Answer:
58.6 miles / hour
Step-by-step explanation:
The formula is
d= rt where d is the distance, r is the rate ( speed) and t is the time
205 miles = r * 3.5 hours
Divide each side by 3.5
205 miles/ 3.5 hours = r
58.57142857 miles / hour = r
To the nearest tenth
58.6 miles / hour
Answer:
58.6
Step-by-step explanation:
So the truck traveled 205 miles in 3.5 hours.
As given, the distance is the product of the rate and the time. In other words:
[tex]d\text{ mi}=r\cdot t\text{ hours}[/tex]
Substitute 205 for d and 3.5 for t. Thus:
[tex]205\text{ mi} =r\cdot (3.5)\text{hours}[/tex]
Divide both sides by 3.5 hours. Thus:
[tex]r=\frac{205\text{ mi}}{3.5\text{ hours}}[/tex]
Divide 205 and 3.5:
[tex]r\approx58.6\text{ mi/hr}[/tex]
Find y using the Angle Sum Theorem
The measure of the angle y is 120°.
What is a triangle?It is a two-dimensional figure which has three sides and the sum of the three angles is equal to 180 degrees.
We have,
The Sum of the three angles is 180 degrees.
33 + 87 + x = 180
x = 180 - 120
x = 60
Now,
x + y = 180
60 + y = 180
y = 180 - 60
y = 120
Thus,
The value of y is 120°.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ2
A unit of electricity costs 13.2 pence. On average, Tanya uses 90 units of electricity per week. She pays for her bill in 12 weeks. How much will her electricity bill be then? £
Answer:
90*12=1080
1080*13.2=14256
14256:100=142,56pounds
The length of the base of a right-angle triangle ABC is 6 cm and the length of the hypotenuse is 10 cm find the area of the triangle
Answer:
The area of the triangle is 24 [tex]\text{cm}^{2}[/tex].
Step-by-step explanation:
We are given that the length of the base of a right-angle triangle ABC is 6 cm and the length of the hypotenuse is 10 cm.
And we have to find the area of the triangle.
As we know that the area of the triangle is given by the following formula;
Area of the triangle = [tex]\frac{1}{2}\times \text{Base} \times \text{Height}[/tex]
Firstly, we will find the height (perpendicular) of the triangle ABC bu using the Pythagoras Theorem.
[tex]\text{Hypotenuse}^{2} =\text{Perpendicular}^{2} +\text{Base}^{2}[/tex]
[tex]\text{10}^{2} =\text{Perpendicular}^{2} +\text{6}^{2}[/tex]
[tex]100=\text{Perpendicular}^{2} +36[/tex]
[tex]\text{Perpendicular}^{2} =100-36[/tex]
[tex]\text{Perpendicular}^{2} =64[/tex]
[tex]\text{Perpendicular} =\sqrt{64}[/tex] = 8 cm.
Now, the area of the triangle = [tex]\frac{1}{2}\times \text{Base} \times \text{Height}[/tex]
= [tex]\frac{1}{2}\times \text{6} \times \text{8}[/tex]
= 24 [tex]\text{cm}^{2}[/tex]
Hence, the area of the triangle is 24 [tex]\text{cm}^{2}[/tex].
find compound amount annually of p=4000,time=3/2 and rate =10% solve it step wise.
Step-by-step explanation:
Hey, there!!
Principal (p) = 4000
Time = 3/2= 1.5 yrs.
rate = 10%
Now, we have formula,
[tex]c.a = p \times {(1 + \frac{r}{100}) }^{t} [/tex]
Putting their values,
[tex]ca = 4000\times {(1 + \frac{10}{100} )}^{1.5} [/tex]
[tex]ca =4000 \times {(1 + 0.1)}^{1.5} [/tex]
[tex]ca = 4000 \times 1.153689[/tex]
Simplifying them we get,
C.A = 4614.75
Hope it helps...
A man drove 12 mi directly east from his home, made a left turn at an intersection, and then traveled 7 mi north to his place of work. If a road was made directly from his home to his place of work, what would its distance be to the nearest tenth of a mile?
Answer:
13.9 miles
Step-by-step explanation:
If we draw out the way he drove, the drive from his home to the intersection represents the long leg of a right triangle and the short leg can be represented by his drive from the intersection to the workplace.
A road from his home to work would represent the hypotenuse.
Since we know the distances of the legs, we can use the pythagorean theorem to find the hypotenuse, or the distance of the new road.
Plug in the values:
a² + b² = c²
12² + 7² = c²
193 = c²
13.9 = c
= 13.9 miles
The number of credits being taken by a sample of 13 full-time college students are listed below. Find the mean, median, and mode of the data, if possible. If any measure cannot be found or does not represent the center of the data, explain why. Find the mean. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean is nothing. (Type an integer or decimal rounded to one decimal place as needed.) B. The data set does not have a mean. Does the mean represent the center of the data? A. The mean represents the center. B. The mean does not represent the center because it is not a data value. C. The mean does not represent the center because it is the smallest data value. D. The mean does not represent the center because it is the largest data value. E. The data set does not have a mean. Find the median. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The median is nothing. (Type an integer or decimal rounded to one decimal place as needed.) B. The data set does not have a median. Does the median represent the center of the data?
Answer:
The data is missing in the question, below is the complete question:
The number of credits being taken by a sample of 13 full-time college students are listed below. Find the mean, median, and mode of the data, if possible. If any measure cannot be found or does not represent the center of the data, explain why. 9 9 12 12 9 10 8 8 8 8 8 8 11 Find the mean. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean is nothing . (Type an integer or decimal rounded to one decimal place as needed.) B. The data set does not have a mean. Does the mean represent the center of the data? A. The mean represents the center. B. The mean does not represent the center because it is the smallest data value. C. The mean does not represent the center because it is not a data value. D. The mean does not represent the center because it is the largest data value. E. The data set does not have a mean. Find the median. Select the correct choice below and, ifnecessary, fill in the answer box to complete your choice. A. The median is nothing . (Type an integer or decimal rounded to one decimal place as needed.) B. The data set does not have a median. Does the median represent the center of the data? A. The median represents the center. B. The median does not represent the center because it is the largest data value. C. The median does not represent the center because it is not a data value. D. The median does not represent the center because it is the smallest data value. E. The data set does not have a median. Find the mode. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mode(s) is/are nothing . (Type an integer or decimal rounded to one decimal place as needed. Use a comma to separate answers as needed.) B. The data set does not have a mode. Does (Do) the mode(s) represent the center of the data? A. The mode(s) represent(s) the center. B. The mode(s) does (do) not represent the center because it (they) is (are) not a data value. C. The mode(s) does (do) not represent the center because it (one) is the largest data value. D. The mode(s) does (do) not represent the center because it(one) is the smallest data value. E. The data set does not have a mode.
Answer:
a.) mean = 9.23
ii) The mean represents the centre (A)
b) Median = 9
ii) The median represents the centre (A)
c) Mode = 8
ii) The mode(s) does (do) not represent the center because it(one) is the smallest data value. (D)
Step-by-step explanation:
Arranging the data in ascending order:
8 8 8 8 8 8 9 9 9 10 11 12 12
a) calculating for mean
[tex]\bar x = \frac{sum\ of\ data}{number\ of\ data}\\ \bar x = \frac{8+8+8+8+8+8+9+9+9+10+11+12+12}{13} \\\bar x =\frac{120}{13} \\\bar x = 9.23[/tex]
ii) does the mean represent the centre of the data?
The measure of central tendency/location is a statistical tool used to accurately depict values that are at the central location of the data set
Yes, the mean represents the centre of the data, because there are no outliers in the data set. Outliers are unusual values compared to the rest of the values in the dataset.
b) calculating the median (M)
[tex]M =( \frac{n\ +\ 1}{2})th\ term\\ \\where:\\n = number\ of\ data\ in\ the\ dataset = 13\\\\\therefore M = \frac{13+1}{2}\\ M = \frac{14}{2} \\M= 7th\ term[/tex]
The 7th term after arranging in ascending or descening order, is the median term
8 8 8 8 8 8 9 9 9 10 11 12 12
∴ Median = 9
ii) Yes, the Median represents the center of the data, because it litterally tells the data at the middle of the distribution
c) The mode is the data with the highest number of occurrence in the dataset (highest frequency); 8 8 8 8 8 8 9 9 9 10 11 12 12
The data with the highest number of occurrence is 8, which occurred 6 times.
Mode = 8
ii) The mode does not represent the centre of the data because it is the smallest value in the dataset, hence it doesn't tell the value that is the middle term.
Troll Inc. has an outstanding issue of perpetual preferred stock with an annual dividend of $9.50 per share. If the required return on this preferred stock is 6.5%, at what price should the stock sell? * a) $104.27 b) $106.95 c) $109.69 d) $146.15 e) None of the above
Answer:
d) $146.15
Step-by-step explanation:
From the above Question, we are given the following values:
The annual dividend per share of a perpetual preferred stock = $9.50
The required return rate on this preferred stock = 6.5% = 0.06
The selling price of the stock = ??
The formula to calculate the Selling price of the stock =
Annual dividend per share / Required return rate
= $9.5/ 0.065
= $146.15384615
Approximately $146.15
Therefore, the price at which the stock should sell is $146.15.
If segment XY = 5 and segment YZ = 10, what is the length of XZ?
Answer:
The length of segment XZ is 15 units
Step-by-step explanation:
Given
[tex]XY = 5[/tex]
[tex]YZ = 10[/tex]
Required
Determine XZ
Assuming XY and YZ are on the same plane such that
[tex]XZ = XY + YZ[/tex]
Substitute values for XY and YZ
[tex]XZ = 5 + 10[/tex]
[tex]XZ = 15[/tex]
Hence, the length of segment XZ is 15 units
Need help with this can anyone help me?
. A normal population has a mean of 80.0 and a standard deviation of 14.0. a. Compute the probability of a value between 75.0 and 90.0. b. Compute the probability of a value of 75.0 or less. c. Compute the probability of a value between 55.0 and 70.0. 19. Suppose the Internal Revenue Service reported that the mean
Answer:
a. 0.40198
b. 0.36049
c. 0.20046
Step-by-step explanation:
To solve for this we make use of the z score formula.
z-score formula is
z = (x-μ)/σ,
where
x is the raw score
μ is the population mean
σ is the population standard deviation.
a. Compute the probability of a value between 75.0 and 90.0.
For x = 75
From the question, we know that
mean of 80.0 and a standard deviation of 14.0.
z = (x - μ)/σ
z = 75 - 80/ 14
z = -0.35714
Using the z score table to find the probability
P-value from Z-Table:
P(x = 75) = P(z = -0.35714)
= 0.36049
For x = 90
z = 90 - 80/14
z = 0.71429
Using the z score table to find the probability
P-value from Z-Table:
P(x = 90) = P(z = 0.71429)
= 0.76247
The probability of a value between 75.0 and 90.0 is:
75 < x < 90
= P( x = 90) - P(x = 75)
= 0.76247 - 0.36049
= 0.40198
Therefore, probability of a value between 75.0 and 90.0 is 0.40198
b. Compute the probability of a value of 75.0 or less.
For x = 75
From the question, we know that
mean of 80.0 and a standard deviation of 14.0.
z = (x - μ)/σ
z = 75 - 80/ 14
z = -0.35714
Using the z score table to find the probability
P-value from Z-Table:
P(x ≤ 75) = 0.36049
c. Compute the probability of a value between 55.0 and 70.0.
For x = 55
From the question, we know that
mean of 80.0 and a standard deviation of 14.0.
z = (x - μ)/σ
z = 55 - 80/ 14
z = -1.78571
Using the z score table to find the probability
P-value from Z-Table:
P(x = 55) = P(z = -1.78571)
= 0.037073
For x = 70
z = 70 - 80/14
z = -0.71429
Using the z score table to find the probability
P-value from Z-Table:
P(x = 70) = P(z = -0.71429)
= 0.23753
The probability of a value between 55.0 and 70.0 is:
55 < x < 70
= P( x = 70) - P(x = 55)
= 0.23753 - 0.037073
= 0.200457
Approximately to 4 decimal place = 0.20046
Find the value of B - A if the graph of Ax + By = 3 passes through the point (-7,2), and is parallel to the graph of x + 3y = -5.
Answer:
2
Step-by-step explanation:
The parallel line will have the same coefficients, but a constant suited to the given point:
x + 3y = constant
That is, A=1, B=3, so B-A = 2.
___
The constant for the parallel line will be -1.
I am in confusion ❤️
Answer:
The Brain
Step-by-step explanation:
It goes down 3 and moves to the right 2
so its -3/2 =- 1.5
you slope is -1.5❤✔ hope I helped!
7 apples and 11 bananas cost $1.47. how much do 2 apples and a banana cost?
Answer: $0.27
Step-by-step explanation:
7a + 11b = 1.47
7a = 1.47 - 11b
[tex]a=\dfrac{1.47-11b}{7}[/tex]
Make a table. Choose values for b starting at $0.01 and solve for "a".
The value of "a" must terminate at the hundredths place since we are working with money.
You will discover that a = 0.10 and b = 0.07
The cost of 2 apples and 1 banana is:
2a + b
= 2(0.10) + (0.07)
= 0.20 + 0.07
= 0.27
Find the missing side length using pythagorean theorem. simplify radicals if necessary* PLEASE HELP!!
Answer:
15
Step-by-step explanation:
a^2 + b^2 = c^2
9=a
12-b
Plug in the numbers
Sheila_____ her case ,look(had pickrd, have, picked
Answer:
Had Picked
Step-by-step explanation:
Evaluate (64×1/2-125×1/3)×(64×1/2-125×1/3)
Write the equation of the line that passes through the points (8,0)(8,0) and (-9,-9)(−9,−9). Put your answer in fully reduced point-slope form, unless it is a vertical or horizontal line.
Answer:
Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].
Step-by-step explanation:
We have to find the equation of the line that passes through the points (8,0) and (-9,-9).
Let the two points be ([tex]x_1,y_1[/tex]) = (8, 0) and ([tex]x_2, y_2[/tex]) = (-9, -9).
Now, we will find the two-point slope using the above two points, i.e;
Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{-9-0}{-9-8}[/tex] = [tex]\frac{9}{17}[/tex]
Now, the equation of the line using one of the point, let's say ([tex]x_1,y_1[/tex]) = (8, 0) is given by;
[tex]y - y_1 = \text{Slope} \times (x - x_1)[/tex]
[tex]y - 0 =\frac{9}{17} \times (x - 8)[/tex]
[tex]y =\frac{9x}{17} - \frac{72}{17}[/tex]
Hence, the equation of the line that passes through the points (8,0) and (-9,-9) is [tex]y =\frac{9x}{17} - \frac{72}{17}[/tex].
Name the figure. Select all answers that apply.
Answer:
The answer is Plane P
Step-by-step explanation:
The reason for the answer is because a closed, two-dimensional or flat figure is called a plane shape. Different plane shapes have different attributes, such as the numbers of sides or corners. A side is a straight line that makes part of the shape, and a corner is where two sides meet.
Find the arc length of ABC .
Answer:
C.
Step-by-step explanation:
Since the radius of the circle is 12 units, we can calculate the circumference.
2 * pi * r = 2 * pi * 12 = 24 * pi = 24pi.
The arc angle is 240 degrees, and the whole circle would be 360 degrees. So, we can set up an equation.
[tex]\frac{24\pi }{360} =\frac{x}{240}[/tex]
[tex]\frac{24\pi }{6} =\frac{x}{4}[/tex]
[tex]\frac{4\pi }{1} =\frac{x}{4}[/tex]
1 * x = 4 * 4 * pi
x = 16pi
So, your answer is C.
Hope this helps!
Ella has 164 ounces of lemonade. She fills glasses with
8 ounces of lemonade each until all the lemonade is gone.
The last glass is not full. How much lemonade is in the
last glass?
Answer:
4 ounces
Step-by-step explanation:
If you divide the 164 ounces by the 8 ounces per glass, you get 20.5 glasses filled. So, half of the last glass would be 4.
Answer:
4 ounces
Step-by-step explanation:
We're looking for the remainder of ounces.
To find how many FULL glasses will be made, we divide 8 by 164 and look at the integer part of the number.
[tex]164\div8=20.5[/tex]
So 2 full glasses were made.
To find the remainder, we multiply 20 by 8 and subtract from 164.
[tex]20\cdot8=160\\\\164-160=4[/tex]
Hope this helped!
What is 4^6 times 2^3=??
Answer:
32,768
Step-by-step explanation:
Remember to follow PEMDAS.
First, solve for the exponents for both terms:
[tex]4^6 = 4 * 4 * 4 * 4 * 4 * 4 = 4096[/tex]
[tex]2^3 = 2 * 2 * 2 = 8[/tex]
Multiply the two terms together:
[tex]4096 * 8 = 32768[/tex]
32,768 is your answer.
~
What is the length ok a bus if the scale is 0.5 inches to 5 feet and the length of the bus is 4.5 inches
Answer:
4.5 divided by 0.5=9
9 times 5=45
45 feet
Step-by-step explanation:
Answer:
45 feet
Step-by-step explanation:
Set up a proportion:
[tex]\frac{0.5}{5}[/tex] = [tex]\frac{4.5}{x}[/tex]
Cross multiply:
0.5x = 22.5
x = 45
= 45 feet
Imagine that * represents a new operation so that a * b means to double a, and then add b. For example, 2 * 10 = 14. What is -3 * 8 ?
A. 14
B 17
C 2
D 48
Answer:
C 2
Step-by-step explanation:
-3 doubled = -6
-6 +8 = 2 so C 2
Answer:
C. 2
Step-by-step explanation:
-3(2) = -6
-6+8 = 2
Jerry has reached 39% of his weekly exercise time goal so far this week if he has exercise for a total of 78 minutes this week. What is his weekly exercise time goal in minutes?
Answer:
his weekly exercise time goal in minutes = 200 minutes
Step-by-step explanation:
Jerry has reached 39% of his weekly exercise time goal.
so far this week ,he has exercise for a total of 78 minutes this week.
39% of total = 78 minutes
100%= x
X=100*78/39
X=100*2
X= 200 minutes
his weekly exercise time goal in minutes = 200 minutes
Darius filled up his gas tank with 24 gallons of gas. For each mile that he drives, he uses 0.06 gallons of gas.
a
n
=−0,06n+24
mark me a brainlist
Solves the following equation for a. Show steps for full credit.
4a + 10 = 2a + 26
Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{a = 8}}}}}[/tex]
Step-by-step explanation:
[tex] \sf{4a + 10 = 2a + 26}[/tex]
Move 2a to left hand side and change it's sign
Similarly, move 10 to right hand side and change it's sign
⇒[tex] \sf{4a - 2a =26 - 10}[/tex]
Collect like terms
⇒[tex] \sf{2a = 26 - 10}[/tex]
Subtract 10 from 26
⇒[tex] \sf{2a = 16}[/tex]
Divide both sides of the equation by 2
⇒[tex] \sf{ \frac{2a}{2} = \frac{16}{2} }[/tex]
Calculate
⇒[tex] \sf{a = 8}[/tex]
Hope I helped!
Best regards!!
Write an equation for a line parallel to the line y=1/3x-4 through (-3,2)
Answer:
(-4,-1)
Step-by-step explanation:
If a line must be parallel, then its slope must be the same.
Their points can be different, the slope should be same.
So, y = 1/3x - 4
=> We find the slope of the equation:
=> Slope = the number with which "x" is multiplied
=> Slope of this equation = 1/3
So, we need to find the point that makes a slope of 1/3 from (-3, 2)
=> Slope = y/x - y1/x1
=> 1/3 = -3/2 - y1/x1
=> y1/x1 = -3/2 - 1/3
=> y1/x1 = -3-1 / 2-3
=> y1/x1 = -4/-1
So, the point is (-4,-1)
An apartment complex rents an average of 2.3 new units per week. If the number of apartment rented each week Poisson distributed, then the probability of renting no more than 1 apartment in a week is:_________
Answer:
[tex]P(X\leq 1) = 0.331[/tex]
Step-by-step explanation:
Given
Poisson Distribution;
Average rent in a week = 2.3
Required
Determine the probability of renting no more than 1 apartment
A Poisson distribution is given as;
[tex]P(X = x) = \frac{y^xe^{-y}}{x!}[/tex]
Where y represents λ (average)
y = 2.3
Probability of renting no more than 1 apartment = Probability of renting no apartment + Probability of renting 1 apartment
Using probability notations;
[tex]P(X\leq 1) = P(X=0) + P(X =1)[/tex]
Solving for P(X = 0) [substitute 0 for x and 2.3 for y]
[tex]P(X = 0) = \frac{2.3^0 * e^{-2.3}}{0!}[/tex]
[tex]P(X = 0) = \frac{1 * e^{-2.3}}{1}[/tex]
[tex]P(X = 0) = e^{-2.3}[/tex]
[tex]P(X = 0) = 0.10025884372[/tex]
Solving for P(X = 1) [substitute 1 for x and 2.3 for y]
[tex]P(X = 1) = \frac{2.3^1 * e^{-2.3}}{1!}[/tex]
[tex]P(X = 1) = \frac{2.3 * e^{-2.3}}{1}[/tex]
[tex]P(X = 1) =2.3 * e^{-2.3}[/tex]
[tex]P(X = 1) = 2.3 * 0.10025884372[/tex]
[tex]P(X = 1) = 0.23059534055[/tex]
[tex]P(X\leq 1) = P(X=0) + P(X =1)[/tex]
[tex]P(X\leq 1) = 0.10025884372 + 0.23059534055[/tex]
[tex]P(X\leq 1) = 0.33085418427[/tex]
[tex]P(X\leq 1) = 0.331[/tex]
Hence, the required probability is 0.331
I DON'T UNDERSTAND! Use a system of equations to solve a word problem.
A. The sum of two numbers is -2, and their difference is 4. Find the two numbers.
B. One number is 2 less than a second number. Twice the second number is 14 less than 5 times the first. Find the two numbers.
C. A flat rectangular piece of aluminum has a perimeter of 64 inches. The length is 8 inches longer than the width. Find the width. Select one: A) 20 in. B) 32 in. C) 28 in. D) 12 in.
Answer:
A) 1 and -3
B) 8 and 6
C) D) 12 in.
Step-by-step explanation:
A) 1 and -3
B) x-2 = first number
x = second number
2x=5(x-2)-14
2x=5x-10-14
2x=5x-24
2x+24=5x
24=5x-2x
24=3x
8=x
So the two numbers are 8 and 6
C) width=x
length=x+8
x+x+x+8+x+8=64
4x+16=64
4x=48
x=12
Among the four northwestern states, Washington has 51% of the total population, Oregon has 30%, Idaho has 11%, and Montana has 8%. A market researcher selects a sample of 1000 subjects, with 450 in Washington, 340 in Oregon, 150 in Idaho, and 60 in Montana. At the 0.05 significance level, test the claim that the sample of 100 subjects has a distribution that agrees with the distribution of state populations.
Answer:
Step-by-step explanation:
From the given information:
the null hypothesis and the alternative hypothesis can be computed as follows:
[tex]\mathbf{H_o:}[/tex] The sample have a distribution that agrees with the distribution of state populations.
[tex]\mathbf{H_1:}[/tex] The sample have a distribution that does not agrees with the distribution of state populations.
The Chi-Square test statistics [tex]\mathbf{X^2 = \dfrac{(Observed \ value - Expected \ value )}{(Expected \ value ) ^2 }}[/tex]
Among the four northwestern states, Washington has 51% of the total population, Oregon has 30%, Idaho has 11%, and Montana has 8%. A market researcher selects a sample of 1000 subjects, with 450 in Washington, 340 in Oregon, 150 in Idaho, and 60 in Montana.
The observed and the expected value can be computed as follows:
States Observed Expected [tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
Washington 450 0.51 × 1000 = 510
Oregon 340 0.30 × 1000 = 300
Idaho 150 0.11 × 1000 = 110
Montana 60 0.08 × 1000 = 80
Total 1000 1000
For washington :
[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
[tex]X^2 = \dfrac{(450 -510)^2}{510}[/tex]
[tex]X^2 = \dfrac{3600}{510}[/tex]
[tex]X^{2}=[/tex] 7.06
For Oregon
[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
[tex]X^2 = \dfrac{(340- 300)^2}{300}[/tex]
[tex]X^2 = \dfrac{1600}{300}[/tex]
[tex]X^{2}=[/tex] 5.33
For Idaho
[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
[tex]X^2 = \dfrac{(150- 110)^2}{110}[/tex]
[tex]X^2 = \dfrac{1600}{110}[/tex]
[tex]X^2 =14.55[/tex]
For Montana
[tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
[tex]X^2 = \dfrac{(60- 80)^2}{80}[/tex]
[tex]X^2 = \dfrac{400}{80}[/tex]
[tex]X^2 = 5[/tex].00
The Chi-square test statistics for the observed and the expected value can be computed as follows:
States Observed Expected [tex]X^2 = \dfrac{(O- E)^2}{E}[/tex]
Washington 450 0.51 × 1000 = 510 7.06
Oregon 340 0.30 × 1000 = 300 5.33
Idaho 150 0.11 × 1000 = 110 14.55
Montana 60 0.08 × 1000 = 80 5.00
Total 1000 1000 31.94
The Chi-square Statistics Test [tex]\mathbf{X^2 = 31.94}[/tex]
Degree of freedom = n - 1
Degree of freedom = 4 - 1
Degree of freedom = 3
At 0.05 level of significance, the critical value of :
[tex]X^2_{(df, \alpha) }=X^2_{(3, 0.05)[/tex] = 7.815
Decision Rule: To reject null hypothesis if the test statistics is greater than the critical value
Conclusion: We reject the null hypothesis since test statistics is greater than critical value, therefore, we conclude that there is sufficient information to say that the sample has a distribution that does not agrees with the distribution of state populations.