0

T = Nμ

Substitute:

mBg = mAg μ

mA = mB / μ

(a) When the system is just starting to move, μ = 0.40.

mA = 2.0 kg / 0.40

mA = 5.0 kg

(b) When the system is moving at constant speed, μ = 0.20.

mA = 2.0 kg / 0.20

mA = 10 kg

We have that minimum value of mA will keep the system from  starting to move is

m_1=5kg

The value(s) of mA will keep the system moving at  constant speed is

m=10kg

From the question we are told

the coefficient of static friction between mass mA  and the table is 0.40, where as the coefficient of kinetic friction  is 0.20.

a)  

Generally the equation for the Tension  is mathematically given as

T=mg

Where

[tex]m_1g=m_2g[/tex]

Therefore

[tex]m_1=\frac{2.0}{0.4}\\\\m_1=5kg[/tex]

b

Generally the equation for the Tension  is mathematically given as

[tex]T=f\\\\T=u_km_1g\\\\\m_1=\frac{m_2}{u}\\\\m_1=\frac{2}{0.2}[/tex]

m=10kg

For more information on this visit

https://brainly.com/question/19694949

Light of wavelength 575 nm passes through a double-slit and the third order bright fringe is seen at an angle of 6.5^degree away from the central fringe. What is the separation between the double slits? a) 5.0 mu m b) 10 mu m c) 15 mu m d) 20 mu m e) 25 mu m

Answers

Answer:

The correct option is C

Explanation:

From the question we are told that

   The wavelength is  [tex]\lambda = 575 *10^{-9} \ m[/tex]

    The  angle is  [tex]\theta = 6.5^o[/tex]

    The order of maxima  is  n =  3

Generally for  constructive interference

       [tex]dsin \theta = n * \lambda[/tex]

=>   [tex]d = \frac{n * \lambda }{ sin \theta }[/tex]

=>   [tex]d = \frac{3 * 575 *10^{-9} }{ sin 6.5 }[/tex]

=>   [tex]d = 15.24 *10^{-6} \ m[/tex]

=>  [tex]d = 15 \mu m[/tex]

Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
If she runs fhe same course again, what constant speed would let her finish in the same time as in the first race?

Answers

Answer:

The velocity is [tex]v = 4.76 \ m/s[/tex]

Explanation:

From the question we are told that

   The first distance is   [tex]d_1 = 4.0 \ km = 4000 \ m[/tex]

   The  first speed  is  [tex]v_1 = 5.0 \ m/s[/tex]

    The  second distance is  [tex]d_2 = 1.0 \ km = 1000 \ m[/tex]

    The  second speed  is  [tex]v_2 = 4.0 \ m/s[/tex]

Generally the time taken for first distance is  

      [tex]t_1 = \frac{d_1 }{v_1 }[/tex]

        [tex]t_1 = \frac{4000}{5}[/tex]

       [tex]t_1 = 800 \ s[/tex]

The time taken for second  distance is

           [tex]t_1 = \frac{d_2 }{v_2 }[/tex]

        [tex]t_1 = \frac{1000}{4}[/tex]

       [tex]t_1 = 250 \ s[/tex]

The total time is mathematically represented as

     [tex]t = t_1 + t_2[/tex]

=>   [tex]t = 800 + 250[/tex]

=>    [tex]t = 1050 \ s[/tex]

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      [tex]v = \frac{d_1 + d_2}{t }[/tex]

=>    [tex]v = \frac{4000 + 1000}{1050 }[/tex]

=>    [tex]v = 4.76 \ m/s[/tex]

The constant speed that will let her finish in the same time as in the first race is 4.76 m/s

Determination of the time taken for first 4 KmDistance = 4 Km = 4 × 1000 = 4000 mSpeed = 5 m/sTime 1 =?

Time 1 = distance / speed

Time 1 = 4000 / 5

Time 1 = 800 s

Determination of the time taken for the last 1 KmDistance = 1 Km = 1 × 1000 = 1000 mSpeed = 4 m/sTime 2 =?

Time 2 = distance / speed

Time 2 = 1000 / 4

Time 2 = 250 s

Determination of the constant speedTotal distance = 4000 + 1000 = 5000 mTotal time = 800 + 250 = 1050 sConstant speed =?

Constant speed = Total distance / total time

Constant speed = 5000 / 1050

Constant speed = 4.76 m/s

Learn more about average speed:

https://brainly.com/question/8819317

A ranger in a national park is driving at 15.0 m/s when a deer jumps into the road 60 m ahead of the vehicle. After a reaction time, t, the ranger applies the brakes to produce an acceleration of a = -3.00 m/s2. What is the maximum reaction time allowed if she is to avoid hitting the deer?

Answers

Answer:

t = 5 s

Explanation:

In uniform rectilinear movement, the equation for final speed is:

vf = v₀ + a*t

In this case we need that the car stops just before 60 m after applied the brakes, then

vf = v₀ - a*t

vf = final speed = 0

v₀ = initial speed =  15 m/s

And negative acceleration is 3 m/s²

0 = 15 (m/s) - 3 ( m/s²)*t

t = 15 / 3   (m/s /m/s²)

t = 5 s

The point is that with that value ranger will hit the deer so in order to not to hit the deer that time should be smaller than 5 seconds

A long, thin superconducting wire carrying a 17 A current passes through the center of a thin, 3.0-cm-diameter ring. A uniform electric field of increasing strength also passes through the ring, parallel to the wire. The magnetic field through the ring is zero.
a. At what rate is the electric field strength increasing?
b. is the electric field in the direction of the current or opposite to the current?

Answers

Answer:

a

 [tex]\frac{dE}{dt} =- 2.72 *10^{15} \ N/C \cdot s[/tex]

b

The  direction of the electric field is opposite that of the current              

Explanation:

From the question we are told that

   The current is  [tex]I = 17\ A[/tex]

   The diameter of the ring is  [tex]d = 3.0 \ cm = 0.03 \ m[/tex]

   

Generally the  radius is mathematically represented as

       [tex]r = \frac{d}{2}[/tex]

       [tex]r = \frac{0.03}{2}[/tex]

       [tex]r = 0.015 \ m[/tex]

The  cross-sectional area is mathematically represented as

       [tex]A = \pi r^2[/tex]

=>     [tex]A = 3.142 * (0.015^2)[/tex]

=>    [tex]A = 7.07 *10^{-4 } \ m^ 2[/tex]

Generally  according to ampere -Maxwell equation we have that

      [tex]\oint \= B \cdot \= ds = \mu_o I + \epsilon_o \mu _o\frac{ d \phi }{dt }[/tex]

Now given that [tex]\= B = 0[/tex] it implies that

     [tex]\oint \= B \cdot \= ds = 0[/tex]

So

    [tex]\mu_o I + \epsilon_o \mu _o\frac{ d \phi }{dt } = 0[/tex]

Where  [tex]\epsilon _o[/tex] is the permittivity of free space with value [tex]\epsilon_o = 8.85*10^{-12 } \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

            [tex]\mu_o[/tex] is the permeability of free space with value  

[tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

      [tex]\phi[/tex] is magnetic flux which is mathematically represented as

       [tex]\phi = E * A[/tex]

Where E is the electric field strength

  So  

       [tex]\mu_o I + \epsilon_o \mu _o \frac{ d [EA] }{dt } = 0[/tex]

=>   [tex]\frac{dE}{dt} =- \frac{I}{\epsilon_o * A }[/tex]

=>   [tex]\frac{dE}{dt} =- \frac{17}{8.85*10^{-12} * 7.07*10^{-4} }[/tex]

=>   [tex]\frac{dE}{dt} =- 2.72 *10^{15} \ N/C \cdot s[/tex]

The  negative  sign shows that the  direction  of  the electric field is opposite that of the current

           

       

Find the position of the center of mass of two bodies points of masses m1 and m2 joined by a rod of mass negligible in length d. Find the acceleration of the center of mass for the case that m1 = 1 [kg] and m2 = 3 [kg] and the applied forces of the figure with d = 2 [m]

Answers

Explanation:

If m₁ is at the origin, then the center of mass is at:

x = (m₁ × 0 m + m₂ × d m) / (m₁ + m₂)

x = m₂ d / (m₁ + m₂)

If m₁ = 1 kg, m₂ = 3 kg, and d = 2 m:

x = (3 kg) (2 m) / (1 kg + 3 kg)

x = 1.5 m

Sum of forces in the x direction:

∑F = ma

16 N = (1 kg + 3 kg) aₓ

aₓ = 4 m/s²

Sum of forces in the y direction:

∑F = ma

20 N = (1 kg + 3 kg) aᵧ

aᵧ = 5 m/s²

A 0.145 kg baseball pitched at 33.m/s is hit on a horizontal line drive straight back at the pitcher at 46.0 m/s. If the contact time between bat and ball is 5.70×10−3 s, calculate the magnitude of the force (assumed to be constant) exerted on the ball by the bat.

Answers

Answer:

F = 2009.64 N

Explanation:

It is given that,

Mass of a baseball, m = 0.145 kg

Initial speed if the baseball, u = 33 m/s

It hit on a horizontal line drive straight back at the pitcher at 46.0 m/s, final velocity, v = -46 m/s

Time of contact between the bat and the ball is [tex]t=5.7\times 10^{-3}\ s[/tex]

We need to find the magnitude of the force exerted by the ball on the bat. It can be calculated using impulse-momentum theorem. So,

[tex]Ft=m(v-u)\\\\F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{0.145\times (-46-33)}{5.7\times 10^{-3}}\\\\F=-2009.64\ N[/tex]

So, the magnitude of force exerted on the ball by the bat is 2009.64 N.

A person is lying on a diving board 3.00 m above the surface of the water in a swimming pool. She looks at a penny that is on the bottom of the pool directly below her. To her, the penny appears to be a distance of 8.00 m from her.

Required:
What is the depth of the water at this point?

Answers

Answer:

The  depth of water at the point is  [tex]d_A = 6.55 \ m[/tex]

Explanation:

From the question we are told that

   The height of the person above water   is  [tex]d = 3.00 \ m[/tex]

   The distance  of the coin as seen by the person  is [tex]d' = 8.00 \ m[/tex]

Generally the apparent depth is mathematically represented as

      [tex]d_a = \frac{d_A}{n}[/tex]

Here [tex]d_A[/tex] is the actual depth of water while  n is the refractive index of water with a constant value [tex]n = 1.33[/tex]

Now from the point the person is the apparent depth is evaluated as

     [tex]d_a = d'-d[/tex]

=>   [tex]d_a = 8 - 3[/tex]

=>  [tex]d_a = 5 \ m[/tex]

So

     [tex]5 = \frac{d_A}{1.33}[/tex]

=>   [tex]d_A = 5 * 1.33[/tex]

=>   [tex]d_A = 6.55 \ m[/tex]

     

   

The center of the galaxy is filled with low-density hydrogen gas that scatters light rays. An astronomer wants to take a picture of the center of the galaxy. Will the view be better using ultra violet light, visible light, or infrared light? Explain.

Answers

Answer:

Infrared light

Explanation:

Infrared light is the spectrum of electromagnetic wave given off by a body possessing thermal energy. Infrared light is preferred over visible light in this region of space because visible light is easily scattered in the presence of fine particles. Infrared ray makes it easy for us to observe Cold, dark molecular clouds of gas and dust in our galaxy that glows when irradiated by the stars . Infrared can also be used to detect young forming stars, even before they begin to emit visible light. Stars emit a smaller portion of their energy in the infrared spectrum, so nearby cool objects such as planets can be more readily detected with infrared light which won't be possible with an ultraviolet or visible light.

A 1.70 kg block slides on a horizontal, frictionless surface until it encounters a spring with a force constant of 955 N/m. The block comes to rest after compressing the spring by a distance of 4.60 cm. The other end of the spring is attached to a wall. Find the initial speed of the block.

Answers

Answer:

The initial speed of the block is 1.09 m/s

Explanation:

Given;

mass of block, m = 1.7 kg

force constant of the spring, k = 955 N/m

compression of the spring, x = 4.6 cm = 0.046 m

From principle of conservation of energy

kinetic energy of the block = elastic potential energy of the spring

¹/₂mv² = ¹/₂kx²

mv²  = kx²

[tex]v = \sqrt{\frac{kx^2}{m} }[/tex]

where;

v is the initial speed of the block

x is the compression of the spring

[tex]v = \sqrt{\frac{955*(0.046)^2}{1.7} } \\\\v = 1.09 \ m/s[/tex]

Therefore, the initial speed of the block is 1.09 m/s

Light from a 600 nm source goes through two slits 0.080 mm apart. What is the angular separation of the two first order maxima occurring on a screen 2.0 m from the slits

Answers

Answer:

The angular separation is  [tex]k = 0.8594^o[/tex]

Explanation:

From the question we are told that

   The  wavelength of the light is [tex]\lambda = 600 \ nm = 600*10^{-9} \ m[/tex]

   The  distance of separation between the slit is  [tex]d = 0.080 \ mm = 0.080 *10^{-3} \ m[/tex]

    The distance from the screen is

Generally the condition for  constructive interference is mathematically represented as

        [tex]d \ sin(\theta) = n \lambda[/tex]

=>    [tex]\theta = sin ^{-1} [ \frac{n * \lambda }{ d } ][/tex]

    here [tex]\theta[/tex] is the angular separation between the central maxima and one side of the first order maxima

given that we are considering the first order of maxima n =  1  

        =>   [tex]\theta = sin ^{-1} [ \frac{1 * 600*10^{-9} }{ 2.0 } ][/tex]

        =>    [tex]\theta = sin ^{-1} [ 0.0075 ][/tex]

        =>   [tex]\theta = 0.4297^o[/tex]

So the angular separation of the two first order maxima  is  

     [tex]k = 2 * \theta[/tex]

     [tex]k = 2 * 0.4297[/tex]

      [tex]k = 0.8594^o[/tex]

           

If the prism is surrounded by a fluid, what is the maximum index of refraction of the fluid that will still cause total internal reflection

Answers

Answer:

n₁ > n₂.

prisms are made of glass with refractive index n₂ = 1.50, so the fluid that surrounds the prism must have an index n₁> 1.50

Explanation:

Total internal reflection occurs when the refractive index of the incident medium the light is greater than the medium to which the light is refracted, let's use the refraction equation

                 n₁ sin θ₁ = n₂ sin  θ₂

the incident medium is 1, at the limit point where refraction occurs is when the angle in the refracted medium is 90º, so sin θ₂ = 1

                 n₁ sin θ₁ = n₂

                 sin θ₁ = n₂ / n₁

We mean that this equation is defined only for n₁ > n₂.

In our case, for the total internal reflection to occur, the refractive incidence of the medium must be greater than the index of refraction of the prism.

In general, prisms are made of glass with refractive index n₂ = 1.50, so the fluid that surrounds the prism must have an index n₁> 1.50

In a container of negligible mass, 020 kg of ice at an initial temperature of - 40.0 oC is mixed with a mass m of water that has an initial temperature of 80.0 oC. No heat is lost to the surroundings. If the final temperature of the system is 20.0 oC, what is the mass m of the water that was initially at 80.0 oC

Answers

Answer:

The mass is  [tex]m_w = 0.599 \ kg[/tex]

Explanation:

From the question we are told that    

     The mass of ice is  [tex]m_c = 0.20 \ kg[/tex]

     The  initial temperature of the ice is  [tex]T_i = -40.0 ^oC[/tex]

     The  initial temperature of the water is  [tex]T_{iw} = 80^o C[/tex]

     The  final temperature of the system is [tex]T_f = 20^oC[/tex]

Generally according to the law of energy conservation,

   The  total heat loss is  =  total heat gained

 Now the total heat gain is mathematically represented as

      [tex]H = H_1 + H_2 + H_3[/tex]

Here  [tex]H_1[/tex] is the energy required to move the ice from [tex]-40^oC \to 0^oC[/tex]

And it mathematically evaluated as

     [tex]H_1 = m_c * c_c * \Delta T[/tex]

Here the specific heat of ice is  [tex]c_c = 2100 \ J \cdot kg^{-1} \cdot ^oC^{-1}[/tex]

So  

    [tex]H_1 = 0.20 * 2100 * (0-(-40))[/tex]  

     [tex]H_1 = 16800\ J[/tex]

[tex]H_2[/tex] is the energy to melt the ice

And it mathematically evaluated as

       [tex]H_2 = m * H_L[/tex]

The  latent heat of fusion of ice is  [tex]H_L = 334 J/g = 334 *10^{3} J /kg[/tex]

So  

    [tex]H_2 = 0.20 * 334 *10^{3}[/tex]

    [tex]H_2 = 66800 \ J[/tex]

[tex]H_3[/tex] is the energy to raise the melted ice to [tex]20^oC[/tex]

And it mathematically evaluated as

    [tex]H_3 = m_c * c_w * \Delta T[/tex]

Here the specific heat of water  is  [tex]c_w= 4190\ J \cdot kg^{-1} \cdot ^oC^{-1}[/tex]

    [tex]H_3 = 0.20 * 4190* (20-0))[/tex]  

     [tex]H_3 = 16744 \ J[/tex]  

So

  [tex]H = 16800 + 66800 + 16744[/tex]

   [tex]H = 100344\ J[/tex]

The  heat loss is mathematically evaluated as

     [tex]H_d = m * c_h ( 80 - 20 )[/tex]

     [tex]H_d = m_w * 4190 * ( 80 - 20 )[/tex]

     [tex]H_d = 167600 m_w[/tex]

So

      [tex]167600 m_w = 100344[/tex]

=> [tex]m_w = 0.599 \ kg[/tex]

     

In a simple model of a potassium iodide (KI) molecule, we assume the K and I atoms bond ionically by the transfer of one electron from K to I.(a) The ionization energy of K is 4.34 eV, and the electron affinity of I is 3.06 eV. What energy is needed to transfer an electron from K to I, to form K+ and I? ions from neutral atoms? This quantity is sometimes called the activation energy Ea.eV(b) A model potential energy function for the KI molecule is the Lennard

Answers

This question is incomplete, the complete question is;

In a simple model of a potassium iodide (KI) molecule, we assume the K and I atoms bond ionically by the transfer of one electron from K to I.

(a) The ionization energy of K is 4.34 eV, and the electron affinity of I is 3.06 eV. What energy is needed to transfer an electron from K to I, to form K+ and I- ions from neutral atoms? This quantity is sometimes called the activation energy Ea.eV

(b) A model potential energy function for the KI molecule is the Lennard - jones potential:

U(r) = 4∈[ (α/r)¹² - (α/r)⁶ ] + Ea

where r is the internuclear separation distance and α and ∈ are adjustable parameters (constants) . The Ea term is added to ensure the correct asymptotic behavior at large r and is activation energy calculated in a. At the equilibrium separation distance, r=r₀=0.305 nm, U(r) is a minimum, and dU/dr=0. In addition, U(r₀)=-3.37 eV.

Us the experimental values for the equilibrium sepeartion and dissociation energy of KI to determine/find 'α' and '∈'.

(c) calculate the force needed to break the KI molecule in nN

Answer:

a) energy is needed to transfer an electron from K to I, to form K+ and I- ions from neutral atoms is 1.28 eV

b) α = 0.272, ∈ = 4.65 eV

c) the force needed to break the KI molecule in nN 65.6 nN

Explanation:

a) The ionization energy of K is 4.34 ev ( energy needed to remove the outer most electrons)

And the electron affinity of I is 3.06 ev ( which is energy released when electron is added)

Now the energy that is need to transfer an electron from K to I,

i.e the ionization energy of K(4.34 ev) and the electron affinity of I (3.06 ev)

RE = 4.34 - 3.06 = 1.28 eV

b)

from the question we have

U(r) = 4∈[ (α/r)¹² - (α/r)⁶ ] + Ea

now taking d/drU(r₀)=0  (at r = r₀)

= 4∈d/dr [ (α/r)¹² - (α/r)⁶ ] = 0

= ( -12(α¹²/r¹³)) - (-6 (α⁶/r⁷)) = 0

12(α¹²/r¹³) = 6 (α⁶/r⁷)

α⁶ = r⁶/2

α = r/(2)^1/6

at equilibrium r = r₀ = 0.305 nm

α = 0.305 nm / (2)^1/6

C = 0.0305/1.1246

α = 0.272

Now substituting the values of U(r₀), α, Eₐ in the initial expression

U(r) = 4∈[ (α/r)¹² - (α/r)⁶ ] + Ea

we have

- 3.37eV = 4∈ [ (0.272 nm / 0.305 nm)¹² - (0.272 nm / 0.305 nm )⁶ ] + 1.28

- 1.65 eV = ∈(0.25 - 0.5)

∈ = 4.65 eV

c)

Now to break the molecule then the potential energy should be zero(0)

and we know r = 0.272 nm

therefore force needed to break the molecule is

F = -dU/dR_r-α

F = -4∈ (-12/α  + 6/α)

F = -4(4.65eV) ( -12/0.272nm + 6/0.272nm)

F = 65.6 nN

An ideal gas is at a temperature of 320 K. What is the average translational kinetic energy of one of its molecules

Answers

Answer:

6.624 x 10^-21 J

Explanation:

The temperature of the ideal gas = 320 K

The average translational energy of an ideal gas is gotten as

[tex]K_{ave}[/tex] = [tex]\frac{3}{2}K_{b}T[/tex]

where

[tex]K_{ave}[/tex]  is the average translational energy of the molecules

[tex]K_{b}[/tex] = Boltzmann constant = 1.38 × 10^-23 m^2 kg s^-2 K^-1

T is the temperature of the gas = 320 K

substituting value, we have

[tex]K_{ave}[/tex] = [tex]\frac{3}{2} * 1.38*10^{-23} * 320[/tex] = 6.624 x 10^-21 J

Can someone tell me a very very simple physics experiment topic that links to biology?​

Answers

Explanation:

One idea would be to investigate the correlation between your pulse pressure and your pulse rate.  To do this, you'll need a blood pressure monitor.

First, measure your resting pressure and rate.  Then exercise for 30 seconds.  Measure your new blood pressure and pulse rate.  Wait for your pressure and rate to return to normal, then repeat the trial for 1 minute, 1.5 minutes, 2 minutes, etc.

List the results in a table.  This should include the amount of exercise time, your pulse rate, your systolic pressure (the high number, which is your blood pressure during contraction of your heart muscle), and your diastolic pressure (the low number, which is your blood pressure between heartbeats).  Calculate your pulse pressure (systolic minus diastolic) for each trial.  Graph the pulse pressure on the x-axis, and your pulse rate (beats per minute) on the y-axis.

What do you hypothesize will be the shape of the graph?  Consider Bernoulli's formula, which relates fluid pressure and flow.  How close do the results match your hypothesis?  What might explain any differences?

Find the work done by the gas during the following stages. (a) A gas is expanded from a volume of 1.000 L to 4.000 L at a constant pressure of 2.000 atm. (b) The gas is then cooled at constant volume until the pressure falls to 1.500 atm

Answers

Answer:

a) 607.95 J

b) 0 J

Explanation:

a) Initial volume = 1 L = 0.001 m^3

final volume = 4 L = 0.004 m^3

pressure = 2 atm = 202650 Pa     (1 atm = 101325 Pa)

work done by the gas on the environment = PΔV

P is the pressure = 101325 Pa

ΔV is the change in volume from the initial volume to the final volume

ΔV = 0.004 m^3 - 0.001 m^3 = 0.003 m^3

work done by the gas = 202650 x 0.003 = 607.95 J

b) If the gas is cooled at constant volume, then the gas does no work. For a gas to do work, there must be a change in its volume.

Therefore the work done in cooling at constant volume until pressure falls to 1.5 atm = 0 J

A pendulum oscillates 50 times in 6 seconds. Find its time period and frequency? ​

Answers

Explanation:

time taken fir 50 oscillations is 6 seconds

time taken for 1 oscillation is 6/50

convert it into a decimal

A double-slit experiment is performed with light of wavelength 640 nm. The bright interference fringes are spaced 1.6 mm apart on the viewing screen.What will the fringe spacing be if the light is changed to a wavelength of 360nm?

Answers

Answer:

1.44*10^-3m

Explanation:

Given that distance BTW two bright fringes is

DetaY = lambda* L/d

So for second wavelength

Deta Y2= Lambda 2* L/d

=lambda 2 x deta y1/ lambda1

So substituting

= 360 x 10^-9 x (1.6*10^-3/640*10^-9)

1.44*10^ -3m

A beam of light in air enters a glass slab with an index of refraction of 1.40 at an angle of incidence of 30.0°. What is the angle of refraction? (index of refraction of air=1)

Answers

Answer:

[tex] \boxed{\sf Angle \: of \: refraction \: (r) = {sin}^{ - 1} ( \frac{1}{2.8} )} [/tex]

Given:

Refractive index of air ( [tex] \sf \mu_{air} [/tex] )= 1

Refractive index of glass slab ( [tex] \sf \mu_{glass} [/tex]) = 1.40

Angle of incidence (i) = 30.0°

To Find:

Angle of refraction (r)

Explanation:

From Snell's Law:

[tex] \boxed{ \bold{ \sf \mu_{air}sin \ i = \mu_{glass}sin \: r}}[/tex]

[tex] \sf \implies 1 \times sin \: 30 ^ \circ = 1.4sin \:r[/tex]

[tex] \sf sin \:30^ \circ = \frac{1}{2} : [/tex]

[tex] \sf \implies \frac{1}{2} = 1.4 sin \: r[/tex]

[tex] \sf \frac{1}{2} = 1.4 sin \: r \: is \: equivalent \: to \: 1.4 sin \: r = \frac{1}{2} : [/tex]

[tex] \sf \implies 1.4 sin \: r = \frac{1}{2} [/tex]

Dividing both sides by 1.4:

[tex] \sf \implies \frac{\cancel{1.4} sin \: r}{\cancel{1.4}} = \frac{1}{2 \times 1.4} [/tex]

[tex] \sf \implies sin \: r = \frac{1}{2 \times 1.4} [/tex]

[tex] \sf \implies sin \: r = \frac{1}{2.8} [/tex]

[tex] \sf \implies r = {sin}^{ - 1} ( \frac{1}{2.8} )[/tex]

[tex] \therefore[/tex]

[tex] \sf Angle \: of \: refraction \: (r) = {sin}^{ - 1} ( \frac{1}{2.8} )[/tex]

An helicopter lowers a probe into lake Chad which is suspended on a cable. the probe has a mass of 500kg and its average density is 1400kg/m³. what is the tension in the cable?​

Answers

Answer:

1,401.85N

Explanation:

If the mass of the probe is 500kg, its weight W = mass  acceleration due to gravity.

Weight of the probe = 500*9.81

Weight of the probe = 4,905N

If its average density =  1400kg/m³

Volume = Mass/Density

Volume = 500/1400

Volume = 0.3571m³

According to the floatation principle, the volume of the probe is equal to the volume of liquid displaced. Hence the volume of water displaced is 0.357m³.

Since density of water is 1000kg/m³, we can find the mass of the water using the formula;

Mass of water = Density of water * Volume of water

Mass of water = 1000*0.3571

Mass of water = 357.1kg

Weight of water displaced = 3571 * 9.81 = 3503.15N

The tension in the cable will be the difference between the weight of the probe and weight of the displaced fluid.

Tension in the cable = 4,905N -  3503.15N

Tension in the cable = 1,401.85N

Hence the tension in the cable is 1,401.85N

Read the passage about the pygmy shrew.


The pygmy shrew is the smallest mammal in North America. However, when comparing the amount of food eaten to its body weight, the pygmy shrew eats more food than any other mammal. It will consume two to three times its own body weight in food daily. One explanation is that the pygmy shrew uses energy at a high rate. In fact, its heart beats over one thousand times per minute.


What is the best explanation for what happens to the food's mass and energy when it is consumed by the pygmy shrew?

Answers

Answer:

A very high metabolism and a very small size.

Explanation:

The pygmy shrew is a very small mammal, that forages day and night. The metabolism of the Pygmy shrew is so high that it must eat at least every 30 minutes or it might die. The best explanation for what happens to the food's mass and energy is that most of the food mass is rapidly used fro building up of the shrew due to its very high metabolism, and a bigger portion of the food is lost from the surface of the body of the shrew, due to its very small size. The combination of these two factors; a very high metabolism (rapidly uses up food material, and generates a large amount of heat in a very short time) and the very small size (makes heat loss due to surface area to volume ratio high) explains what happens to the food mass and energy.

Other Questions
Analog conditions are used in a functional analysis because: Group of answer choices A. They are easy to contrive, implement, and maintain when attempting to discover the function of a behavior. B. They allow the practitioner to better control the environmental variables that may be related to the problem behavior. C. They allow the practitioner to better control the individual exhibiting the problem behavior than in the naturally occurring routine. D. All of the above E. B and C only. Change the decimal to fraction form or mixed number form and reduce if possible 73.437 Bartelt Inc., which produces a single product, has provided the following data for its most recent month of operations: Number of units produced 5,900 Variable costs per unit: Direct materials $ 66 Direct labor $ 60 Variable manufacturing overhead $ 7 Variable selling and administrative expenses $ 15 Fixed costs: Fixed manufacturing overhead $ 200,600 Fixed selling and administrative expenses $ 454,300 There were no beginning or ending inventories. The absorption costing unit product cost was When a number is increased by 3 and that number is doubled, the result is -8. What was the original number? A dealer sold a painting for $800. She made a profit of 25% on the price she paid for it. Calculate the price she paid for the painting. Prove the Identity[tex] {tan}^{2} x - {sin}^{2} x = {tan}^{2} x{sin}^{2} x[/tex] real numbers are ____ integersOPTION A: AlwaysOPTION B: SometimesOPTION C: Never simplify -4(x+6)+2(x-2) who was the first president 1.15) Many computers use one byte (8 bits) of data for each letter of the alphabet. There are 44 million words in the Encyclopedia Britannica. (a) What is the bit density (bits/in2) of the head of a pin if the entire Encyclopedia is printed on it A "U-shaped" distribution for a trait, with high frequencies of individuals who exhibit extreme values for a trait (and few individuals with medium values), is most likely to be caused by ______ selection Can Someone please help me....Like pretty please....It would mean everything to me, Please help me out 1. 2. 3. 4. 5. Read the two passages about tzi the Iceman.Half an hour after tzi dined, the killer came along and shot him in the back from a distance of almost 100 feet. The arrow went under his left armpit . . . a wound that would have been quickly fatal and probably not treatable even in modern times, especially where it happened. By the angle of the wound, he was either shot from below and behind, or he had been bent forward when he was hit from above and behind."Who Killed the Iceman? Clues Emerge in a Very Cold Case, Rod NordlandAgain pain pierced the right side of his chest. He only wanted a short rest, but his need for sleep was stronger than his willpower. . . . He turned on to his left side to dull the pain. He laid his head on the rock. His senses numbed, he no longer noticed the awkward position of his folded ear. His left arm, its muscles relaxed and probably slightly bent at the elbow, lay in front of him. His right arm was almost extended and was hanging down forward. His feet rested one on the other; the left shoe under the right. Soon his clothes froze to the rough ground. He was no longer aware that he was freezing to death. Overnight the body froze stiff.The Man in the Ice, Konrad SpindlerOn which fact does the historical perspective of the two passages differ?the cause of tzis deaththe reason for tzis killingthe description of tzis killerthe time frame of tzis death can u answer this plz What is the standard form of nine million, twenty thousand, twenty-nine brainliest for correct answer Wendells Donut Shoppe is investigating the purchase of a new $40,000 donut-making machine. The new machine would permit the company to reduce the amount of part-time help needed, at a cost savings of $5,200 per year. In addition, the new machine would allow the company to produce one new style of donut, resulting in the sale of 2,000 dozen more donuts each year. The company realizes a contribution margin of $2.40 per dozen donuts sold. The new machine would have a six-year useful life. Click here to view Exhibit 14B-1 and Exhibit 14B-2, to determine the appropriate discount factor(s) using tables. Required: 1. What would be the total annual cash inflows associated with the new machine for capital budgeting purposes? 2. What discount factor should be used to compute the new machines internal rate of return? (Round your answers to 3 decimal places.) 3. What is the new machines internal rate of return? (Round your final answer to the nearest whole percentage.) 4. In addition to the data given previously, assume that the machine will have a $10,515 salvage value at the end of six years. Under these conditions, what is the internal rate of return? (Hint: You may find it helpful to use the net present value approach; find the discount rate that will cause the net present value to be closest to zero.) ( In which except from holes does the author develop the character of Stanley through what he thinks? An electon in a box absorbs light. The longest wavelength in the absorbtion spectrum is 400 nm . How long is the box 1. Si je gagnais la loterie, je ________ riche! (tre) 2. Nous ________ aller en France cet t, si nous avions le temps. (aimer) 3. Tu ________ si tu avais de l'argent. (voyager) 4. Tu ________ vite tes devoirs si tu allais au concert. (finir) 5. Tu ________ franais si tu tais en France. (parler) 6. Elles ________ beaucoup de courses si elles avaient de l'argent. (faire) 7. Elles ________ tous les soirs si ses parents disaient oui. (sortir) 8. Je ________ le film si mes parents disaient oui. (regarder) 9. Nous ________ aller en France cet t. (aimer) 10. Ils ________ dans un restaurant chic s'ils allaient Paris. (manger)